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Abstract

Scientists use high-dimensional measurement assays to detect and prioritize regions of strong 

signal in spatially organized domain. Examples include finding methylation enriched genomic 

regions using microarrays, and active cortical areas using brain-imaging. The most common 

procedure for detecting potential regions is to group neighboring sites where the signal passed 

a threshold. However, one needs to account for the selection bias induced by this procedure to 

avoid diminishing effects when generalizing to a population. This paper introduces pin-down 

inference, a model and an inference framework that permit population inference for these detected 

regions. Pin-down inference provides non-asymptotic point and confidence interval estimators for 

the mean effect in the region that account for local selection bias. Our estimators accommodate 

non-stationary covariances that are typical of these data, allowing researchers to better compare 

regions of different sizes and correlation structures. Inference is provided within a conditional 

one-parameter exponential family per region, with truncations that match the selection constraints. 

A secondary screening-and-adjustment step allows pruning the set of detected regions, while 

controlling the false-coverage rate over the reported regions. We apply the method to genomic 

regions with differing DNA-methylation rates across tissue. Our method provides superior power 

compared to other conditional and non-parametric approaches.
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1 Introduction

Due to the advent of modern measurement technologies, several scientific fields are 

increasingly relying on data-driven discovery. A prominent example is the success of 

high-throughput assays such as microarrays and next generation sequencing in biology. 

While the original application of these technologies depended on predefined biologically 

relevant measurement units, such as genes or singe nucleotide polymorphisms (SNPs), more 

recent applications attempt to use data to identify and locate genomic regions of interest. 

Examples of such application include detection of copy number aberrations (Sebat et al., 

2004), transcription binding sites (Zhang et al., 2008), differentially methylated regions 

(Jaffe et al., 2012b), and active gene regulation elements (Song and Crawford, 2010). 

Neuroscientists also use data to identify regions affected by variations in cognitive tasks, 

when analyzing functional imaging data (Friston et al., 1994, Hagler et al., 2006, Woo 

et al., 2014). As these technologies mature, the focus of statistical inference shifts from 

individuals to populations. Instead of searching for regions different from baseline in an 

individual sample, we instead search for differences between two or more populations 

(cancer versus normal, for example). In population inference, region detection methodology 

needs to account for between-individual biological variability, which is often non-stationary, 

and for technical measurement noise. Furthermore, sample size is usually small due to high 

costs, so variability in the estimates remains considerable.

An inherent risk of data-driven discovery is selection bias, the bias associated with using 

standard inference procedures on results that were chosen preferentially. In the context 

of population inference, the most common approach for detecting regions is to compute 

marginal p-values at each site, correct for multiplicity, and then combine contiguous 

significant sites. Publications in the high-profile biology journals have implemented these 

ad-hoc analysis pipelines (Kundaje et al., 2015, Becker et al., 2011, Pacis et al., 2015, Lister 

et al., 2013). However, there is no theoretical justification for extrapolating inferences from 

the single sites to the region. In particular, using the average of the observed values at the 

selected sites as an estimate for the region will result in a biased estimate. Kriegeskorte et 

al. (2009) coined the term circular inference for such practices in neuroscience, highlighting 

the reuse of the same information in the search and in the estimation. Furthermore, the 

power of such methods to detect regions is limited by the power to detect at the individual 

sites, which are noisier and require a-priori stronger multiplicity corrections compared to 

regions: a region consisting of several almost-significant sites will be overlooked by such 

algorithms. Finally, there is no clear way how to prioritize regions of different sizes and 

different correlation structures without more refined statistical methods. Here we describe a 

general framework that permits statistical inference for region detection in this context.

Although high-profile genomic publications have mostly ignored it, the statistical literature 

includes several publications on inference for detected regions within large statistics maps. 

Published methods differ in how they summarize the initial information into a continuous 

map of statistics: smoothing or convolving the measurements with a pre-specified kernel, 

forming point-wise Z maps, p-value maps, or likelihood maps (Pedersen et al., 2012, 

Siegmund et al., 2011, Hansen et al., 2012). Regions of interest can be identified around 

local maxima, by thresholding the signal, or by model based segmentation(Jaffe et al., 
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2012b, Kuan and Chiang, 2012, Zhang and Siegmund, 2012). (See Cai and Yuan, 2014, 

for asymptotic analysis). Multiplicity corrections for individual detected regions can be 

employed assuming true signal locations are well separated (Schwartzman et al., 2011, 2013, 

Sun et al., 2015). Alternatively, non-parametric methods use sample-assignment permutation 

to simulate the null distribution, without requiring stationarity or knowing the distribution 

(Jaffe et al., 2012b, Hayasaka and Nichols, 2003).

However, current methods fail to address two important aspects: the first is non-null 

inference such as effect-size estimation and intervals. Non-null inference requires stronger 

modeling assumptions and a more sophisticated treatment of nuisance parameters, in 

comparison to tests of a fully specified null. In genomics, irrelevant confounders can create 

many small differences between the groups, which can reach strong statistical significance in 

highly powered studies but are not biologically interesting (Leek et al., 2010). Estimates and 

intervals for effect size, rather than just p-value, permit the practitioner to discern biological 

significance. Work on confidence intervals in large processes include Zhong and Prentice 

(2008) and Weinstein et al. (2013) for individual points rather than regions, and Sommerfeld 

et al. (2015) for globally bounding the size of the non-null set. We consider providing 

estimates of the effect in biologically meaningful units and quantification of the uncertainty 

in these estimates an important contribution.

The second challenge is non-stationarity: in most genomic signals, both the variance and 

the auto-correlation change considerably along the genome. This behavior is due to uneven 

marker coverage, and biochemical properties affecting DNA amplification (Bock et al., 

2008, Benjamini and Speed, 2012, Jaffe et al., 2012a). Non-stationarity makes it harder to 

compare the observed properties of the signal across regions: a region of k adjacent positive 

sites is more likely to signal a true population difference if probe correlation is small.

In this paper, we introduce pin-down inference, a comprehensive approach for inference 

for region detection that produces selection-corrected p-values, estimators and confidence 

intervals for the population effect size. We focus on detection algorithms that, after 

preprocessing, apply a threshold-and-merge approach to region detection: the map of 

statistics is thresholded at a given level, and neighboring sites that pass the threshold are 

merged together. The difficulty in inference for these detection algorithms is that choosing 

local null and alternative models around the detected region introduces selection bias. 

The key idea of pin-down inference is to identify for each potential region its selection 
event – the necessary and sufficient set of conditions that lead to detection of the region; 

for threshold-and-merge, this selection event can be described as a set of coordinate-wise 

truncations. Selection bias is then corrected by using the distribution of the test statistic 

conditional on the selection event (Fithian et al., 2014). Because inference is local, it can be 

tailored for each region according to the local covariance. When further selection is needed 

downstream, standard family wise corrections can be applied to the list of detected regions.

The paper is structured as follows. First, we introduce a specific genomic signal – DNA-

methylation – that will be used to demonstrate our method. In Section 2 we present a model 

for the data generation, define the threshold-and-merge selection, and describe the selection 

bias. In Section 3 we review the conditional approach to selective-inference, and specify the 
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conditional distribution associated with a detected region. When the data is approximately 

multivariate normal, the conditional distribution follows a truncated multivariate normal 

(TMN, Section 3.3). In Section 4 we describe the sampling based tests and interval estimates 

for a single region. If only a subset of the detected regions is eventually reported, a 

secondary adjustment is needed (Section 5). Sections 6 and 7 evaluate the performance 

of the method on simulated and measured DNA-methylation data, followed by a discussion.

Motivating example: differentially methylated regions (DNA)

DNA methylation is a biochemical modification of DNA that does not change the actual 

sequence and is inherited during mitosis. The process is widely studied because it is thought 

to play an important role in cell development (Razin and Riggs, 1980) and cancer (Feinberg 

and Tycko, 2004). Unlike the genomic sequence, methylation differs across different tissues 

of the same individual, changes with age, environmental impacts, and disease (Robertson, 

2005). Of current interest is to associate changes in methylation to biological outcomes such 

as development and disease. Current high-throughput technologies measure the proportion 

of cells in a biological specimen that are methylated giving a value between 0 and 1 for each 

measured site. The most widely used product, the Illumina Infinuim array, produces these 

proportion measurements at approximately 450,000 sites (Bibikova et al., 2011). Reported 

functionally relevant findings have been generally associated with genomic regions rather 

than single sites (Jaenisch and Bird, 2003, Lister et al., 2009, Aryee et al., 2014) thus 

our focus on differentially methylated regions (DMRs). Because DNA methylation is also 

susceptible to several levels of stochastic variability (Hansen et al., 2012), inference for 

DMRs needs to take into account the unknown but variable and often strong local correlation 

between nearby methylation sites.

2 Model for the effects of selection

2.1 Population model

Suppose the collected data consists of n samples of D measurements each, Y1,…, Yn. We 

model the i’th sample as a random process composed of a mean effect that is linear in 

known covariates, and an additive random individual effect. Each sample is annotated by the 

covariate of interest Xi ∈ R, and by a vector of nuisance covariates Wi ∈ Rp−1. Then the i’th 

observed vector is:

Y i = ΘXi + ΓW i + εi, E εi = 0, i = 1, …, n . (1)

Here Θ = (θ1,…, θD)′ ∈ RD is the fixed process of interest, Γ ∈ RD×p−1 are fixed nuisance 

processes, and εi ∈ RD captures both the individual sample effect and any measurement 

noise. εi can further be characterized by a positive-definite covariance matrix Cjj′ := 

E[εi(j)εi(j′)], 1 ≤ j, j′ ≤ D. In matrix notation, let Y = Y 1′ , …, Y n′ ′ ∈ Rn × D be the matrix 

of measurements and X = X1, W 1′ , …, Xn, W n′ ′ ∈ Rn × p be the design matrix organized so 

the covariate of interest is in the first column.

For a concrete example of our notation, consider a two-group design comparing samples 

from two tissue-types. Each sample would be coded in a vector Yi ∈ RD. Xi would code the 
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tissue type, 1 for group A and 0 for group B. Wi can encode such demographic variables as 

age and gender, as well as a bias term. Then θj would code for the mean difference between 

groups on the j’th site. We expect the Θ process Θ = θj j = 1
D  to be almost zero in most sites, 

and to deviate from zero in short connected regions.

Regions of interest—A region of interest (ROI) corresponds to a range a : b = (a, a + 

1,…, b) where Θa:b = (θa, θa+1,…, θb) is large in absolute value. A sufficient representation 

for an ROI is a triplet r = (a, b, d), where a ≤ b ∈ 1,…, D are indices and d ∈ {−, +} 

represents the direction of deviation from 0. Depending on context, we would usually restrict 

our analysis to indices b, a that are not too far apart. These restrictions are coded into the 

set ℬ of all interesting ROIs. Note that ℬ is redundant, with many ROIs that are almost 

identical; in any realization of the model, only a small subset of ℬ will be selected for 

estimation.

Vector of estimators Z—Our procedure focuses on a vector of point-wise unbiased 

normal estimators Z = Θ. The assumptions for Z are:

• Unbiasedness: E[Z] = Θ.

• Estimable covariance: Σ := Cov (Z) is estimable, and the estimator Σ is unbiased 

and independent of Z.

• Local normality: For indices a ≤ b that define a potential ROI, meaning (a, b, +) 

or (a, b, −) are in ℬ, vector Za−1:b+1 is multivariate normal

Za − 1:b + 1 ∼ N Θa − 1:b + 1, Σa − 1:b + 1 .

• Here, Θa−1:b+1 , Σa−1:b+1 are the Rb−a+3 and R(b−a+3)×(b−a+3) subsets of Θ and Σ.

Specifically, we can take Z to be the least-squares estimator for Θ

Z = Θ: = X′X −1X′Y 1 . (2)

With well behaved data, the region Z(a−1:b+1) would be approximately multivariate normal 

even with a moderate number of samples n. Furthermore, with enough samples compared 

to covariates (n > p)1, the local covariance C = Cov(εi) is estimable from the linear model 

residuals, resulting in Ĉ. Furthermore, for each 1 ≤ j, j′ ≤ D, Var Zj = X′X 11
−1Var ϵ . j  and 

Cov Zj, Zj′ = X′X 11
−1Cov ϵ . j, ϵ . j′ . Hence,

Σ = Cov Z = X′X 11
−1C, and Σ = X′X 11

−1C . (3)

This is extendable to a two-group design where each group is allowed a different covariance.

1Recall that p is the number of sample covariates – dim Xi, W i  – which is typically small, not to be confused with the size of the 

measurement vector D = dim Y i .
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Effect size and population effect size—A commonly used summary for the effect size 

in a region is the area under the curve (AUC) of the observed process, which is the sum of 

the estimated effects in the region (Jaffe et al., 2012b). To decouple the region length and the 

magnitude of the difference, we define the observed effect size as the average rather than the 

sum of the effect:

Definition 1 The observed effect size of region a : b is

t Za:b = Za:b: = 1
b − a + 1 j a

b
Zj .

We will associate the observed effect size t(Za:b) for each potential region a : b with the 

population parameter representing its unconditional mean

Definition 2 The (population) effect size of region a : b is

θa:b: = 1
b − a + 1 j a

b
θj .

We prefer θa:b to AUC because it decouples two different sources of information: the 

region length and the effect magnitude. Either way, it is easy to covert between the two 

parameters because for a, b, +  , AUC = b − a + 1 θa:b. The methods described here are 

easily extendible for other linear statistics.

Note that in our setup, each parameter θa:b is well-defined regardless of the data-dependent 

decision whether to estimate it. We do not assume that there is a “correct” selection decision; 

rather, we view selection as a technical step that prunes and disambiguates the set of ROIs.

2.2 Selection

A common way to identify potential ROIs is to screen the map of statistics at some 

threshold, and then merge sites that passed the screening into regions (Jaffe et al., 2012b, 

Siegmund et al., 2011, Schwartzman et al., 2013, Woo et al., 2014). This procedure 

ascertains a minimal biological effect-size in each site, while increasing statistical power to 

detect regions and controlling the computational effort. After preprocessing and smoothing 

the responses, these algorithms run a version of the following steps:

1. Produce an unbiased vector of linear estimates Θ = Z.

2. Identify the set of indices exceeding a fixed threshold c, {j : Zj > c}.

3. Merge adjacent features that pass the threshold into regions.

4. Filter (or split) regions that are too large.

The procedure is illustrated in Figure 2. The output of such algorithms is a random set of 

(positive) detected ROIs ℬ+
. Step 4 ascertains that ℬ+ ⊂ ℬ. Comments:
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• Typically, we are also interested in the similarly defined set of negative ROIs 

ℬ−
. For ease of notation we deal only with ℬ+

, understanding that ℬ−
 can be 

analyzed in the same way. It is important to note that each region is selected 

either to the positive set or to the negative set, and this choice will instruct the 

hypothesis test.

• Local adjustment of the threshold can also be incorporated into this framework, 

as long as this adjustment is fixed or independent of the estimate vector Z.

• In most applications, the measurement vectors or the estimated process are 

smoothed to produce larger coherent regions with less interference due to noise. 

Our framework accommodates smoothing as a preprocessing step, meaning that 

each sample Yi is smoothed separately. The degree of smoothing will therefore 

affect the inference target Θ, as defined by the linear model in (1). For example, 

for a two group design and a linear smoother, inferences after smoothing apply to 

regions of the smoothed mean process. See more in Section 8.

Distribution after selection—It is important to distinguish between inference for 

predefined regions based on previous biological knowledge, such as exons or transcription 

start sites, and inference for regions detected with the same data from which we will 

construct inferential statements. For a predefined region, the linear estimator Za:b is an 

unbiased estimator for θa:b, and its uncertainty can be assessed using classical methods. 

Moreover, Za:b would be approximately normal, so the sampling distribution of Za:b − θa:b
would only depend on a single parameter for the variance. In particular, the correlation 

between measurements would affect the distribution of Za:b only through this variance 

parameter Var θa:b = 1′a:b 1a b, and can be accounted for in studentized intervals.

In contrast, when the ROI (a, b, +) is detected from the data, Za:b becomes biased (Berk et 

al., 2013, Fithian et al., 2014, Kriegeskorte et al., 2009). We will tend to observe extreme 

effect sizes compared to the true population mean. If a, b, + ∈ ℬ+
, the observed effect 

size Za:b would always be greater than the threshold c. Furthermore, the distribution of 

Za:b would be right-skewed, so normal-based inference methods are no longer valid. Our 

goal will be to remove these biases and to make inferential statements on the population 

parameter θa:b.

For non-stationary processes, evaluating the observed regions poses an even greater 

challenge. Due to variation in the dependence structure, it is no longer straightforward 

to compare different regions found on the same map. The bias and skewness depend not 

only on a single index of variance, but rather on the local inter-dependence of Z in a 

neighborhood of a : b. In Figure 3, we show that changes in correlation affect the bias, the 

spread and the skewness of the conditional distribution.
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2.3 Inference goals

For a set of K detected regions ℬ+ = ak, bk, + k = 1, …, K, we would like to make selection-

corrected inferential statements about each θak:bk k = 1,…, K, including:

1. a hypothesis test for H1:θak:bk > 0 against the null H0:θak:bk ≤ 0, and a high-

precision p-value for downstream multiplicity corrections;

2. an estimate for θak:bk;

3. a confidence interval for θak:bk.

We would also like to be able to prune the detected set ℬ+
 based on the hypotheses tests, 

while continuing to control for the false coverage statements in the set.

3 Conditional approach to selective inference

Because we are only interested in inference for selected ROIs in ℬ+
, a correction for the 

selection procedure is needed. Most such corrections are based on evaluating, ahead of 

selection, the potential family of inferences. In hypothesis testing, this requires to evaluate 

all potential ROIs and transform them into a common distribution (e.g. calculate the p-

value). Instead, we adapt here a solution proposed for meta-analysis and model selection 

problems in regression: adjust inference to hold for the conditional distribution of the data 

given the selection event (Lee et al., 2016, Fithian et al., 2014). First we review the premise 

of selective inference, and then specify the selection event and selective distribution for 

region detection.

3.1 Selective inference framework

Recall that ℬ denotes the set of potential ROIs, and the random set ℬ+(Z) ⊂ ℬ denotes 

the random set of selected ROIs. Assume that for ROI r = a, b, + ∈ ℬ we associate a null 

hypothesis H0
r that will be evaluated if and only if r ∈ ℬ+

. A hypothesis test controls for the 

selective error if it controls for the probability of error given that the test was conducted. 

Formally, denote by Ar = A a, b, +  the event that r was selected for ℬ+
. Then:

Definition 3 (Control of selective type 1 error, Fithian et al. 2014) The hypothesis test 
ϕr Z ∈ 0, 1 , which returns 1 if the null is rejected and 0 otherwise, is said to control the 

selective type 1 error at level α if

PF ϕr Z = 1 Ar ≤ α for any F ∈ H0
r . (4)

In a frequentist interpretation, the relative long-term frequency of errors in the tests of r that 

are carried out should be controlled at level α.

Selective confidence intervals are defined in a similar manner. Denote by F the true 

distribution of Z, so that F belongs to a model ℱ. Associate with each r a functional ηr(F) of 
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the true distribution of Z, and again let Ar be the event that the confidence interval Ir(Z) for 

ηr(F) is formed. Then Ir(Z) is a selective 1 − α confidence interval if:

P ηr F ∈ Ir Z Ar ≥ 1 − α for any F ∈ ℱ .

Correcting the tests and intervals to hold over the selection criteria removes most biases 

that are associated with hypothesis selection. If no additional selection is performed, the 

selective tests are not susceptible to the “winner’s curse”, whereby the estimates of the 

selected parameters tend to display over-optimistic results. If each individual test ϕr controls 

selective error at level a, then the ratio of mean errors to mean selected is also less than α. 

In a similar manner, the proportion of intervals not covering their parameter (False Coverage 

Rate, FCR) is controlled at α (Fithian et al., 2014, Weinstein et al., 2013). This strong 

individual criterion allows us to ignore the complicated dependencies between the selection 

events; as long as the individual inference for the selected ROIs is selection controlled, error 

is also controlled over the family.

Note that when the researcher decides to report only a subset of the selected intervals or 

hypotheses, a secondary multiplicity correction is required. A likely scenario is reporting 

only selective intervals that do not cover 0 (Benjamini and Yekutieli, 2005). The set of 

selective intervals behaves like a standard interval family, so usual family-wise or false 

coverage corrections can be used. See Section 5.

3.2 Selection event in region detection

For region detection, we can identify the selection event Ar = A(a,b,+)(Z) as a coordinate-

wise truncation on coordinates of Z. Selection of (a, b, +) occurs only if all estimates within 

the region exceed the threshold. These are the internal conditions:

Za > c, Za + 1 > c, …, Zb > c . (5)

Furthermore, unless Za or Zb are on a boundary, the selection of (a, b, +) further requires 

external conditions that do not allow the selection of a larger region, meaning:

Za − 1 ≤ c, Zb + 1 ≤ c . (6)

3.3 Truncated multivariate normal distribution

Assume the observations are distributed approximately as a multivariate normal distribution 

Z ~ N(Θ, Σ) with Σ known. According to (4), to form selective tests or intervals based on a 

statistic t(a,b,+)(Z), we need to characterize the conditional distribution of t(a,b,+)(Z) given the 

selection event A(a,b,+).

Conditioning the multivariate normal vector Z on the selection event results in coordinate-

wise truncated multivariate normal (TMN) vector with density
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fZ Aa, b; Θ, Σ z =
exp z − Θ ′Σ−1 z − Θ

A a b exp u Θ Σ 1 u Θ du
1 z ∈ A a, b, + , (7)

where A(a,b,+) is seen as a subset of RD. The TMN distribution has been studied in many 

contexts, including constructing instrumental variables (Lee, 1981), Bayesian inference 

(Pakman and Paninski, 2014), and lately post selection inference in regressions (Lee et al., 

2016). In contrast to the usual multivariate normal, linear functionals of the truncated normal 

cannot be described analytically (Horrace, 2005). We will therefore resort to Monte Carlo 

methods for sampling TMN vectors, and empirically estimate the functional distribution 

from this sample. Naively, one can sample from this distribution using a rejection sampling 

algorithm: produce samples from the unconditional multivariate normal density of Z, and 

reject samples that do not meet the criteria A(a,b,+). In practice, we will use more efficient 

samplers; these are further discussed in the Supplementary.

Note that there is no need to sample the full Z; for each ROI, it is sufficient to sample Z 
at the vicinity of a : b. Coordinates of the parameters or of Z that are outside the selection 

range a − 1 : b + 1 do not affect the distribution of t(a,b,+)(Z), as described in the following 

lemma. Proof is in the supplementary information.

Lemma 1 Let Z ∼ MV N Θ, Σ  and Z′ ∈ Ra − b + 3 ∼ MV N Θ′, Σ′ , with Θ′ = Θa − 1:b + 1 and 

Σ′ = Σa − 1:b + 1. Then

Z A a, b, + a − 1:b + 1 d Z′ A 2, a − b + 2, + .

Therefore, if region (a, b, +) is detected, we model a vector of size b − a + 3. Nevertheless, 

for consistency we continue indexing the vector with its original coordinates a − 1 : b +1.

4 Inference for the effect size

With a specific region pinned-down, we can now design statistical algorithms that allow 

inference for the effect size of the region, while accounting for selection. In Section 4.1, 

we propose a selective test and p-value for the fully specified null hypothesis against a 

directional-shift alternative. In Section 4.2, we propose a selective confidence interval for 

θ, assuming that the true mean vector belongs to a linear family parameterized by θ. We 

then show theoretical and simulation results on how the choice of linear family affects the 

behavior of the intervals. Finally, in Section 4.3 we introduce plug-in estimators for several 

ancillary parameters. With these choices, the conditional distribution for each value of θ is 

fully specified and sampling based tests can be run in practice. Efficient sampling strategies 

are discussed in the supplementary information.

Remarks:

1. Throughout the section we focus on a single selected region r = (a, b, +), and use 

a statistic t(Z) = ta:b(Z) that is supported on a : b. Per Lemma 1, we can restrict 

the analysis to the coordinates a − 1 : b + 1. We therefore use the notation:
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Z = Za − 1:b + 1, Θ = Θa − 1:b + 1 = θa − 1, Θa:b, θb + 1 , Σ = Σa − 1:b + 1 .

2. When analyzing the positively detected regions ℬ+
, a region a : b is associated 

with a single selection event (a, b, +). We therefore adopt the shorthand Aa:b = 

A(a,b,+). Negatively detected regions would be analyzed separately, in a similar 

manner.

3. The distribution of the unconditional estimators for θa−1, θb+1 and Σ = Σa−1:b+1 

changes less under the selection event compared to the estimators for the internal 

mean vector Θa:b.2 In Sections 4.1 and 4.2, we develop the inference procedures 

assuming these parameters are known, and denote them θa − 1
∗ , θb + 1

∗  and Σ*. In 

Section 4.3, we suggest plug-in estimators for these parameters. This procedure 

is validated in simulations in Section 6.

4. Because we are interested primarily in the effects of the internal mean vector 

Θa:b on the distribution of Z and t(Z) = Za:b, we use the shorthand

fΘa:b: = fZ Aa:b; θa − 1
∗ , Θa:b, θb + 1

∗ , Σ ∗ , gt, Θa:b:
= ft Z Aa:b; θa − 1

∗ , Θa:b, θb + 1
∗ , Σ ∗

for the TMN density with mean vector Θ = θa − 1
∗ , Θa:b, θb + 1

∗  and the univariate 

density of t(Z) = Z ~ fΘa:b.

4.1 Test for a full mean vector

Consider a vector Z that follows a TMN density fΘa.b. Suppose we want to test a 

strong (fully specified) hypothesis H0:Θa:b = Θa:b
0  for some Θa:b

0 = θa
0, …, θb

0  against 

H1:Θa:b ≥ Θa:b
0 . A case in point is the strong null Θa:b

0 = 0 = 0, …, 0 . For the test to be 

powerful against a shift in multiple coordinates, we consider the test

ϕα Z = 1 t Z > q ,

where t(Z) is a non-negative linear combination of the a : b coordinates in 

Z:t Z = ta:b Z = η′Za:b. By (4), q should be set to be the 1 − α quantile of t Z Aa:b
under the null so the test will hold at a selective level of 1 − α. This conditional null 

distribution is fully specified given θa − 1
∗ , θb + 1

∗ , and Σ∗,

t Z Aa:b ∼
H0 gt, Θa:b

0 .

2This is further discussed in Section 4.3.
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and we can denote the 1 − α quantile of gt, Θa:b
0  by q1−α. However, because the analytic form 

of gt, Θa:b
0  is unknown, q1−α cannot be directly obtained.

Instead, q1−α can be estimated with Monte Carlo methods. We can sample from fΘa:b
0 , and 

use these samples to empirically estimate the 1 − α quantile of gt, Θa:b
0 , or q1−α. Explicitly, 

the algorithm would:

1. Use a TMN sampler to generate a Monte Carlo sample from 

H0z1, …, zN ∼ fΘa:b
0 .

2. Compute the statistic for each example t1,…, tN, ti = t(zi).

3. Estimate q1−α under H0 by taking the ⌊N(1 − α)⌋ order statistic of ti

q1 − α
N : = t N 1 − α

Theorem 1 Consider the test ϕα(Z) for H0:Θa:b = Θa:b
0  against H1:Θa:b ≥ Θa:b

0 , which 

is conducted only if (a, b, +) is selected. Given an iid sample z1, …, zN ∼ fΘa:b
0 , define 

q z1, …, zN 1 − α = t N 1 − α . Then the selective type 1 error of the test

ϕα Z = 1 t Z > q1 − α
N

converges to α as N → ∞.

Comments:

• z1,…, zN are in Rb−a+3, whereas Θ and Z can be larger.

• The sample z1,…, zN does not have to be iid, or exactly from fΘa:b
0 . We only 

need q z1, …, zN 1 − α to converge to q1 − α = q1 − α (gΘa:b
0 ; t) as N increases.

This approach can be extended to produce p-value estimates and two sided tests. The 

estimated p-value of an observed vector zobs is

p − value = PH0 t Z > t zobs = 1
N 1 ti t zobs .

A two sided test ϕ2α′  can be constructed by setting

ϕ2α′ Z = 1(t Z < qα
N or t Z > q1 − α

N )

where qα
N , q1 − α

N  are Monte Carlo estimates for qα, q1 − α.
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4.2 A single parameter family for the mean

Confidence intervals for θ = 1
b − a + 1 j a

b θj require more care than the null tests, because 

even after specifying θ the model has b − a additional degrees of freedom. Approaches to 

non-parametric inference include plugging-in the maximal-likelihood values of the ancillary 

parameters for every value of θ (profile-likelihood, see review in DiCiccio and Romano, 

1988), or conditioning on the ancillary directions in the data as in Lockhart et al. (2014), Lee 

et al. (2016). We take an approach similar to the least favorable one-dimensional exponential 

family (Efron, 1985), in proposing a linear trajectory from θ to the mean vector Θa:b. Figure 

4 shows the main steps of our approach.

Conceptually, we form the confidence interval by inverting a set of tests for the average 

parameter θ. Recall that a random interval I(Z) is a 1 − 2α level confidence interval for θ
if PΘ θ Θ ∈ I Z ≥ 1 − 2α for any Θ. Given a family of 2α level two-sided tests for θ = θ, 

the set of non-rejected parameter-values forms a 1 − 2α confidence set (Inversion lemma, 

Lehmann and Romano, 2005).

The family of tests we use are based on a one-dimensional sub-family of the TMN, 

produced by the linear (or affine) mapping Θs:θ θ ⋅ s. The vector s = sa, …, sb ∈ R+
b − a + 1

represents the non-negative profile (shape) of the mean, which is scaled linearly by θ. 

For now we will assume s is known, though in practice the user needs to specify a 

profile s; in Section 4.2.1 we offer several generic suggestions. For identifiability, we 

set 1
b − a + 1 sj = 1. For any value of θ ∈ R, we write fΘs θ  for the conditional density 

associated with the internal mean vector Θs(θ) = θ · s:

fΘs θ z : = fZ Aa:b; θa − 1
∗ , θ ⋅ s, θb + 1

∗ , Σ ∗ z .

At θ = 0, we get the strong null hypothesis Θa:b = 0. For other values of θ we get different 

TMN distributions. Note that the condition 1
b − a + 1Σsj = 1 ascertains that θ Θs θ = θ, 

because Θs θ = θ ⋅ s, and θ Θs θ = 1
b − a + 1 j a

b θsj = θ 1
b − a + 1Σsj. Notationally, let 

q1 − α θ  denote the 1 − α quantile of gt, Θs θ .

We derive confidence intervals and point estimators for Θ based on the one-parameter family 

fΘs θ . Each value of θ = θ identifies a specific mean vector (panel A), and a conditional 

distribution for the vector Z and the statistic t(Z) (panels B, C). Therefore, for each value of 

θ, we can construct the two-sided test ϕθ, 2α′ Z  by following the recipe in 4.1. That is, we 

can sample from fΘs θ , estimate empirically the distribution and quantiles of t(Z) under this 

null, and reject if not q1 − α θ > t zobs > qα θ . By repeating this process for a fine grid of 

θ values, we can invert the sequence of tests (panel D) and get a high-resolution confidence 

interval I.

More generally, for a given Z vector we define the quantities
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l Z = sup θl: t Z > sup
θ < θl

q1 − α θ , u Z = inf θu: t Z < inf
θ < θu

qα θ , (9)

and use a truncated MVN sampler to form consistent estimators for these quantities. If the 

true Θa:b vector is a member of the one parameter family Θa:b θ θ ∈ R = θ ⋅ s θ ∈ R, this 

procedure forms intervals that converge to the valid selective confidence intervals.

Theorem 2 Let Z ∼ MV N Θ, Σ , where Θa:b = θ · s for a pre-specified profile vector s and 

an unknown mean parameter θ. A confidence interval for θ is estimated if Aa:b occurs. 

For a Monte Carlo sample z1, …, zN, let l N Z = l z1, …, zN  and u N Z = u z1, …, zN  be 

consistent estimators of l(Z) and u(Z), as defined in (9).

Then the selective coverage of the interval I N Z = l Z N , u Z N  converges to at least 

1 − 2 · α

lim
N ∞

P θ ∈ I N Z Aa:b ≥ 1 − 2 ⋅ α

Comments:

• Due to the linear structure of the single parameter family, consistent estimators 

of u(Z) and l(Z) can be computed from a single Monte Carlo sample. Details are 

in the supplementary information.

• If the quantile functions qα(·) are increasing in θ then the estimation of u(Z) and 

l(Z) can be made more robust to noise. In the next section we discuss conditions 

that assure such monotonicity. In simulations, for θ ≥ 0, we have yet to encounter 

non-monotone cases.

• A point estimator for θ can be derived from the same procedure:

θ = θs . t . Pθ t Z > t zobs = 0.5.

This corresponds to the intersection of the median function q0.5 θ  with t(zobs), 

and does not require extra calculations when computing intervals.

Applying Theorems 1 and 2 to data requires making several assumptions. First, we do 

not know the true shape of the profile s, so we need to assume its structure. In the next 

subsection we show that the interval is somewhat robust to different choices of profile s 
and discuss some theoretical properties related to this choice. Second, specific values for the 

unknown parameters θa−1, θb+1 and Σ are required to generate the confidence intervals. We 

propose plug-in estimators for θa−1, θb+1 and Σ in 4.3. Finally, we need to assume that Z can 

locally be well approximated as a MVN, which will depend on the original distribution of 

the data and the number of samples (n) used for estimating Z.
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4.2.1 Choice of profile and monotonicity—For the statistic 

Za:b = 1
b − a + 1 1, …, 1 ′Za:b, we propose to use one of the following profiles:

1. The uniform profile su induces a uniform increase in each coordinate

su = 1, …, 1 . (10)

2. The natural profile sΣ induces an increase in each coordinate proportional to the 

sum of the columns in Σ

sΣ = b − a + 1 ⋅ 1, …, 1 ′Σa:b
1, …, 1 ′Σa:b 1, …, 1 . (11)

We call sΣ the natural profile because for Za:b ~ T M N(θsΣ, Σ), Za:b is the natural statistic3. 

Due to this relation, using sΣ will admit monotone quantile functions (see Lemma 2). In 

practice, the methods appear not sensitive to a choice between these two profiles, as seen in 

Figure 5, but sampling for larger regions sometimes converges better for the uniform profile. 

We discuss the choice of the profile in 4.2.1; some readers may prefer to skip directly to 4.3.

Intuitively, we would expect functionals of the distribution of t(Z) to increase as Θs(θ) 

increases. Monotonicity is an important conceptual prerequisite for the method: measuring 

θ using t(Z) makes sense only if t(Z) indeed increases with θ. Furthermore, monotonicity 

guarantees that the acceptance region of the family of tests would be an interval, simplifying 

the parameter searches. Indeed, for a non-truncated multivariate normal with mean θ · s and 

s positive, the distribution of t(Z) is monotone increasing in every coordinate of Θ (and does 

not depend s).

Unfortunately, after conditioning, monotonicity is no longer guaranteed. In Figure 5 we 

show some examples where EΘs(θ)[t(Z)] does not increase θ 4. We therefore introduce 

two lemmas discussing conditions that guarantee monotonicity. Lemma 2 we show that for 

every non-negative covariance, using the profile sΣ ∝ (1,…, 1)′Σ ensures that EΘs(θ)]t(Z)] 

increases in θ. This result is tailored for the statistic t(Z) ∝ (1,…, 1)′. In Lemma 3, we 

identify a subset of the non-negative covariances and, for each covariance, a set of profiles 

that ensure monotonicity for any non-negative statistic. Examples are shown in Figure 5. 

Proofs are in the supplementary information.

Denote by gθ; s, t the family of densities t Z A  for t(Z) ∝ (1,…, 1)′Z parametrized by θ 
where Z ∼ N θ ⋅ s, Σ , and let sΣ as in (11). The following lemma proves that for s = sΣ and 

t = 1, …, 1 ′Z, gθ, s, t is a monotone likelihood ratio family in θ.

Lemma 2 1. gθ, sΣ, t is a monotone likelihood ratio family.

2. EΘsΣ [t(Z)] is an increasing function of θ.

3Admittedly, we reverse here the usual flow of statistical modeling, by first choosing the statistic and only later the model.
4Note however, that in all simulation examples shown, monotonicity holds for θ ≥ 0; we have no theoretical guarantees this is always 
the case.
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3. The confidence set for θ obtained by inverting two sided tests is an interval.

(1) is a consequence of identifying t(Z) as the natural statistic of the family (see Fithian et 

al., 2014). (2,3) are direct consequences of the monotone likelihood ratio family property.

The lemma further allows a classical approach to the problem of choosing the statistic after 

the model. If we choose a specific deviation from 0, e.g. setting the profile to be uniform su 

= (1,…, 1)′, then the most efficient statistic would be the exponential-family natural statistic 

t∗ Z ∝ su′ Σ−1. Lemma 1 implies that t*(Z) would be monotone in θ.

A stronger result of monotonicity of gθ;s,t can be derived from properties of the multivariate 

distribution fΘ if the covariance of Za:b belongs to a restrictive class of positive-covariance 

matrices.

Definition 4 An M-matrix is a positive-definite matrix in which all off-diagonal elements are 
non-positive.

Lemma 3 Suppose Σ−1 is an M-matrix, and the profile s can be written as a non-negative 
sum of columns of Σ, then gθ;s,t is a monotone likelihood ratio family.

The condition on Z is sufficient to show a strong enough association condition on Z (second-

order multivariate total positivity property, MTP-2) that continues to hold after conditioning. 

The lemma is based on theory developed by Rinott and Scarsini (2006).

4.3 Estimating external means and covariance

For the distribution fΘ to be fully specified, we need to set values for the external mean 

parameters θa − 1, θb + 1 and for the covariance Σ.

4.3.1 External means—We propose plugging-in the unconditional estimators for θa−1, 

θb+1 based on the observed values Za−1, Zb+1:

θa − 1 = Za − 1, θb + 1 = Zb + 1 .

Without selection, these would be consistent unbiased estimators for the respective 

parameters. Note that after selection, these estimators are not affected as strongly as the 

parameters of the interior mean: Zi < c  is a high-probability event for typical θi, and 

therefore Zi Zi < c  has relatively little bias. (This is in contrast to Zi ≥ c  which is a rare 

event, and so the bias of θ i Zi ≥ c  can be considerable).

Alternatives, such as assuming θa − 1 = θb + 1 = 0 or scaling the external mean with θ, 

sometimes lead to bad fit or otherwise ill behaved intervals. This problem is particularly 

acute when the variance of Za−1 and Zb+1 are small and when Za−1 or Zb+1 are strongly 

correlated with (Za, …, Zb).

To summarize, an affine model for the mean is:
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Θa − 1:b + 1 θ = Za − 1, 0, …, 0, Zb + 1 ′ + θ ⋅ sΣ, sΣ = 0, sΣ, 0 ′ .

4.3.2 Estimated covariance—The unbiased estimator Σ is a natural candidate for 

estimating Σ, because it is independent of Z and therefore its distribution is unchanged by 

selection.

When the number of samples is small, the estimation may be sensitive to the covariance 

that is used. We therefore propose using an inflated estimate of the sample covariance in 

order to reduce the probability of underestimating the variance of individual sites and of 

overestimating the correlation between internal and external variables.

Call Σ the sample estimator for Cov(Z). Then the 1 + λ diagonally inflated covariance Σλ is 

defined as follows:

Σjj′
λ =

1 + λ Σjj′ ifj = j′
Σjj′ otℎerwise .

(12)

As a heuristic, we can select λ so that Σjj
λ  approximates a fixed quantile of the distribution 

of Σjj. For example, if Σjj ∼. Σjj ⋅ χd
2/d for d degrees of freedom, we can set λ so that 

1 + λ = quantile χd
2, 0.75 , giving an approximate 75% quantile.

5 Controlling false coverage on the set of intervals

When the threshold is selected liberally, the result of running the threshold-and-merge 

algorithm is a large set of detected regions. If only a subset of these regions is reported, 

this selection could lead to low coverage properties over the selected set. In our framework, 

because the confidence intervals are conditioned on the initial selection, the problem does 

not arise (Fithian et al., 2014). However, if we use the new p-values (or intervals) to screen 

regions that are not separated from 0, a secondary adjustment is needed.

Applying an iterative algorithm similar to Benjamini and Yekutieli (2005) can control FCR 

for the pruned interval set at a specified level. Formally, if the test statistics are dependent, 

At each iteration, the set of intervals is pruned so that only intervals separated from 0 are 

kept in the set. Then, the BH procedure is run on the subset of p-values, selecting the 

q-value threshold that controls the false discovery rate at α. Selective 1 − q confidence 

would control the rate of false coverage on the new set. If any of the intervals cover 0 after 

this inflation, the set can be further pruned, and another BH algorithm run on the smaller set. 

Computationally, note that re-estimating the intervals does not require resampling. Here is a 

review of the full algorithm:

1. Run a threshold-and-cluster algorithm to generate the bump candidates.

2. For each bump, test the selective hypothesis that the effect is greater than 0.
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3. Find the p-value for H0:θa:b ≤ 0.

4. Run the BH procedure on the (sorted) p-value list. Find a value q that controls 

the FDR at level α. Filter the list of regions.

5. For region that passed, re-estimate selective intervals with coverage 1 − q

Technically, FCR control by this procedure requires an additional assumption on the joint 

distribution of the conditional test-statistics. The algorithm is valid under independence of 

the region test-statistics; furthermore, if the test statistics are dependent, it is sufficient that 

they adhere to positive regression dependence over subsets (PRDS), because selection is 

one-sided (Benjamini and Yekutieli, 2005).

6 Simulation

We conducted three simulation experiments to verify that the coverage properties of the 

confidence intervals are robust, and to investigate the power of our method. Data for all 

experiments sets followed the two-group model. Briefly, in the first experiment we sampled 

Normal vectors and selected for the same region repeatedly (D=5, b-a+1=3, e.g. Figure 

4). We varied the number of samples, covariance shape, effect size, and the shape of the 

mean vector. We show results for both known and estimated covariance. Note that increasing 

the number of samples both reduces the variance of the Z vector, as well as improves the 

estimation of the covariance (scaling the variances is equivalent to inverse scaling of both 

the threshold and the mean).

In the second experiment, both the length and the shape of the selected region were 

randomly generated. We sampled la onger (D=50) non-stationary processes with a random 

non-null between-group difference vector. In each run of the process, we randomly selected 

one of the detected ROIs and estimated a confidence interval for that region. We sampled 

normal and logistic-transformed normal vectors. We chose parameters similar to the DNA-

methylation data.

In a third experiment, we sampled regions of different sizes to investigate the effect of 

region size on the probability of detection. We expect the power to increase and coverage 

to stay constant as region-size increases. We compared the power of our method to the 

pivot estimator. Detailed description of the three simulation settings are found in the 

Supplementary.

Summary of the results are in Table 1 and Figures 6 and 7. For the known covariance, 

coverage rates are approximately nominally correct under both covariance regimes, for 

different samples sizes and effect sizes. For the estimated covariance, coverage is less than 

the nominal rate, but this error decreases as the number of samples increases. Note that 

although for n = 16 with estimated Σ the two-sided coverage is almost correct, for θ = 0 the 

lower bound is too liberal. The results are similar when the process is a continuous Normal 

– correct intervals for the known covariance liberal results for the estimated covariance 

and small samples. This is indicative that the misspecified mean is less a problem than the 

estimation of Σ. For the logistic-transformed process, intervals are found to be conservative, 

perhaps due to the short tails. Figure 6 (right) plots the power of the selective intervals, as 
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the probability of not covering 0 with increasing true effects θ. We calculate power only for 

the known Σ, for which coverage is accurate.

For the growing region experiment, we compared the results of the algorithm to the pivot-

based conditional inference described in Lee et al (Figure 7). We see that the both methods 

give correct coverage. However, for the pivot method, power increases much slower as a 

function of region size compared to the our estimator.

7 DNA methylation data

Region detection and inference was run on 36 DNA-methylation samples from two healthy 

human tissue types (D ≈ 450000). We ran two analyses of the data:

• The two-tissue analysis compares 19 lung samples with 17 colon samples. We 

expect many true differences between the two groups.

• For the one-tissue data, we randomly partitioned the 19 lung samples into two 

groups of 9 and 10 samples. Regions found on here are considered false-positive.

For each dataset, we thresholded the estimated difference to produce a list of candidate 

regions. We estimated selective p-values and 90% intervals for each region. We then used 

multiplicity corrections to reevaluate the set of regions (see Section 5). For comparison, 

we computed non-parametric p-values by permuting the sample labels, and corrected for 

family-wise error (Jaffe et al., 2012b). More details are found in supplementary information.

Results show that the pin-down method has greater sensitivity than the permutation method. 

At the same time, it hardly reduces specificity. See Table 2 for results summary. Examples 

for regions detected by selective inference and not by permutation FWE are shown in Figure 

8. For the one tissue design, the nominal coverage of the intervals is conservative (3% of 

regions are rejected at the 0.05 level). No region is significant after multiplicity corrections 

with either method. If no covariance inflation is used (λ = 0), 5.5% of the regions are 

rejected at the 0.05 level, and 11 regions pass the BH procedure.

There are several factors that explain this difference in power. First, familywise error 

controlling methods can be very conservative compared to FDR controlling methods when 

many hypotheses are rejected. Second, non-parametric p-values tend to be larger than 

parametric ones. Finally, in our case, a region is rejected by the permutation method 

only if it exceeds the strongest region of 95% of permutations. Therefore, regions with 

relatively weak signal can be masked by traces of (true positive) regions with large signal 

or (false-positive) regions with high variance. Note that the longer the original process, the 

more likely a high-variance region will exceed true-positive regions.

8 Discussion

We present a method of generating selection corrected p-values, estimates and confidence 

intervals for the effect size of individual regions detected from the same data. The method 

allows for non-stationary individual processes, as each region is evaluated according to its 

own covariance. For a two group design under non-negative correlation, the coverage of the 

Benjamini et al. Page 19

J Am Stat Assoc. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tests and lower-bounds of the intervals hold at the nominal level when the covariance is 

known, or for moderate sample-sizes (group size ≥ 16). For genomic data sets, we show that 

the method has considerably better power than non-parametric alternatives, and the resulting 

intervals are often short enough to aid decision making.

Setting the threshold

The threshold c has considerable sway over the size and the number of regions detected. 

Setting c too high “conditions away” all the information at the selection stage, and too little 

information is left for the inference. Setting c threshold too low allows many regions to 

pass, requiring stronger multiplicity corrections to control the family-wise error rates. This 

tradeoff should be further explored. Furthermore, the assumption that c is determined before 

the analysis can probably be relaxed, as the threshold is weakly dependent on any individual 

region. For example, the threshold for each chromosome can be set using data from other 

chromosomes. Robust functions of the data such as the median or non-extremal quantiles 

may also be used for adaptive thresholding (Weinstein et al., 2013).

Smoothing

The threshold-and-merge algorithm is sensitive to high-frequency noise that can split 

regions. Smoothing the data can reduce these unwanted partitions, as well as highlight 

lower frequency variations that are previously hidden under the noise. The expected size 

for regions of interest, and subsequent smoothing bandwidth, typically depend on both 

the scientific questions as well as the distributional properties of the measurement noise. 

For methylation, for example, different size-scales of DMRs are found between tumors, 

compared to DMRs between healthy tissues (Hansen et al., 2012, Knijnenburg et al., 2014). 

Our method currently allows for a single smoothing procedure as part of the preprocessing. 

The window size will have a large effect on the results, but will need to be decided based 

mostly on the biology of interest.

Region size information

Information regarding the size of the detected region is discarded when we condition on the 

region. Instead, inference is based only on the vertical distance between the observations and 

the threshold: if observations are sufficiently greater than the threshold, the p-value will be 

small. Discarding the size of the region is perhaps counterintuitive. Hypothetically, we may 

detect a large enough region (with P(Aa:b) small enough) to be significant regardless of the 

effects of selection, but still get selective p-value that are large. In practice, however, this 

is unlikely; both the probability of the event Aa:b and the selective p-value become smaller 

as the size of the unconditional mean vector (Θa:b) increases. Long regions would usually 

be detected because the mean was larger than 0 in most of the region. This would usually 

also manifest in smaller p-values and less uncertainty in the confidence interval. We may be 

able to recover the probability of selection from the Monte Carlo sample. It is tempting to 

reintegrate the probability of selection into the inference: under a strong null (Θa:b = 0), the 

likelihood of the data is the product of these two probabilities. The caveat, of course, is that 

the p-values associated with region size – P(Aa:b) – are not corrected for selection. Hence, 

we are back to the problem we wanted to initially solve.
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Difference between our approach and pivot-based methods

The methods we propose are different from exact pivot-based inference (Lockhart et al., 

2014, Lee et al., 2016). In those methods, the statistic t(Z) is conditioned not only on the 

selection event, but also on the subspace orthogonal to t(Z). The result is a fully-specified 

single parameter conditional distribution. The model produces exact p-values and intervals, 

without requiring sampling and without nuisance parameters. However, in simulations, the 

fully-conditional approach has less power to separate true effects from nulls, in particular 

for longer regions. For exact pivot inference, inference is conducted within a single segment 

Za:b + α 1, …, 1 α; if the estimate of any of the points in the region is very close to the 

threshold, there will be no separation and the p-value obtained would be high. In contrast, 

our method is not sensitive to having individual points which are close to the threshold, 

because it aggregates outcomes over the set Z: a
b Zi ≤ t. We pay a price in having an 

inexact method that leans on sampling and a misspecified choice of mean vector.

Additional applications and future work

The importance of accurate regional inference extends from only genomics. Threshold-and-

merge is the most common method for region detection in neuroscience for the analysis of 

fMRI data (“cluster inference”). The standard parametric methods used for cluster inference 

rely on approximations for extreme sets in stationary Gaussian processes (Friston et al., 

1994). Recently, the high-profile study of (Eklund et al., 2016) showed these methods to be 

too liberal by testing them on manufactured null; also, the distribution of detections was not 

uniform along the brain suggesting the process was non-stationary. The alternative offered 

were non-parametric permutations of subject assignment (Hayasaka et al., 2004), similar 

to those used in Section 7. As we observe, these non-parametric methods can be grossly 

over-conservative in their model, in particular when multiple regions are detected. Adapting 

our method for functional data may allow a powerful parametric model that relaxes the 

stationarity and strong thresholding requirements, without sacrificing power.

These applications require an expansion of the method for two-dimensional or three-

dimensional data and for larger regions. In particular, our samplers are still sensitive, 

in larger regions, to initial parameters and to mixing time of the Markov chains. Better 

samplers, or perhaps approximations of t(Z)|A, would be needed. Furthermore, local 

covariance estimates might require too many samples to stabilize, and rigorous methods 

should be employed to deal with the unknown covariances. Using the truncated multivariate 

T instead of multivariate normal would account for the uncertainty in estimating the 

variances; however, the correlation structure also has uncertainty which we currently do 

not take into account. We suggest in (12) an inflation parameter to give a conservative 

estimate of the correlation, leaving to the user the choice of λ. It is more likely that for 

each application, specific models for covariance estimation can be developed. In genomics, 

external annotation including probe-distance and sequence composition can give a prior 

model for shrinkage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Intervals for differential methylation regions.
Confidence intervals for the mean between-tissue difference in two genomic regions. Top 

pair: the figures show a nine-site region in chromosome 4 (within the vertical dashed lines). 

The mean-difference (top) is considerably below the negative threshold. Individual samples 

are plotted below, colored by tissue type, and show relatively small within group variance. 

Hence, the estimated 90% confidence interval (blue, top) is relatively short and the estimate 

for the effect, Θ = − 0.535, is close to the observed mean. Bottom pair: the figures show a 

three-site region in chromosome 17 which is just above the threshold. Although the observed 
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average is Θ = 0.105, after correcting for selection the estimated confidence interval covers 0. 

Data was collected by The Cancer Genome Atlas consortium (TCGA).
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Figure 2: Cartoon of the statistical setup.
The parameter vector of interest Θ (solid blue) is unobserved; we observe an unbiased 

estimate vector Z (full red os). The thresholds (dotted line) are at c and −c, and the excursion 

set {j : Zj > c} is clustered into two regions. (No regions {j : Zj < −c} are shown). Due to this 

selection, the two parameters to be estimated are θ4:4 = θ4 on the left and θa:b = avgj = ab θj , 

marked with a blue dashed line (here a = 10, b = 12). The observed effect sizes (red dashed 

line) are biased because of the selection. Our goal is to form confidence intervals for θ4:4
and θ10:12.
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Figure 3: Effects of selection.
Simulation to illustrate the bias and skewness of selected distributions with different 

correlation parameters. For D = 2 and c = 0.2, we simulate data from Z = (Z1, Z2) ~ N 
((0, 0), (1, ρ; ρ, 1)), and separate cases where the region 1 : 2 was selected (full circle). 

The left plots show the bivariate distributions for ρ = 0 and ρ = 0.8. The right plot displays 

the density of the observed effect-size Za:b for all data (dash-dot) versus the selected data 

(full). Although θa:b = 0, Za:b is biased away from 0 in the case of selection. Furthermore, 

the conditional distribution and the selection bias are different for each correlation regime. 

Without selection there is no bias and the effect of correlation amounts to rescaling.

Benjamini et al. Page 28

J Am Stat Assoc. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Pin-down inference algorithm.
For the region 2 : 4 the plots show steps in the inference. The top left displays the 

unconditional mean vectors Θs(θ) for 5 values of θ. The profile used is sΣ. The top 

right panel displays 6 examples from the Monte Carlo sample of the conditional density 

fΘs θ = fZ A; Θ θ , Σ, color coded by the value of θ. Empirical CDFs are estimated for each 

value of θ (bottom left), and α/2, 1 − α/2 quantiles extracted. The acceptance regions are 

inverted (bottom right) based on the observed statistic (t(zobs)) to generate a two-sided 1 
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− α interval. Plots based on a simulated region with a true mean effect of θ = 0.14 and an 

observed effect of t zobs = za:b ≈ 0.19. The true (known) covariance of Z is used.
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Figure 5: Comparison of profiles vectors and covariances.
Conditional mean of t Z = Z1:3 as a function of θ for different covariances (panels) and 

profiles (colors). Threshold is c = 1. In all panels, we use the following profiles: sΣ ∝ (1, 

1, 1)′Σ in black, su = (1, 1, 1) in red, s2 = (1.5, 0, 1.5) in blue, and s1 = (3, 0, 0) in grey. 

In the top-left and bottom-right panels, su ≡ sΣ). All covariances have unit variance, and 

the number of correlated variables decrease from ΣA (ρ = 0.4 between every pair), through 

ΣB (as before but ρ13 = 0), ΣC (ρ12 = 0) and uncorrelated ΣD. We observe method is not 

very sensitive to small differences in the profile, as sΣ, su give almost identical curves for 

ΣB and ΣC. The figure shows that although sΣ ensures EΘs(θ)[t(Z)] strictly increases with θ 
(monotonicity, Lemma 2), monotonicity is not guaranteed for s2 or s1. For ΣC, s1 satisfies 
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the conditions of Lemma 3 and displays monotonicity, whereas s2 does not. When the 

covariance is iid, any non-negative profile satisfies Lemma 3. Under all covariances, the 

curves for s1, s2 are greater than sΣ; this is a potential source for coverage error if sΣ is used.
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Figure 6: Coverage and Power (Experiment 1):
On left, coverage probability of nominal α = 0.9 confidence intervals for different true 

effect size θ (x-axis), group size (color), and estimation of covariance (line-type). Group size 

affects the variance of Z and, if Σ is estimated, the samples available for this estimation. 

We see that coverage is approximately correct for the known covariance and for estimated 

covariance with na = 16. On right, power is plotted for different true effect size (x-axis), 

group size (color), and known covariance type (Σiid or Σcor). Power is computed as the 

proportion of intervals not covering the null for non-zero true effects. Results for estimated 

Σ not shown, because coverage in-exact for small n’s. Each point averages 1000 runs. See 

details in the supplementary information.
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Figure 7: Increasing Regions (Experiment 3):
Coverage (left) and power (right) is plotted for regions of different lengths (line color) and 

true effect size (x-axis). The pin-down conditional interval (continuous line) is compared to 

the pivot-based conditional interval of Lee et al. (2016) (dotted line). Power increases with 

region size. The increase is much more pronounced in the pin down algorithm, whereas for 

the pivot there is little increase in coverage with growing region size. Coverage for both 

algorithms is similar to the nominal rate. Each point averages 1000 runs.
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Figure 8: Examples undetected by non-parametrics.
Two example regions that are detected using our method, but not detected using the non-

parametric FWE approach at α = 0.05 level. On left is a 10-site region from chromosome 

19: we estimate θ = 0.375 with interval Î = [0.35, 0.4] and pBH < 10−10; non-parametric 

FWE was 0.06. On right is a 9-site region from chromosome 22: we estimate θ = 0.345
with interval Î = [0.32, 0.375] and pBH < 10−10; non-parametric FWE was 0.1. Data is from 

TCGA; see details in text.
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Table 1:

Coverage of nominal α = 0.9 confidence interval for fixed regions (experiment 1) and for continuous-

processes (experiment 2). Experiment 1 values are based on averages of 20 values of θ (displayed on left 

of Figure 6). Each value was repeated 250 times, for a total of 5000. Experiment 2 values were based on 1000 

repeats. Variance in estimators decreases linearly with number of samples, as well as accuracy of estimating Σ 
in the unknown case.

Σ Known Estimated

na = 16 8 4 16 8 4

Experiment 1 Independent .916 .908 .908 .903 .867 .770

Correlated .913 .902 .907 .896 .870 .794

Experiment 2 Normal .914 .912 .904 .921 .925 .900

Logistic .941 .937 .922 .951 .934 .885
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Table 2:

Number of regions detected on the two-tissue and one-tissue designs, for one-sided α/2 = 0.05 tests. Data 

in the one-tissue were split randomly into two groups, so we consider all detections to be false positives. 

Estimated covariance Σλ were used with λ = 0.15.

Permutation Pin-down

Regions found FW  E < α
2 p < α

2 pBon f < α
2 pBH < α

2

Two tissue 58298 61 (.07%) 51598 (89%) 36513 (63%) 51394 (88%)

One tissue 1578 0 49 (3%) 0 0
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