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CRITICAL REVIEW

Reproducibility of artificial intelligence 
models in computed tomography of the head: 
a quantitative analysis
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Abstract 

When developing artificial intelligence (AI) software for applications in radiology, the underlying research must be 
transferable to other real-world problems. To verify to what degree this is true, we reviewed research on AI algorithms 
for computed tomography of the head. A systematic review was conducted according to the preferred reporting 
items for systematic reviews and meta-analyses. We identified 83 articles and analyzed them in terms of transpar-
ency of data and code, pre-processing, type of algorithm, architecture, hyperparameter, performance measure, and 
balancing of dataset in relation to epidemiology. We also classified all articles by their main functionality (classification, 
detection, segmentation, prediction, triage, image reconstruction, image registration, fusion of imaging modalities). 
We found that only a minority of authors provided open source code (10.15%, n 0 7), making the replication of results 
difficult. Convolutional neural networks were predominantly used (32.61%, n = 15), whereas hyperparameters were 
less frequently reported (32.61%, n = 15). Data sets were mostly from single center sources (84.05%, n = 58), increasing 
the susceptibility of the models to bias, which increases the error rate of the models. The prevalence of brain lesions 
in the training (0.49 ± 0.30) and testing (0.45 ± 0.29) datasets differed from real-world epidemiology (0.21 ± 0.28), 
which may overestimate performances. This review highlights the need for open source code, external validation, and 
consideration of disease prevalence.
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Key points

•	 Most research on machine learning for head CT 
imaging is not reproducible.

•	 Algorithms are not open source in most cases.
•	 Balancing the training data rarely mirrors real-world 

epidemiology.
•	 Graphical illustrations of model architecture were 

designed heterogeneously.

Background
In the 2017 Stanford Health Trends Reports, the annual 
growth rate of medical data was estimated to be 48%, 
with 153 petabytes of data in 2013 increasing to 2314 
petabytes in 2020 [1]. According to the Eurostat report 
on the use of imaging equipment, every 8th person in 
Europe needs computed tomography (CT) scan every 
year [2]. Diagnostic imaging accounts for a large share of 
these data, with increasing demands on radiologists’ daily 
routine. Artificial intelligence (AI), especially machine 
learning algorithms, will be an important tool in modern 
radiology to meet these demands. Machine learning is the 
umbrella term for computer algorithms that make accu-
rate decisions without being programmed with explicit 
rules [3]. They are carried out with algorithms like con-
volutional neural networks (CNN), random forests (RF), 
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support vector machines (SVM) or others [4]. However, 
the clinical impact of software using ML is still limited 
[5]. Kicky et  al. [5] have shown that most products on 
artificial intelligence in radiology are proofs-of-concept, 
and few address clinical applications. To overcome this 
condition, applications for everyday clinical use must be 
developed based on sound research. There is a debate 
taking place that recent publications lack standardiza-
tion and reproducibility [6]. Program code is rarely open 
source making clinical research using existing algorithms 
difficult, which prevents AI from being successfully 
implemented into healthcare environment.

In this work, we focus on algorithms using CT images 
of the head as training information. Image data usu-
ally goes through various pre-processing steps, and are 
divided into training, validation and test set. After the 
definition of a specific output, these sets are used as 
inputs for a respective algorithm. In 2020, Mongan et al. 
[7] noted that many publications on CNNs in the field 
of radiology were methodologically flawed and subse-
quently developed the CLAIM protocol: a checklist for 
research using CNNs in medical imaging. If following 
its rules in preparing a publication, reproducibility of the 
research should be ensured. In computer science, repro-
ducibility is defined as obtaining the same results from 
a previous experiment under similar conditions [8]. For 
AI, this would be testing the same algorithm with the 
same hyperparameters and comparable data sets by an 
independent group. This term is often interchanged with 
replicability, which describes the simulation of a previ-
ous experiment with the same results under very dif-
ferent conditions by a different research group [9]. We 
believe that the current research lacks both, replicabil-
ity, and reproducibility. In this work, we draw particular 
attention to the importance of providing freely accessible 
program codes, the significance of epidemiological fac-
tors on training data sets [10, 11], and the consistent rep-
resentation of AI architectures. We set out to critically 
examine the current study situation based on these cri-
teria. We analyzed research over the past twenty years in 
this field concerning the source of data, balancing of data 
sets, the reproducibility of algorithms and model perfor-
mance evaluations.

Methods
We initially conducted a systematic literature search fol-
lowing the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines [12]. 
The risk of bias assessment was done via the Grading 
of Recommendations Assessment, Development and 
Evaluation (GRADE) tool [13]. A PRISMA checklist can 
be found in the Additional file  1. This phase started on 
March 1, 2021, using PubMed, Cochrane, and Web of 

Science databases. On PubMed, we used the following 
Boolean search terms with Medical subjehead CTings 
for further stratification purposes: “(artificial intelli-
gence [mh] OR neural network [mh] OR machine learn-
ing [mh]) & (computed tomography [mh] OR CT [mh]) 
& (neuroimaging [mh] OR brain imaging [mh] OR brain 
[mh] OR head [mh])”. We carried out two literature 
search phases, including articles from January 1, 2000, to 
December 31, 2020, and a second updated search includ-
ing articles between January 1, 2021, and November 1, 
2021. This period was chosen because during an initial 
search we recognized that the first articles on head CT 
relevant to this review were published after 2000 and, 
more importantly, only increasingly in the last 7 years. A 
PRISMA diagram is shown in Fig. 1.

We only selected full-length articles for review that 
matched the following inclusion criteria: original 
research article; English language; proposing a machine 
learning model of any kind; computed tomography of 
the brain; involved human participants. We preliminary 
excluded publications when their abstracts, read by two 
independent readers (G.R., F.G.), did not include research 
on machine learning models or papers having a SCImago 
Journal Rank [14] below 2, which we considered as a 
quality cut-off (initial screening phase). We found that 
an abundance of publications being published in journals 
below this rank does not consistently follow the sugges-
tions for good scientific practice. We further excluded 

Fig. 1  PRISMA workflow The PRISMA workflow chart explains the 
selection of items to be analyzed
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articles not involving computed tomography scans of 
the brain, articles not peer-reviewed or other publication 
types (such as letters to the editor, conference abstracts, 
commentaries, case reports or other systematic reviews). 
The collection of data and exclusion was determined by 
two readers (F.G., G.R.) and independently confirmed 
by two separate readers, one being an expert in com-
putational science and artificial intelligence (M.J.) and 
one being a certified experienced radiologist (E.M.H). 
Machine learning was defined as a method using any sort 
of computer algorithm being trained with data sets to 
automatically solve a specific problem, in this study radi-
ology related issues.

Article selection
All full-length articles of the final selection (n = 83) 
were read each by one reader (F.G.), and information 
was manually inserted into a data frame in Excel (Office 
365). A list of all variables and outcomes for which data 
were sought can be found in Additional file 1: Table S3. 
Sources of information on our epidemiological data are 
referenced in Additional file  1: Table  S2. We analyzed 
research articles on algorithms with classification, detec-
tion, segmentation, or prediction tasks as main functions, 
where the demographic characteristics were listed, and 
the binary outcomes (pathology “A” or not pathology “A”) 
could be compared with real-word prevalence rates.

Statistical analysis
We extracted our data into Microsoft Excel, which was 
then used for our statistical analysis using an R script 
(RStudio 4.1.1). We used descriptive statistics and a 
Welch Students t-test for the assessment of the balanc-
ing of datasets (see Table 1). Our data sets and code can 
be found in the repository [15] or in the Additional file 1. 
For the measurement of performance statistics, we classi-
fied all articles by their main functionality (classification, 
detection, segmentation, prediction, triage, reconstruc-
tion, generation, fusion). Features of machine learn-
ing models were considered complete when the authors 
defined them as satisfactory for reproducibility, meaning 
that the individual parameters and features were either 
accessible in open source code or clearly listed in publica-
tions themselves (or in the supplements or prior studies). 
The mere mention of parameters was not considered suf-
ficient (e.g., "the dataset was split into a training set and a 
validation set" vs. "the dataset was split 80/20 into a train-
ing set and a validation set").

Development of research field
The literature search yielded 253 entries that met our 
search criteria. We excluded 93 records in our initial 
screening phase, keeping 160 full-text articles assessed 

for review. After the assessment for eligibility 83 studies 
were left for review. The whole selection process is shown 
in Fig. 1.

The number of publications has increased since 2013 
with an annual growth rate of 20%. The number of pub-
lications per year starting from 2000 is shown in Fig. 2. 
In most studies, the main purpose of AI models was 
the prediction (n = 19) of specific events, being mostly 
the occurrence of intracranial lesions, outcome studies 
after interventions, or other pathologies concerning the 
brain. Other tasks included brain segmentation (n = 15), 
generation of synthetic CT images (n = 13), detection of 
lesions (n = 10), image reconstruction (n = 9), classifica-
tion tasks (n = 8), fusion of MRI scans with CT images 
(n = 5), models on triage (n = 4) and automatic image 
registration into standardized spaces (n = 2).

Transparency and SOURCES of data and code
Only a minority of authors provided open-source code 
(10.15%, n = 7). The data sets were mostly acquired from 
single center sources (81.9%, n = 68). Authors described 
the following steps before training as follows: augmen-
tation steps (36.2%, n = 30), resolution of input scans 
(72.3%, n = 60), the definition of center of width of 
Hounsfield units or color space (32.5%, n = 27) and pre-
processing steps (63.9%, n = 53).

Balancing of datasets compared with epidemiology
We analyzed all articles where prevalence rates could 
be applied to data sets (n = 30). We found a mean prev-
alence rate used in training sets of 50% (SD ± 31%) and 
a mean rate of 47% (SD ± 30%) in the test sets. This dif-
fered from real-world epidemiologic data, where preva-
lence rates reached a mean of 22% (SD ± 28%). The 
balancing of training and test sets compared to real word 
epidemiology is shown in Table  1. References for the 

Table 1  Balancing of training and test sets compared to real 
world epidemiology

We statistically compared the prevalences of diseases of the training and test 
sets in the article selection with the respective real world epidemiology. We used 
a Welch Two sample t-test

*p < .05. **p < .01. ***p < .001; n = 30

Data set Mean ± SD

Training sets 0.50 + 0.31

Test sets 0.47 + 0.30

Real word epidemiology 0.22 + 0.28

t test

Training sets/test sets 0.45 (.66)

Training sets/real world epidemiology 3.78 (.0004***)

Test sets/real world epidemiology 3.32 (.002**)
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epidemiological data used for the calculations are listed 
in Additional file 1: Table S3.

Types of algorithms
Types of machine learning algorithms used on CT brain 
images are (in descending order) convolutional neural 
networks (CNN) (n = 60), random forests (RF) (n = 8), 
dictionary learning (DL) (n = 6), support vector machines 
(SVM) (n = 6) and others (n = 9) (see Table 2).

Hyperparameters
As defined by J.Mongan in the CLAIM protocol [7], 
research papers on CNNs should at least contain 
the learning rate, the optimization method and the 

minibatch size used for training of algorithms. Further-
more, the dropout rate as well as the number of epochs 
should be reported, if any were used. Hyperparameters 
are also considered reproducible if open-source code 
is provided. We found the minimum number of hyper-
parameters defined in publications using CNNs only 
in eighteen cases (31.0%, n = 18). Authors described 
dropout rates for seventeen models (29.3%, n = 17) and 
defined the number of epochs in thirty-four publica-
tions (58.6%, n = 34).

The loss function was only defined in thirty-four 
cases (41.0%, n = 34). For the defined functions, nine 
used Cross Entropy loss (10.84%, n = 9), five Dice loss 
(6.0%, n = 5), three Mean Absolute Error loss (3.62%, 
n = 3), and two Euclidean losses (2.4%, n = 2). Other 
researchers made use of different loss functions (see 
Table 3).

Fig. 2  Number of publications per year and function. The number of publications started to grow around 2013 until 2020. The decrease in 2021 
could be explained by the early end date of our review in November 2021 as probably not all papers of 2021 have been published yet

Table 2  Frequency of algorithms used by authors

CNN, convolution neural network; DL, dictionary learning; MLP, multilayer 
perceptron; RBFNN, radial basis function neural network; RF, random forest; SOM, 
self organising map; SVM, support vector machine; n = 83

Algorithm Frequency

CNN 60

RF 8

SVM 6

DL 6

Not defined 4

Isolation forest 1

Logistic regression 1

RBFNN 1

MLP 1

SOM 1

Table 3  Frequency of loss functions used by authors

n = 83

Loss function Frequency

Cross entropy 9

Dice loss 5

Mean absolute error 3

Euclidean loss 2

Image gradient difference loss 1

Nesterov gradient loss 1

Stochastic gradient descent 1

Loss function described but not reproducible 13

Not defined 49
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Types of networks
Pretrained networks or basic frameworks were not 
used or not defined in twenty-two instances (31.3%, 
n = 26). In cases where the authors defined or used 
already existing networks, the following were the most 
frequent: U-Net (20.5%, n = 17), ResNet (10.8%, n = 9), 
VGGNet (4.8%, n = 4), PItchHPERFeCT (3.6%, n = 3), 
and GoogLeNet (3.6%, n = 3). Ground truths were most 
frequently reports or decisions of radiologists (47.0%, 
n = 39), followed by raw images without any human 
interaction (12.1%, n = 10). However, a substantial por-
tion of the authors did not define their model’s ground 
truth at all or not to a satisfactory extent (37.4%, 
n = 31).

Illustration of model architectures
In sixty articles, graphical illustrations of one’s proposed 
model architecture were provided (72.3%, n = 60). The 
purpose of these illustrations is mostly to give readers 
an overview of the machine learning models. In com-
pliance with CLAIM, the minimum details provided by 
these illustrations should be the data size and vector of 
the input data and a precise definition of the output layer. 
The intermediate layers may contain pooling, normaliza-
tion, regularization and activation functions (again with 
the vector) and should show their interrelations. We pro-
pose a template of these components in the Additional 
file 1.

Training and validation
The authors defined the ratio between training and vali-
dation of data sets in more than two-thirds of instances 
(71.1%, n = 59). Additionally, more than 50% (56.6%, 
n = 47) validated their predictions with a separate test set 
being excluded from the training or validation data. Only 
five authors with separate test sets used a truly external 
test set from a different data source (6.0%, n = 5).

Metrics for model evaluation
Researchers measured a model’s sensitivity (resp. recall) 
and specificity, mainly in detection models (33.3%, n = 9; 
29.6%, n = 8). The area under the receiver operator char-
acteristic curve (AUROC) was predominantly used for 
prediction models (26.3%, n = 10), the dice score (resp. 
F1 score) mainly in segmentation applications (28.95%, 
n = 11). For models on the generation of virtual scans the 
mean absolute error (MAE) (22.9%, n = 5) and a struc-
tural similarity index (SSIM) (19.4%, n = 6) were pri-
marily used as evaluation metrics. Models on fusion of 
imaging modalities were examined based on their peak 

signal-to-noise ratio (PSNR) (42.9%, n = 3). Additional 
file 1: Table S4 shows all the results in detail.

Comparison of algorithm performances
Twenty-eight authors published their machine learn-
ing solutions as proofs-of-concept (33.7%, n = 28) only. 
Some papers let their models’ performance compete with 
radiologists (16.7%, n = 12) or other algorithms (18.1%, 
n = 18). In all other articles, the models were compared 
to current non-machine learning approaches.

Discussion
With the growing number of machine learning algo-
rithms, there is a great need for standardization of 
research, which is met by this review. We have car-
ried out a detailed analysis of the reproducibility of AI 
research. This review focuses on the comparability of 
algorithms and their feasibility in the context of realism. 
Artificial intelligence in this particular field of radiology 
is one of the fastest emerging subjects, considering the 
number of published papers (see Fig. 2).

Only a small fraction provided open-source codes that 
tremendously reduce the reproducibility of research in 
this field being indispensable for clinical studies. Also, 
only a minority of publications described the necessary 
model’s hyperparameters to a minimum extent. Knowl-
edge of the hyperparameters is crucial to verify the 
published results. This drawback can be overcome by 
providing open-source code, which should be available in 
every publication on machine learning algorithms if there 
is a desire to implement AI applications successfully in 
clinical practice.

Another major issue we found was the origin of 
the source data. Head CT scans were predominantly 
acquired at a single site. Park et al. [10] have stated that 
single center data lack the heterogeneity of input data 
for machine learning models and are, therefore, more 
prone to what is known as single-source bias [16]. Mul-
ticenter studies are more difficult to conduct but pro-
vide a broader range of medical data. Though a majority 
described the balancing of training-, validation- and test-
sets, external test sets outside the training data are used 
only by a few. Therefore, all models with internal vali-
dation should be considered potentially inapplicable to 
other data. [17]. Although more challenging to establish, 
all machine learning models should pass external valida-
tion through data sets originating from different sources 
than the input data [17].

We also want to mention the important effects of epi-
demiological factors on the performance of AI mod-
els being rarely considered. McKnight et  al. [11] have 
shown that machine learning algorithms perform poorly 
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when prevalence rates drop below 10%. We found that 
the research papers in our review differed significantly 
from real-world outcome rates. The articles elaborated 
mainly on conditions with prevalence rates above the 
10%-threshold. However, in clinical practice, pre-test 
probabilities below this threshold are commonly found. 
For test sets, the balancing should mimic the real-world 
occurrence of respective conditions, otherwise, a model’s 
evaluation of performance might be overrated, especially 
for rare diseases.

The majority of publications proposed algorithms for 
prediction, segmentation, or detection tasks. The pre-
dominant framework was that of a convolutional neural 
network, which was expected as CNNs provide astonish-
ing results on object recognition tasks [18]. Only a small 
percentage of authors dealt with the autonomous screen-
ing and prioritization of radiological scans, namely triage, 
although these models might have the biggest impact on 
radiologists’ clinical routine in the near future [19, 20]. 
Binary diagnoses of lesions in the brain is an important 
proof-of-concept, given that imaging rates for radiolo-
gists continuously increase [21]. Particularly resource 
efficient handling of radiological data shall be a cor-
nerstone of AI research. Good triage solutions might 
be the first to enable AI to be successfully clinically 
implemented.

Graphical illustrations of model architectures are tools 
used in the majority of publications using CNNs. The 
reviewed publications show a heterogeneous set of fea-
tures and do not always provide readers with sufficient 

information. In compliance with CLAIM [7], we propose 
that these illustrations should at least present the input’s 
and output’s data size and vector, and include vectors 
and functions of all intermediate layers (see Fig.  3). To 
support the standardization of AI research, we created 
graphic content which can be used freely as a template 
[15]. Since the CLAIM protocol [7] has been published 
last year, the articles analyzed in our review of course did 
not meet its criteria. We want to encourage every author 
to become familiar with CLAIM and to use it as a guide 
for future AI publications. The results of our study must 
be considered cautiously as our review has several limi-
tations. First, although we strive for completeness, there 
might be some articles that we did not find in the litera-
ture selection process due to unknown errors we made 
or unknown terminology used in studies that may have 
fallen through our search. Second, we only analyzed 
machine learning models dealing with CT imaging of 
the head, so our findings shall only be generalized with 
caution to other modalities. However, we anticipate that 
scientific research applying AI to other body regions or 
using other imaging modalities will have similar issues to 
those presented in this manuscript, but we cannot allege 
that for certain.

Conclusions
In conclusion, current research on AI for head CT is 
rarely reproducible, does not match with real-world epi-
demiology and should be more transparent. This is essen-
tial because AI in radiology is a rapidly growing field, and 

Fig. 3  Template graphical architecture. This template incorporates all basic framework components which should be provided to readers for a 
quick overview. It can be used and adapted freely to one’s needs
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therefore must meet scientific standards. We encourage 
scientists to consider the need for reproducibility and 
replicability, to standardize the representation of net-
work architectures, and to use the CLAIM protocol [7]. 
It remains an open research issue whether freely avail-
able program codes and publicly reproducible algorithms 
significantly support the development of AI solutions, as 
economic considerations are not irrelevant when imple-
menting software in healthcare providers. AI applica-
tions in radiological imaging should be considered like 
other diagnostic measures, whose performance is just as 
subject to epidemiological factors, so balancing data sets 
should include disease prevalence. How much epidemi-
ology affects the performance of AI models needs to be 
investigated in future research.
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