Skip to main content
. Author manuscript; available in PMC: 2022 Oct 28.
Published in final edited form as: Med Image Learn Ltd Noisy Data (2022). 2022 Sep 15;13559:206–217. doi: 10.1007/978-3-031-16760-7_20

Table 3.

The classification performance on the test set (with/without bad sample removal from the training and validation set).

Acc Recall Spec. Prec. F1 MCC Kappa
Using original train and validation sets
ResNeSt50 0.742 0.724 0.914 0.734 0.728 0.642 0.650
ResNet18 0.733 0.710 0.910 0.726 0.715 0.628 0.637
Swin-B 0.756 0.744 0.919 0.749 0.746 0.665 0.671
Ensemble 0.766 0.750 0.921 0.760 0.754 0.676 0.682
Using cleaned train and validation sets
ResNeSt50 0.752 0.734 0.917 0.751 0.740 0.659 0.664
ResNet18 0.746 0.722 0.914 0.747 0.730 0.648 0.654
Swin-B 0.759 0.746 0.920 0.759 0.751 0.671 0.674
Ensemble 0.769 0.752 0.923 0.771 0.759 0.683 0.687