Table 3.
Acc | Recall | Spec. | Prec. | F1 | MCC | Kappa | |
---|---|---|---|---|---|---|---|
Using original train and validation sets | |||||||
ResNeSt50 | 0.742 | 0.724 | 0.914 | 0.734 | 0.728 | 0.642 | 0.650 |
ResNet18 | 0.733 | 0.710 | 0.910 | 0.726 | 0.715 | 0.628 | 0.637 |
Swin-B | 0.756 | 0.744 | 0.919 | 0.749 | 0.746 | 0.665 | 0.671 |
Ensemble | 0.766 | 0.750 | 0.921 | 0.760 | 0.754 | 0.676 | 0.682 |
Using cleaned train and validation sets | |||||||
ResNeSt50 | 0.752 | 0.734 | 0.917 | 0.751 | 0.740 | 0.659 | 0.664 |
ResNet18 | 0.746 | 0.722 | 0.914 | 0.747 | 0.730 | 0.648 | 0.654 |
Swin-B | 0.759 | 0.746 | 0.920 | 0.759 | 0.751 | 0.671 | 0.674 |
Ensemble | 0.769 | 0.752 | 0.923 | 0.771 | 0.759 | 0.683 | 0.687 |