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Abstract

OBJECTIVES: Our goal was to develop high throughput computer vision (CV) algorithms to detect blood stains in thoracoscopic surgery
and to determine how the detected blood stains are associated with postoperative outcomes.

†These authors contributed equally to this work.
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METHODS: Blood pixels in surgical videos were identified by CV algorithms trained with thousands of blood and non-blood pixels ran-
domly selected and manually labelled. The proportion of blood pixels (PBP) was computed for key video frames to summarize the blood
stain information during surgery. Statistical regression analyses were utilized to investigate the potential association between PBP and post-
operative outcomes, including drainage volume, prolonged tube indwelling duration (>_5 days) and bleeding volume.

RESULTS: A total of 275 patients undergoing thoracoscopic lobectomy were enrolled. The sum of PBP after flushing (P < 0.022), age
(P = 0.005), immediate postoperative air leakage (P < 0.001), surgical duration (P = 0.001) and intraoperative bleeding volume (P = 0.033)
were significantly associated with drainage volume in multivariable linear regression analysis. After adjustment using binary logistic
regression analysis, the sum of the PBP after flushing [P = 0.017, odds ratio 1.003, 95% confidence interval (CI) 1.000–1.005] and immediate
postoperative air leakage (P < 0.001, odds ratio 4.616, 95% CI 1.964–10.847) were independent predictors of prolonged tube indwelling
duration. In the multivariable linear regression analysis, surgical duration (P < 0.001) and the sum of the PBP of the surgery (P = 0.005) were
significantly correlated with intraoperative bleeding volume.

CONCLUSIONS: This is the first study on the correlation between CV and postoperative outcomes in thoracoscopic surgery. CV algorithms
can effectively detect from surgical videos information that has good prediction power for postoperative outcomes.

Keywords: Computer vision • Thoracoscopic lobectomy • Blood stain detection • Drainage volume • Prolonged tube indwelling duration
• Bleeding volume

ABBREVIATIONS

AI Artificial intelligence
CV Computer vision
IQR Interquartile range
PBP Proportion of blood pixels
SumPBP Sum of PBP
SumPBP-Flushing Sum of PBP from flushing to the end of the

surgery
VATS Video-assisted thoracoscopic surgery

INTRODUCTION

Surgery has progressively shifted towards the minimally invasive
surgery paradigm, such as laparoscopic surgery and video-
assisted thoracoscopic surgery. Compared to thoracotomy,
video-assisted thoracoscopic surgery (VATS) has become the
standard of care for early and locally advanced non-small-cell
lung cancer due to decreased acute postoperative outcomes, less
impairment in pulmonary function, lower postoperative morbid-
ity, shorter hospital stays, comparable long-term oncological
results and improved postoperative quality of life [1, 2]. During
VATS, digital cameras visualize and record the surgical proce-
dures in surgical videos. These surgical videos contain rich infor-
mation about patient anatomy at the surgical site, the surgical
procedure, the motions of instruments during the operation and
so on. It is intuitive that VATS with fewer blood stains in surgical
sites may translate to reduced postoperative drainage and
shorter hospital stays. Although an experienced surgeon can ef-
fortlessly tell if a surgical site is “clean”, it is a challenge to quantify
blood stains in VATS videos.

Artificial intelligence (AI) has developed quickly in the last dec-
ade. Various powerful computer vision (CV) algorithms have
been proposed to give computers human-like ability to recog-
nize images and videos [3]. Some of them have been successfully
applied to process medical images in radiology and pathology
[4–8]. Recently, many efforts have been made to process surgical
videos by CV algorithms, to extract meaningful procedural or
anatomical information [9], to identify different surgical phases
[10–13], to recognize various surgical instruments [14, 15] and to
achieve more efficient surgical technique evaluations and teach-
ing [16–19]. To the best of our knowledge, however, most of

these efforts focus on analysing laparoscopic procedures [10–13].
Thus far, no research efforts have been exerted on analysing vid-
eos of thoracoscopic operations via CV algorithms.

We focus on CV analysis of blood stains during thoracoscopic
operation, because massive bleeding events are one of the major
intraoperative accidents, and blood effusions are associated with
postoperative complications such as prolonged hospital stays [20,
21]. There are already some efforts in the literature using AI to
identify blood stains. Hassan et al. developed a texture-feature-
descriptor-based algorithm that operated on the normalized
grey level co-occurrence matrix of the magnitude spectrum of
the images to detect blood stains [22]. With the advent of pixel-
based blood stain detection methods, Pan et al. extracted fea-
tures of blood stains and proposed an intelligent blood stain de-
tection method based on a probabilistic neural network [23].
Usman et al. proposed a pixel-based approach to detect blood
stains in wireless capsule endoscopy videos by using a support
vector classifier [24]. Novozamsky et al. defined a new colour
space based on pixel-wise methods such that the separability of
blood pixels and the intestinal wall should be maximized in a
capsule endoscopy video [25]. Interestingly, for a state-of-the-art
study, there is a knowledge gap between CV analysis and postop-
erative prognosis.

Given the facts just mentioned, we conducted a retrospective
study to bridge this gap by developing high-throughput CV algo-
rithms that can conveniently process a large number of thoraco-
scopic surgery videos. We hypothesized that CV algorithms could
effectively extract potential signals from surgical videos of thora-
coscopic surgery and that these computer-detected visual fea-
tures are associated with postoperative outcomes.

MATERIAL AND METHODS

Patient selection and postoperative outcomes

A total of 333 patients undergoing thoracoscopic lobectomies at
Peking University People’s Hospital between 1 January 2020, and
30 December 2020 were enrolled for this retrospective study.
Among the enrolled patients, 58 were excluded due to incom-
plete baseline medical records (5 patients) and incomplete surgi-
cal videos (46 patients) or because they had postoperative
chylothorax (7 patients), resulting in 275 selected patients (Fig. 1).
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The prolonged duration of an indwelling tube was defined as a
tube-carrying time >_5 days. Postoperative drainage volume, pro-
longed indwelling of the tube and intraoperative bleeding vol-
ume as postoperative outcomes were extracted from the medical
records and recorded.

Ethical statement

The study was approved by the institutional ethical committee
(2021PHB033-001). Consent was obtained from all patients.

Surgical videos

For each selected patient, the corresponding surgical video
recorded by the thoracoscopy system (KARL STORZ-
ENDOSCOPE TC 200, KARL STORZ SE & Co. KG, Tuttlingen,
Germany) was extracted for analysis. All selected videos recorded
the entire process from setting up the working channel to closing
the incisions and were de-identified by assigning a new ID that
was not linked to a patient’s name or hospital ID. The frame
width of all selected videos was 1920 pixels, and the frame height
was 1080 pixels. Each video was filmed at approximately 20
frames per second. For subsequent analysis and processing, we
cut each video into a series of key frames at a resolution of 1
frame per second.

Identifying blood pixels from surgical videos

Given a surgical video with red, green and blue (RGB) encoding,
let PixelR; PixelG; PixelBð Þ be the intensity vector of the red, green
and blue channels of a particular pixel, and let
FrameR; FrameG; FrameBð Þ be the counterpart of the frame con-

taining the pixel. A classic way to identify blood pixels from the
video is the method based on dynamic thresholding proposed
by Garcia-Martinez et al. [26], which classifies a particular pixel
with

PixelB=R ¼
PixelB
PixelR

and PixelG=R ¼
PixelG
PixelR

;

and claims that the pixel is a blood pixel if the following 2 condi-
tions are satisfied:

PixelB=R<sB=R ¼ a �FrameB=R þ b and PixelG=R<sG=R ¼
a � FrameG=R þ b; where a and b are parameters that can be

specified based on training data, FrameB=R ¼
FrameB
FrameR

and FrameG=R ¼ FrameG
FrameR

being the colour ratio baselines of
the corresponding frame. Please note that the involved thresh-
olds, i.e. sB=R and sG=R; are dynamic in nature, because
FrameB=R and FrameG=R vary across different frames. Equipped
with the optimized model parameters obtained based on a
training dataset Dt composed of 10,000 blood pixels and
10,000 non-blood pixels randomly selected from 60 frames
belonging to different patients, the Garcia-Martinez method
performs fairly well in general (specificity = 98.9%,
sensitivity = 98.8% and accuracy = 98.85%) according to an in-
dependent validation dataset Dv composed of 1,000 blood
pixels and 1,000 non-blood pixels [26]. However, we also
observed that the Garcia-Martinez method tends to miss
many blood pixels once the blood stains are located in the
shadow of surgical instruments, possibly due to the presence
of a shadow that may greatly reduce the intensity of the red
channel and make the thresholds unstable.

We further improved the foregoing method by claiming a
blood pixel based on both dynamic and static thresholds as
follows:

PixelGray<sY ; PixelRed>sR and PixelGray=R<sY=R ¼ a � FrameGray=R

þb;

where PixelGray and PixelRed stand for the grey scale and red chan-
nel intensity of the pixel,

PixelGray=R ¼
PixelGray

PixelRed
; FrameGray=R ¼

FrameGray

FrameRed
;

sY and sR are 2 static thresholds, and sY=R is 1 dynamic threshold
with a and b being control parameters. We found that settings
sY ¼ 80; sR ¼ 14; a ¼ 0:38 and b ¼ 0:24 optimize the perform-
ance of the foregoing rules on the training dataset Dt and result
in improved performance (specificity = 98.9%, sensitivity = 99.2%
and accuracy = 99.05%) on the validation dataset Dv (Fig. 2). A
graphical illustration of the improved method is shown in Fig. 3.

Measuring bleeding intensity at multiple levels

For each keyframe of a surgical video, we summarized its bleed-
ing intensity by the proportion of blood pixels (PBP). Similarly,
we summarized the overall bleeding intensity of the operation by
the sum of the PBP (SumPBP), which sums the overall frame-level

Figure 1: Illustrated flow charts of patient enrollment.
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PBPs in the video and thus considers both the average bleeding
intensity and the duration of the operation. Apparently, a larger
PBP or SumPBP indicates more serious bleeding in a frame or an
operation. Moreover, because bleeding at the final stage of the
operation may have a direct impact on postoperative outcomes,
we also defined the sum of PBP from flushing to the end of the
operation (referred to as SumPBP-Flushing) as an alternative
measurement to reflect an additional perspective of the bleeding
situation during the procedure. In the following discussion, we
try to associate these CV-driven measurements with postopera-
tive outcomes via statistical analysis.

Statistical analyses

Numerical variables are presented as median values (interquartile
ranges). Categorical data are expressed as numbers and percen-
tages. Univariable and multivariable linear regression analyses
were used to explore the correlation between preoperative varia-
bles and drainage volume and bleeding volume. In view of the
model assumption of multivariable linear regression analysis, post-
operative drainage volume was transformed to log equivalents.
Additionally, we applied a Box-Cox transformation to intraopera-
tive bleeding volume to make the model obey the normality as-
sumption of linear regression analysis. Therefore, we transformed
the bleeding volume to �104 � ðbleeding volumeÞ�1=5. For con-
venience of display, we use �104 � ðbleeding volumeÞ�1=5 as the
dependent variable.

The tube indwelling duration data are not normally distributed
even after log conversion. For prolonged tube indwelling dur-
ation, independent samples t-tests were used to assess differen-
ces in numerical variables between 2 groups; categorical
variables were compared in 2 groups using the v2 test. If the fre-
quency of an observation was less than 5 in the contingency
table, Fisher’s exact test was used instead. To determine the inde-
pendent predictor of prolonged tube indwelling duration, the
variables with P < 0.2 in univariable analysis were selected for bin-
ary logistic regression analysis. A bilateral P value < 0.05 was con-
sidered statistically significant. All statistical analyses were

performed using SPSS Software v.26.0 (IBM Corporation,
Armonk, NY, USA).

RESULTS

Patient characteristics

In total, 275 patients and their surgical videos met the inclusion
criteria. Among included patients, 134 (48.70%) were male. The
patients included in the study were predominantly older, with a
median age at surgery of 62 [interquartile range (IQR) 53–67]. No
patients had to be returned to the operating room. The median
operation duration was 109.70 min (IQR 90.25–137.96). The me-
dian postoperative drainage volume was 410 ml (IQR 275–750).
Eighteen (6.5%) patients had a prolonged tube indwelling dur-
ation, and all of their drainage was light-red bloody. The median
intraoperative bleeding volume was 30 ml (IQR 20–50). A total of
128 (46.5%) patients had immediate postoperative air leakage.
The median SumPBP and median SumPBP-Flushing were
1016.24 (IQR 704.98–1787.41) and 73.92 (IQR 39.51–141.61), re-
spectively (Table 1).

Association between proportion of blood pixels
and postoperative drainage volume

We used univariable linear regression analysis to analyse the cor-
relation between preoperative variables and drainage volume.
From Table 2, we can see that age at surgery (P < 0.001), sex (P
< 0.001), immediate postoperative air leakage (P < 0.001),
duration of surgery (P < 0.001), SumPBP (P < 0.001), SumPBP-
Flushing (P < 0.001), clinical N stage (P = 0.040) and bleeding vol-
ume (P < 0.001) were positively correlated with postoperative
drainage volume. In the multivariable linear regression analysis,
age at surgery (P = 0.005), immediate postoperative air leakage (P
< 0.001), surgical duration (P = 0.001), bleeding volume (0.033)
and SumPBP-Flushing (P < 0.022) were significant predictors of
drainage volume with R2 ¼ 0:228.

Association between proportion of blood pixels
and prolonged tube indwelling duration

The patients with prolonged tube indwelling duration were sig-
nificantly older (P = 0.047), and the proportion of male patients
and immediate postoperative air leakage were significantly
higher than those of patients with tube-carrying times less than 5
days (P = 0.023, P < 0.001, respectively). In addition, the differ-
ence between the 2 groups also achieved statistical significance
in surgery duration, Sum-PBP and SumPBP-Flushing (P = 0.001,
P = 0.006 and P < 0.001, respectively). After being adjusted using
binary logistic regression analysis, only immediate postoperative
air leakage and SumPBP-Flushing remained in the model [P <
0.001, odds ratio (OR) 4.616, 95% confidence interval (CI) 1.964–
10.847, P = 0.017, OR 1.003, 95% CI 1.000–1.005) (Table 3).

Association between proportion of blood pixels
and intraoperative bleeding volume

In univariable linear regression analysis, age at surgery (P = 0.013),
sex (P < 0.001), immediate postoperative air leakage (P = 0.008),

Figure 2: Blood pixel recognizer and determination of its parameters. RBG: red,
blue, green.
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surgery duration (P < 0.001), SumPBP (P < 0.001) and SumPBP-
Flushing (P = 0.001) were positively correlated with intraoperative
bleeding volume (Table 4). Next, we used multivariate linear re-
gression analysis to study the factors related to the bleeding vol-
ume. The results showed that surgical duration (P < 0.001) and
SumPBP (P = 0.005) were significant predictors of bleeding vol-
ume with R2 ¼ 0:273 (Table 4).

DISCUSSION

We found that surgical duration and SumPBP-Flushing were
independent predictors of postoperative drainage volume and
prolonged tube indwelling duration. Surgical duration and
SumPBP were significantly correlated with bleeding volume.
The results suggested that high throughput CV algorithms and
computer-detected visual features could be utilized to predict
postoperative outcomes of thoracoscopic surgery.

The drainage volume is one of the decisive factors in decid-
ing whether to remove the drainage tube. In this study, we
extracted 2 variables, SumPBP and SumPBP-Flushing; the last
variable was the only variable that had a significant correlation
with drainage volume. Before flushing with water, surgeons
dealt with bleeding points carefully and thoroughly, which
may be the reason for excluding SumPBP after multivariable
linear regression analysis. Next, we can build a sample set of

surgical videos with high-level PBP, from which surgeons
would learn how to avoid bleeding and perfect their
techniques.

We chose to use simple pixel-based methods instead of
more sophisticated pixel-based methods [25, 27], feature-
based methods [22] or neural network-based methods [28, 29]
for blood stain recognition, mainly in consideration of the
computational costs. A typical surgical video in our study
exceeds 2 h and thus is composed of more than
2� 60�60 = 7,200 images, each of which contains 1920� 1080
pixels, resulting in more than 150 billion pixels per video.
Because sophisticated methods typically involve expensive
non-linear operations, it takes a long time (i.e. a couple of
weeks) for them to process such a huge number of pixels,
which is clearly unfeasible in practice. To the best of our
knowledge, the pixel-based method based on dynamic thresh-
olding [26], which involves just straightforward linear opera-
tions, is the only available method that is computationally
feasible for this study. By enhancing the dynamic thresholding
approach in reference [26] with extra static thresholds on add-
itional colour channels, we came up with an improved ap-
proach in this study that enjoys both high accuracy and
computational feasibility. The new method also reduced the
influence caused by shadows.

The vulnerability of all CV-based techniques is intrinsic to
the nature of the quality of the surgical video. One of the most

Figure 3: Graphical illustration of the bleeding feature extraction method. PBP: proportion of blood pixels; SPBP: sum of PBP of the entire operation (SumPBP); SPBPF,
sum of PBP from flushing to the end of the operation (SumPBP-Flushing).
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important factors is the stability of the camera. Unlike laparo-
scopic surgery, perspective changes occur more frequently in
thoracoscopic surgery. Except for robotic surgery, a camera
shake is inevitable, even for a qualified assistant. A sudden
movement of the camera would require a false positive pre-
diction to identify reddish tissue as blood stains or a false
negative prediction when the target is out of view. We specu-
late that this is why the current research on CV in clinical
medicine is focused mainly on laparoscopic surgery.
Additionally, the PBP value may be influenced by the intensity
of the light. If the light is too weak, the picture quality

decreases, but if the light is too strong, the white reflections of
blood stains increase the difficulty of identifying blood. This
vulnerability is intrinsic to the nature of surgical videos
recorded by the camera.

In addition to the quality of the videos, the algorithm can only
detect blood stains that occur within the view of the camera.
Another difference from laparoscopic surgery is that the lens is
much closer to the specific target in thoracoscopic surgery, which
means that the field of view is smaller. Obviously, the smaller the
field of view is, the less information there will be. We can use the
size of devices and the ratio of devices to the blood stain diame-
ters to measure the blood stain area more accurately and to re-
duce the impact of the camera position on the PBP value. The
algorithm will be extremely complicated and is still in the ex-
ploratory stage. These challenges just mentioned highlight the
fact that the clinical application of surgical vision is still in the
early stages of development.

To the best of our knowledge, no research efforts have yet
been exerted on analysing videos of thoracoscopic operations
via CV algorithms. Our purpose was to bridge this gap and
analyse the correlation between CV and postoperative out-
comes in thoracoscopic surgery. Due to the correlation be-
tween the PBP value and drainage volume, prolonged tube
indwelling duration and bleeding volume, especially the cor-
relation between PBP and bleeding volume, the algorithm
might have great potential for clinical applications. The PBP
value has the potential to be used as one of the reference in-
dices for postoperative fluid management, especially for older
patients and patients with poor heart, lung or kidney function.
In addition, the algorithm has the potential to help us better
predict postoperative recovery times and improve bed utiliza-
tion. The PBP value also has the potential to help us adjust
postoperative anticoagulation strategies. If the PBP value of
the patient is too high, we might have more confidence not to
give anticoagulant drugs or to reduce the dose of anticoagu-
lant drugs. The PBP value may help us better choose the suc-
tion power, diameter and number of drainage tubes. The
algorithm itself cannot assess surgical skills. However, this
goal might be reached in the near future by combining this
study’s algorithm with our ongoing surgical skills assessment
research.

It was beyond the scope of this study to assess the predictive
power of other outcomes, and we will include other variables
to enhance the ability of this algorithm. In the future, we might
be able to predict many detailed conditions of the patient im-
mediately after the operation. To be bolder, AI algorithms
might be able to guide surgeons during surgery in real time in
the future just like an expert looking over their shoulder.

CONCLUSIONS

In our study, we showed that SumPBP-Flushing was a significant
predictor of drainage volume and prolonged tube indwelling
duration (P < 0.022; P = 0.017, OR 1.003, 95% CI 1.000–1.005, re-
spectively) and that SumPBP was significantly correlated with
intraoperative bleeding volume (P = 0.005). We successfully
proved our hypothesis that CV algorithms can effectively extract
potential signals from videos of thoracoscopic operations and
that these signals have good predictive power for postoperative
outcomes.

Table 1: Patient characteristics

Characteristics No. (%)/median (IQR)

Age at surgery, years 62 (53.00–67.00)
Gender

Male 134(48.70)
Female 141(51.30)

BMI (kg/m2) 24.11(21.78-25.95)
Smoker 88(32.00)
Hypertension 107(38.9)
Diabetes mellitus 38(13.8)
Coronary artery disease 21(7.6)
Cerebrovascular disease 18(6.5)
Laterality

Right upper lobe 95(34.5)
Right middle lobe 28(10.2)
Right lower lobe 55(20.0)
Left upper lobe 49(17.8)
Left lower lobe 48(17.5)

Clinical stage
IA1 19(6.9)
IA2 96(34.9)
IA3 70(25.5)
IB 41(14.9)
IIA 14(5.1)
IIB 9(3.3)
IIIA 19(6.9)
IIIB 3(1.1)

Clinical T stage
T1a 18(6.5)
T1b 96(34.9)
T1c 77(28.0)
T2a 54(19.6)
T2b 16(5.8)
T3 11(0.0)
T4 1(0.4)

Clinical N stage
N0 245(89.1)
N1 8(2.9)
N2 18(6.5)

Bleeding volume 30(20-50)
Immediate postoperative air-leakage 128(46.5)
Surgery duration, min 109.70(90.25-137.96)
SumPBP 1016.24 (704.98-1787.41)
SumPBP-Flushing 73.92(39.51-141.61)
Drainage volume (ml) 410(275-750)
Prolonged tube indwelling duration 38(13.8)
Histological subtype

Adenocarcinoma 224(81.5)
Squamous 23(8.4)
Large cell, mixed, other 28(10.2)

N = 275.
BMI: body mass index; IQR: interquartile range; PBP: proportion of blood
pixels; SumPBP: sum of PBP; SumPBP-Flushing: sum of PBP from flushing to
the end of the operation.
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Table 2: Univariable analysis with proportion of blood pixels and drainage volume; multivariable linear regression model with pro-
portion of blood pixels and log (drainage volume) (model R2 = 0.228)

Characteristics Univariable analysis Multivariable linear regression analysis

Regression Coefficient(b) 95% CI P-value Regression
Coefficient(b)

95% CI P-value

Age at surgery 10.786 5.803-15.769 < 0.001 0.005 0.001-0.008 0.005
Male -228.153 -329.657-126.650 < 0.001
Immediate postoperative air leakage 250.608 150.735-350.482 < 0.001 0.130 0.061 � 0.199 < 0.001
Surgery duration 4.099 2.977-5.220 < 0.001 0.001 0.001 � 0.002 0.001
SumPBP 0.162 0.108-0.215 < 0.001
SumPBP-Flushing 1.196 0.843-1.548 < 0.001 < 0.001 < 0.001 � 0.001 0.022
Clinical N stage 106.706 5.160-208.252 0.040
Bleeding volume 1.563 0.917-2.208 < 0.001 < 0.001 < 0.001 � 0.001 0.033

PBP, proportion of blood pixels; SumPBP: sum of PBP; SumPBP-Flushing: sum of PBP from flushing to the end of the operation.

Table 3: Univariable analysis and binary logistic regression analysis between characteristics and prolonged tube indwelling duration

Characteristics Univariable analysis Binary logistic regression analysis

Prolonged tube indwelling
duration (n = 38)

Non-prolonged tube indwel-
ling duration (n = 237)

P-value OR 95% CI P-value

Age at surgery 62.97 ± 11.36 59.43 ± 9.97 0.047a

Male 25(65.8) 109(46.0) 0.023b

BMI 23.38 ± 3.33 24.22 ± 3.30 0.143a

Immediate postoperative air leakage 29(78.4) 99(41.8) < 0.001b 4.616 1.964-10.847 < 0.001
Surgery duration 139.43 ± 60.10 115.11 ± 38.74 0.001a

SumPBP 1716.10 ± 1154.18 1272.14 ± 872.60 0.006a

SumPBP-Flushing 192.85 ± 263.00 102.76 ± 101.11 < 0.001a 1.003 1.000-1.005 0.017
Histological subtype 0.056c

Adenocarcinoma 31(81.6) 193(81.4)
Squamous 6(15.8) 17(7.2)
Large cell, mixed, other 1(3.6) 27(11.4)

Bleeding volume 73.42 ± 85.57 49.96 ± 76.80 0.086a

aIndependent samples t-test.
bv2 test.
cFisher’s exact test.
BMI: body mass index; CI: confidence interval; OR: odds ratio; PBP: proportion of blood pixels; SumPBP: sum of PBP; SumPBP-Flushing: sum of PBP from flushing
to the end of the operation.

Table 4: Univariable linear analysis with proportion of blood pixels and bleeding volume and multivariable linear regression model
with proportion of blood pixels and 10000� ðbleeding volumeÞ�1=5 (model r2 = 0.273)

Characteristics Univariable analysis Multivariable linear regression analysis

Regression coefficient(b) 95% CI P value Regression
coefficient(b)

95% CI P value

Age at surgery 10.952 2.345-19.560 0.013
Male 360.72 188.224-533.213 <0.001
Immediate postoperative air leakage 237.23 61.350-413.109 0.008
Surgery duration 0.140 0.110-0.170 <0.001 0.097 0.053-0.141 <0.001
SumPBP 0.364 0.280-0.448 <0.001 0.171 0.053-0.289 0.005
SumPBP-Flushing 1.029 0.404-1.653 0.001

CI: confidence interval; PBP: proportion of blood pixels; SumPBP: sum of PBP; SumPBP-Flushing: sum of PBP from flushing to the end of the operation.
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