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Abstract

Image quality control is a critical element in the process of data collection and cleaning. Both 

manual and automated analyses alike are adversely impacted by bad quality data. There are 

several factors that can degrade image quality and, correspondingly, there are many approaches to 

mitigate their negative impact. In this paper, we address image quality control toward our goal of 

improving the performance of automated visual evaluation (AVE) for cervical precancer screening. 

Specifically, we report efforts made toward classifying images into four quality categories 

(“unusable”, “unsatisfactory”, “limited”, and “evaluable”) and improving the quality classification 

performance by automatically identifying mislabeled and overly ambiguous images. The proposed 

new deep learning ensemble framework is an integration of several networks that consists of 

three main components: cervix detection, mislabel identification, and quality classification. We 
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evaluated our method using a large dataset that comprises 87,420 images obtained from 14,183 

patients through several cervical cancer studies conducted by different providers using different 

imaging devices in different geographic regions worldwide. The proposed ensemble approach 

achieved higher performance than the baseline approaches.
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1 Introduction

Cervical cancer is mainly caused by persistent infection of carcinogenic human 

papillomavirus (HPV). It is one of the most common cancers among women. Its morbidity 

and mortality rates are especially high in low- and middle- income countries (LMIC). 

Besides HPV vaccination, effective approaches to screening and treatment of precancerous 

lesions play an important role in the prevention of cervical cancer. Precancer is a term 

that refers to the direct precursors to invasive cancer, which are the main target of cervical 

screening. In LMIC, due to the limited resources of medical personnel, equipment, and 

infrastructure, visual inspection of cervix with acetic acid (VIA) is a commonly adopted 

method for screening for cervical precancer (and treatable cancer). While it is simple, 

inexpensive, quick to get a result, and does not require expert personnel training, VIA has 

fairly mediocre intra- and inter- observer agreement and may result in over-treatment and 

under-treatment [1].

One way to improve VIA screening performance may be to combine it with a low-cost 

imaging device incorporated with computerized technology that uses predictive machine 

learning and image processing techniques, called automated visual evaluation (AVE) for the 

purpose of this discussion [2]. Our proof-of-concept work [2,3] that was demonstrated on 

two cervical image datasets showed the promise of AVE in LMIC as an adjunctive tool for 

VIA for screening, or triage of HPV-positive women if such testing is available. Subsequent 

work has revealed possible problems in implementation [4]. For instance, image quality 

control, among others, is a key issue.

There are many factors that can adversely affect or degrade image quality. Some are related 

to clinical or anatomical aspects of cervix, such as the visibility of the transformation zone 

where cervical cancers tend to arise, and the presence of occlusion due to vaginal tissue, 

blood, mucus, and medical instruments (e.g., speculum, cotton swab, intrauterine device). 

Some of these are related to the technical aspect of imaging device and the illumination 

condition, such as blur, noise, glare, shadow, discoloration, and low contrast, among others. 

While it is important to train care providers to take high-quality pictures, it is also of 

importance to develop automated techniques to limit, control, and remedy the image quality 

problem in existing data sets as well as during acquisition. To this end, we have been 

working on several aspects, such as filtering out non-cervix images [5], identifying green-

filtered images and iodine-applied images [6], separating sharp images from non-sharp 

images [7], and deblurring blurry images [8]. We also have been working on analyzing 
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the effects of several image quality degradation factors on the performance of AVE. These 

include carrying out experiments to quantitively examine and evaluate the AVE results on 

different levels of image noise and the effectiveness of denoising on AVE [9].

In real-world images, there are often multiple types of degradation existing simultaneously 

which may vary within as well as across datasets. It may be very difficult to synthesize 

(mimic) certain types of degradation let alone a combination of multiple degradation types 

which is significantly harder. Therefore, we have been interested in developing a general 

image quality classifier using the data labeled by expert clinician annotators based on their 

judgment. For the quality grading, the annotators were guided by predetermined criteria 

comprising several factors. They were developed by researchers at National Cancer Institute 

(NCI) who contributed the first-round quality filtering. Using this guide, NCI researchers 

assigned image quality labels (“unusable”, “unsatisfactory”, “limited”, and “evaluable”) for 

images in six datasets that were obtained from different studies, geographical areas, and 

sources. The guide was specifically designed to reduce the workload and labor time of 

collaborating gynecologists for annotating images with respect to diagnostic review (for 

AVE disease grading and treatability analysis), i.e., cutting down the number of low(bad)-

quality images among the images to be reviewed by the gynecologists. We noted that the 

images had a large variance in appearance within each dataset and across datasets. The 

combined dataset contains 14,183 patients and 87,420 images. We aimed to develop a 

4-class quality classifier using this multisource data.

It is common for a large real-world dataset to be noisy and have mis-annotations due to 

fatigue, misunderstanding, and highly ambiguous samples. Therefore, using all the available 

training data sometimes may not be the best choice for achieving good generalization. In 

our dataset, there might be high degrees of ambiguity between some samples in the adjacent 

classes such as “unsatisfactory” and “limited”, and “limited” and “evaluable” (as implied in 

the descriptions of labeling criteria in Section 2). We also happened to notice the existence 

of mislabeled images in the training dataset during random visual browsing. Like labeling 

itself, manual label cleaning for a large dataset is tedious and labor-intensive. To deal with 

noisy labels and reduce their negative effects on model performance, one can: 1) design a 

network that takes weak supervision into consideration; and 2) identify mislabeled or highly 

ambiguous data automatically. In this paper, we focus on the latter. That is, in addition, 

to develop an image quality classifier, we are interested in removing/cleaning data used in 

training to produce better generalization performance.

There are prior works in the literature aiming for mislabel identification. The majority of 

them monitor the training process and extract certain measures that can be used to represent 

the difference between clean and mislabeled samples from the training process [10–13]. For 

example, based on the observation that the curve of the training accuracy with the increase 

of training epochs is different between clean and bad samples, the authors in [10] developed 

an iterative approach in which a model was retrained by using only the samples having the 

lowest loss at the current iteration. Another such example is [11], which proposed a method 

to use the area under the margin (AUM) value to measure the difference in the training 

dynamics (as a function of training epochs) between the correctly and incorrectly labeled 

samples. [11] also developed an effective way (using so-called indicator samples) to find a 
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suitable threshold value to separate the AUM values of correctly labeled samples from those 

of in-correctly labeled samples. For our application, we selected and applied a method [14] 

that is based on an alternative idea. It identifies label errors by directly estimating the joint 

distribution between noisy observed labels and unknown uncorrupted labels based on the 

model prediction probability scores [14]. We integrated this algorithm into our image quality 

classification ensemble framework.

The main contribution of our work is: we developed a new approach that utilizes ensemble 

methods for both mislabel identification and quality classification for uterine cervix images. 

We also carried out comparison and ablation experiments to demonstrate the effectiveness 

of the proposed approach. In the following sections, we first introduce the large dataset 

collected from multiple sources and the criteria used for manual quality annotation, next 

present the whole quality classification framework that contains three main components, 

then describe experimental tests, comparison, and discussion, and at last conclude the paper.

2 Image Quality Labeling Criteria and Data

In this section, we describe the criteria used for AVE image quality annotation and the image 

datasets that were labeled.

2.1 The Labeling Criteria

These labeling criteria aim to be used for guiding an image taker or health worker for 

their first round of image quality examination, i.e., to be used for annotating an image 

based on the technical quality and the ability to see acetowhite areas, not based on 

anatomical considerations (e.g., squamous-columnar junction (SCJ) observability). There 

are four image quality categories: unusable, unsatisfactory, limited, and evaluable. Images 

labeled as “limited” or “evaluable” will be used for diagnostic review. The brief guidelines 

for each category are as follows.

• Unusable: The image is one of the following types: non-cervix, iodine, green-

filtered, post-surgery, or having an upload artifact.

• Unsatisfactory: The image is not “unusable”, but image quality does not allow 

for evaluation, e.g., has too much blur, is zoomed out/in too much.

• Limited: The quality is high enough to allow evaluation of the image, but the 

image has flaws, e.g., off-center, low light, some blur, obstruction.

• Evaluable: The quality is high and there are no major technical flaws. If in 

doubt, then classify the image as “limited”

2.2 Datasets

The images that were annotated were obtained from 6 cervical cancer studies conducted 

by different providers with different imaging devices at different regions/countries: NET, 

Dutch Biopsy (Bx), ITOJU [15], Sweden, Peru, and SUCCEED [16]. The name of the 

device and the principal investigator (PI) of each study is listed in the Appendix Table 

1. For images from the NET study, they were collected from four countries (El Salvador, 

Kenya, Thailand, and Cameroon) with different image id prefixes. ITOJU study was carried 

Xue et al. Page 4

Med Image Learn Ltd Noisy Data (2022). Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



out in Nigeria and SUCCEED (the Study to Understand Cervical Cancer Early Endpoints 

and Determinants) was conducted in US. The images within each dataset or across datasets 

have a large appearance variance with respect to not only cervix or disease related factors 

(such as woman’s age, parity, and cervix anatomy and condition) but also non-cervix or 

non-disease related factors (such as illumination, imaging device, clinical instrument, zoom, 

and angle). In these datasets, one patient may have a varied number of images in one visit 

or multiple visits. Appendix Table 2 lists the number of annotated images from each study 

and the number of images in each quality category. In each study, the number of images 

may vary significantly among quality categories. However, the total numbers of images in 

the combined dataset across the categories are not highly imbalanced. The reason that Dutch 

Bx, Sweden and Peru datasets contain a significant percentage of unusable or unsatisfactory 

images is because many of them are green-filtered or Lugol’s iodine applied images or 

close-up images. Although green filter and iodine solution are not usually used in VIA, it is 

a common practice to use them in colposcopy examinations for visual evaluation of cervix. 

In addition, practitioners in colposcopy tend to take close-up images to check, show or 

record regions-of-interest, but significantly zoomed-in images are not considered adequate 

for AVE use as each image is evaluated individually by AVE. A few examples of images in 

each category are shown in the Appendix Figure 1.

3 Methods

Figure 1 shows the overall diagram of the proposed method. It consists of three main 

components: 1) cervix detector; 2) quality classifier; and 3) mislabel identifier. The mislabel 

identifier is based on the result of the quality classifier trained with cross validation. We 

used three quality classifiers and three corresponding mislabel identifiers. We applied 

ensemble learning on both the results of mislabel identification and the results of quality 

classifications. In this study, we aim to remove/clean bad samples from the training and 

validation sets only, not the test set. The cleaned training and validation sets (the candidates 

that are identified by all three mislabel identifiers are removed) are then used to train three 

quality classifiers respectively. The final label of classification is generated by combining the 

output probability scores of the three classifiers. In the following, we provide more details 

for each main component.

3.1 Cervix Detection

Since the cervix is the region of interest and the image may contain a significantly large 

area outside of the cervix, we developed a cervix locator using RetinaNet [17], a one-stage 

object detection network. We trained the model with a set of images in a different study 

(Costa Rica Vaccine Trial, conducted by the National Cancer Institute, USA [18]) whose 

cervices were manually marked and were not used for image quality evaluation/labeling. 

The detected cervix region was then cropped out and resized before being passed to a 

classifier. Since not all the images will have a cervix detected (for example, there are images 

that are not cervix images), all those images in the test set that have no cervix detected by 

the detector are predicted as “unusable”.
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3.2 Quality Classification

Image classification has been actively and extensively studied in the literature. Since the 

debut of AlexNet, many new algorithms or architectures have been developed in this decade 

of the fast-growing era of deep learning. There are two broad types of neural networks: 1) 

convolutional neural network (CNN) based, and 2) Transformer based. Using an ensemble 

of different architectures can utilize the complementary characteristics of the networks and 

achieve better performance. For our application, we selected three network architectures. 

Two of those were recent algorithms that have achieved state-of-the-art performance on 

large general-domain datasets: ResNeSt (ResNet50) [19] and Swin Transformer (Swin-B) 

[20]. We also added a simpler and smaller ResNet network (ResNet18) for comparison. 

For all three networks, we initialized their weights using ImageNet pre-trained models 

and fine-tuned them using our cervix images and labels. To combine the outputs of the 

three networks, we used the following ensemble method: the class whose average output 

probability value from all three networks is the largest value among the 4 classes is selected 

as the final label.

3.3 Mislabel Identification

We applied the algorithm of confident learning (CL) [14] for identifying bad samples in 

the training data. CL aims to identify mislabels by estimating label uncertainty, i.e., the 

joint distribution between the noisy and true labels. It uses predicted probability outputs 

from a classification model for the estimation and is data-centric instead of model-centric. 

Due to its model-agnostic characteristics, CL can be easily incorporated into our ensemble 

classification framework. To compute predicted probabilities, K-fold cross-validation is 

used. In CL, the class imbalance and heterogeneity in predicted probability distributions 

across classes are addressed by using a per-class threshold when calculating the confident 

joint [14]. In [21] which uses CL to identify mislabeled images in the ImageNet dataset 

and all the candidates were reexamined and relabeled by annotators, it showed that many 

of the candidates were not considered mislabeled by the annotators. Hence, to improve the 

precision, we used CL for all three classification networks and selected the candidates that 

were recommended for elimination by all three identifiers.

4 Experimental Results and Discussion

We randomly split the images at the patient level within each dataset into training/validation/

test set at the ratio of 70/10/20. Table 1 lists the number of original images in the training/

validation/test set in each category in each dataset, respectively. After cervix detection, there 

were 503, 71, and 141 images that had no cervix detected in training, validation, and test set 

respectively. Most of these no-cervix-detected images have ground-truth label of “unusable” 

and a few are of label “unsatisfactory”. For the 141 test images that the cervix detector did 

not have output, they were all assigned with the prediction label of “unusable” (since the 

criteria for labeling an image as “unusable” include a “non-cervix” image).

For all the classification models (ResNeSt50, ResNet18, and Swin-B), the input images 

were resized to 224 × 224, and the weights were initialized with corresponding ImageNet 

pre-trained model weights. Both ResNeSt50 and ResNet18 models used the same following 
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hyperparameters: 1) cross-entropy loss with label smoothing; 2) 64 batch size; and 3) Adam 

optimizer (β1 = 0.9, β2 = 0.999) with a learning rate of 5×10–5. For Swin-B, we used: 

1) cross-entropy loss function; 2) batch size of 8; 3) Adam optimizer with a learning rate 

cosine scheduler (initial learning rate was 5×10–5 and the number of warm-up epochs was 

5). All three networks used augmentation methods that include random rotation, scaling, 

center cropping, and horizontal and vertical flip. Each model was trained for 100 epochs and 

the model at the epoch with the lowest loss value on the validation set was selected.

For identifying bad samples using CL, we created 4-fold cross-validation set using the 

original training and validation sets and trained 4 models for each classifier. The label 

uncertainty of both training and validation sets was estimated from their predictions from the 

4 models. For pruning, the “prune by noise rate” option was used. The number of mislabeled 

candidates generated by using each network from the training and validation set is given in 

Table 2. The number of images in the intersection is much smaller than that generated by 

any of the networks (6,455 vs. i.e. 13,038).

We used the following metrics to evaluate multi-class classification performance: accuracy 

and average values of recall, specificity, precision, F1 score, Matthew’s correlation 

coefficient (MCC), and Kappa score, respectively (using the one-vs-rest approach). Table 

3 lists the test set values of the above metrics for each network before and after the 

removal of identified mislabeled candidates from the training/validation sets. From Table 3, 

we observed that: 1) when the same set is used to train, the ensemble classifier achieves 

higher performance than any of the individual classifier; and 2) all the classifiers that are 

trained with the training data that excludes the mislabeled candidates obtain slightly better 

performance than those trained using the original data. These observations demonstrate the 

advantages and effectiveness of ensemble learning, as well as using more data to train 

may not be helpful and data quality is important. The overall improvement (ensemble plus 

mislabeled candidate removal) over the best baseline individual model (SwinB) is around 

2.7% w.r.t. MCC ((0.683–0.665)/0.665). As shown by [21], some identified candidates may 

not be indeed mislabeled after the manual re-evaluation. However, to us, it is acceptable to 

exclude data that are in fact correctly labeled from the training process if it improves the 

generalization performance.

Figure 2 shows the t-SNE plot of the features extracted from ResNet18 model trained using 

the original training set as well as the features of the mislabeled candidates and the cleaned 

training set from the same t-SNE plot. It shows that the cleaned one has a better separation 

between classes than the original one, indicating the identified candidates may be ambiguous 

samples. The classification confusion matrix calculated from the test set for the ensemble 

classifier trained by using the cleaned training/validation set is given in the appendix Figure 

2. From the labeling guidelines in Section 2, we expect the main ambiguity to exist between 

the classes of “evaluable” and “limited” or the classes of “limited” and “unsatisfactory”. It is 

confirmed by the confusion matrix. As the images predicted with “limited” and “evaluable” 

will pass the quality check and be used for diagnostic evaluation, we also examined the 

binary class (“limited+evaluable” vs. “unusable+ unsatisfactory”) classification performance 

by generating the 2-class confusion matrix from the 4-class one. Its accuracy, F1 score and 

MCC are: 0.885, 0.859, and 0.762, respectively.

Xue et al. Page 7

Med Image Learn Ltd Noisy Data (2022). Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5 Conclusions

The quality of cervix images is important to the succeeding image analysis and visual 

evaluation for cervix cancer screening. In this paper, we report one of our efforts toward 

controlling the image quality, i.e., automatically filtering out images of unacceptable quality. 

To this end, we developed a multi-class classifier using a large, combined dataset that was 

labeled with four quality categories. Due to factors including ambiguities among classes 

and the variance in user understanding and interpretation, it is common for a large dataset 

to have noisy labels. Therefore, we also aimed to improve the generalization performance 

by identifying and removing bad samples from the training/validation set. By integrating 

confident learning and ensemble learning, our proposed method achieved better prediction 

performance than the baseline networks.
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Appendix

Table 1.

The device and PI of each dataset

Prefix Device PI

NET

El Salvador Screening 
population

Samsung J8 Karla Alfaro
kalfaro@basichealth.org

Kenya Screening 
population

Samsung J8 Chemtai Mungo
chemutai.mungo@gmail.com

Thailand Colposcopy 
clinic

Samsung J8 Kittipat Charoenkwan 
kittipat.c@cmu.ac.th

Cameroon Screening 
population

Samsung J8 Joel Fokom Domgue
fokom.domgue@gmail.com

Dutch Bx GYFZ Colposcopy 
clinic

Digital SLR 
Camera

Nicolas Wentzensen

ITOJU HFLD

Screening 
population

Mobile ODT Eva Kanan T. Desai and Kayode Olusegun 
Ajenifuja
ajenifujako@yahoo.com
kanan_desai2004@yahoo.com

Sweden PUBG Colposcopy 
clinic

Colposcopes Elisabeth Wikström
elisabeth.wikstrom05@gmail.com

Peru PUBL Colposcopy 
clinic

Colposcope Jose Jeronimo

SUCCEED SBX Colposcopy 
clinic

Digital SLR 
Camera

Nicolas Wentzensen
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Table 2.

Number of images in each dataset in each quality category

Prefix Patients Images Unusable Unsatisfactory Limited Evaluable

NET

BSPR 82 249 0 24 111 114

FARH 73 356 0 91 173 92

JBKV 159 449 3 26 201 219

ZRQB 157 439 1 6 41 391

Dutch Bx GYFZ 1036 7886 3839 288 1376 2383

ITOJU HFLD 1388 19060 177 3991 7633 7259

Sweden PUBG 878 2221 1072 362 566 221

Peru PUBL 9736 55082 20423 20820 9568 4271

SUCCEED SBX 674 1678 14 314 826 524

Total 14183 87420 25529 25922 20495 15474

Fig. 1. 
Examples of images in each quality category.
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Fig.2. 
The classification confusion matrix of the test set
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Fig. 1. 
Diagram of the proposed approach.
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Fig. 2. 
T-SNE plots of training set
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Table 1.

The number of original images in training/validation/test set.

Unusable Unsatisfactory Limited Evaluable Total No-cervix detected

Train 17734 18083 14376 10836 61029 503

Validation 2726 2609 2078 1548 8961 71

Test 5069 5230 4041 3090 17430 141
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Table 2.

The number of identified mislabel candidates.

Set Unusable Unsatisfactory Limited Evaluable Total

ResNet18
Train 981 3037 4380 3464 11862

13602
Val. 145 417 664 514 1740

ResNeSt50
Train 1441 3534 5371 3518 13864

15930
Val. 197 565 758 546 2066

Swin-B
Train 1126 3226 4095 2947 11394

13038
Val. 141 486 625 392 1644

Intersection
Train 614 1346 1953 1722 5635

6455
Val. 114 186 257 263 820
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Table 3.

The classification performance on the test set (with/without bad sample removal from the training and 

validation set).

Acc Recall Spec. Prec. F1 MCC Kappa

Using original train and validation sets

ResNeSt50 0.742 0.724 0.914 0.734 0.728 0.642 0.650

ResNet18 0.733 0.710 0.910 0.726 0.715 0.628 0.637

Swin-B 0.756 0.744 0.919 0.749 0.746 0.665 0.671

Ensemble 0.766 0.750 0.921 0.760 0.754 0.676 0.682

Using cleaned train and validation sets

ResNeSt50 0.752 0.734 0.917 0.751 0.740 0.659 0.664

ResNet18 0.746 0.722 0.914 0.747 0.730 0.648 0.654

Swin-B 0.759 0.746 0.920 0.759 0.751 0.671 0.674

Ensemble 0.769 0.752 0.923 0.771 0.759 0.683 0.687
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