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Abstract

Discriminative learning, restorative learning, and adversarial learning have proven beneficial 

for self-supervised learning schemes in computer vision and medical imaging. Existing efforts, 

however, omit their synergistic effects on each other in a ternary setup, which, we envision, 

can significantly benefit deep semantic representation learning. To realize this vision, we have 

developed DiRA, the first framework that unites discriminative, restorative, and adversarial 

learning in a unified manner to collaboratively glean complementary visual information from 

unlabeled medical images for fine-grained semantic representation learning. Our extensive 

experiments demonstrate that DiRA (1) encourages collaborative learning among three learning 

ingredients, resulting in more generalizable representation across organs, diseases, and modalities; 

(2) outperforms fully supervised ImageNet models and increases robustness in small data regimes, 

reducing annotation cost across multiple medical imaging applications; (3) learns fine-grained 

semantic representation, facilitating accurate lesion localization with only image-level annotation; 

and (4) enhances state-of-the-art restorative approaches, revealing that DiRA is a general 

mechanism for united representation learning. All code and pretrained models are available at 

https://github.com/JLiangLab/DiRA.

1. Introduction

Self-supervised learning (SSL) aims to learn generalizable representations without using 

any expert annotation. The representation learning approaches in the SSL paradigm can 

be categorized into three main groups: (1) discriminative learning, which utilizes encoders 

to cluster instances of the same (pseudo) class and distinguish instances from different 

(pseudo) classes; (2) restorative learning, which utilizes generative models to reconstruct 

original images from their distorted versions; and (3) adversarial learning, which utilizes 

adversary models to enhance restorative learning. In computer vision, discriminative 

SSL approaches, especially contrastive learning [8, 12, 13, 15, 21, 24, 27, 27, 34, 44, 

53], currently offer state-of-the-art (SOTA) performance, surpassing standard supervised 
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ImageNet models in some tasks. In medical imaging, however, restorative SSL methods 

[10, 25, 26, 43, 55, 57] compared to discriminative approaches [3, 56] presently reach a 

new height in performance. Naturally, we contemplate: What contributes to the popularity 
differences between discriminative and restorative methods in computer vision and in 
medical imaging? Furthermore, from our extensive literature review, we have discovered 

that no SSL method exploits all three learning components simultaneously; therefore, we 

ponder: Can discriminative, restorative, and adversarial learning be seamlessly integrated 
into a single framework to foster collaborative learning for deep semantic representation, 

yielding more powerful models for a broad range of applications? In seeking answers to the 

two questions, we have gained the following insights.

Computer vision and medical imaging tasks embrace the spirit of evil in opposite 

ways, originating from the marked differences between photographic and medical images. 

Photographic images, particularly those in ImageNet, have large foreground objects with 

apparent discriminative parts, residing in varying backgrounds (e.g. zebra and daisy images 

in Fig. 2). Thus, object recognition tasks in photographic images are primarily based 

on high-level features captured from discriminative regions. In contrast, medical images 

generated from a particular imaging protocol exhibit consistent anatomical structures (e.g, 

chest anatomy in Fig. 2), with clinically relevant information dispersed over the entire 

image [26]. In particular, high-level structural information, i.e., anatomical structures and 

their relative spatial orientations, are essential for the identification of normal anatomy and 

various disorders. Importantly, medical tasks require much stronger attention to fine-grained 

details within images as identifying diseases, delineating organs, and isolating lesions 

rely on subtle, local variations in texture [29]. Therefore, recognition tasks in medical 

images desire complementary high-level and fine-grained discriminative features captured 

throughout images.

According to our systematical analysis, we have gained the following understandings: 

(1) discriminative learning excels in capturing high-level (global) discriminative features, 

(2) restorative learning is good at conserving fine-grained details embedded in local 

image regions, and (3) adversarial learning consolidates restoration by conserving more 

fine-grained details. Putting these understandings and fundamental differences between 

photographic and medical images together would explain why restorative learning is 

preferred in medical imaging while discriminative learning is preferred in computer vision. 

More importantly, we have acquired a new and intriguing insight into trio of discriminative, 

restorative, and adversarial learning to excavate effective features required for medical 

recognition tasks—not only high-level anatomical representations but also fine-grained 

discriminative cues embedded in the local parts of medical images.

Based on the insights above, we have designed a novel self-supervised learning framework, 

called DiRA, by uniting discriminative learning, restorative learning, and adversarial 

learning in a unified manner to glean complementary visual information from unlabeled 

medical images. Our extensive experiments demonstrate that (1) DiRA encourages 

collaborative learning among three learning components, resulting in more generalizable 

representation across organs, diseases, and modalities (see Fig. 4); (2) DiRA outperforms 
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fully supervised ImageNet models and increases robustness in small data regimes, thereby 

reducing annotation cost in medical imaging (Tab. 1 and Tab. 2); (3) DiRA learns fine-

grained representations, facilitating more accurate lesion localization with only image-level 

annotations (Fig. 5); and (4) DiRA enhances SOTA restorative approaches, showing that 

DiRA is a general framework for united representation learning (Tab. 3).

In summary, we make the following contributions:

• The insights that we have gained into the synergy of discriminative, restorative, 

and adversarial learning in a ternary setup, realizing a new paradigm of 

collaborative learning for SSL.

• The first self-supervised learning framework that seamlessly unites 

discriminative, restorative, and adversarial learning in a unified manner, setting a 

new SOTA for SSL in medical imaging.

• A thorough and insightful set of experiments that demonstrate not only DiRA’s 

generalizability but also its potential to take a fundamental step towards 

developing universal representations for medical imaging.

2. Related works

Discriminative self-supervised learning.

Discriminative methods can be divided into class-level and instance-level discrimination. 

Class-level discrimination methods [7, 8, 17, 22, 35, 54] group images based on certain 

criteria, assign a pseudo label to each group, and train a model to discriminate the images 

based on their pseudo labels, such as rotation degrees [22] and cluster assignments [7, 

8, 54]. On the other hand, instance-level discrimination methods [8, 12, 13, 15, 21, 24, 

27, 34, 44, 48, 52, 53] treat each image as a distinct class, and maximize the similarity 

of representations derived from different views of the same image, seeking to learn 

transformation invariant representations. Instance-level discriminative learning has been 

investigated in various forms, including contrastive learning [12, 14, 27, 49], asymmetric 

networks [15, 24], and redundancy reduction [21, 53]. However, both class-level and 

instance-level approaches in discriminative learning have shown failures in tasks that require 

finer-grained features [47,50,51]. Our DiRA addresses this limitation by incorporating 

restorative and adversarial learning, which not only improves discriminative learning but 

also yields fine-grained representations required for medical imaging tasks.

Restorative and adversarial self-supervised learning.

The key objective for a restorative method is to faithfully reconstruct the distribution of 

data [36,48]. In the SSL context, multiple pretext tasks are formulated to reconstruct the 

perturbed images using generative models [33, 37, 45]. The advance of GANs [23] has led 

to a new line of research in unsupervised learning, using adversarial learning to generate 

transferable representations [18, 19]. While recent works [11,18] have demonstrated 

impressive results by employing large-scale generative models, it remains unclear to what 

extent generative models can encapsulate high-level structures. Our DiRA alleviates this 
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limitation by bringing the advantages of discriminative learning into generative models. 

Through discriminating image samples, generative models are encouraged to capture global 

discriminative representations rather than superficial representations, leading to a more 

pronounced embedding space.

Self-supervised learning in medical imaging.

Due to the lack of large annotated datasets, SSL created substantial interest in medical 

imaging. Motivated by the success in computer vision, recent discriminative methods 

concentrate on instance-level discrimination. A comprehensive benchmarking study in 

[29] evaluated the efficacy of existing instance discrimination methods pre-trained on 

ImageNet for diverse medical tasks. Several other works adjusted contrastive-based methods 

on medical images [3, 9, 56]. A large body of work, on the other hand, focuses on 

restorative approaches, which can be categorized into restorative only [10,57], restorative 

and adversarial [43], and discriminative and restorative [26,30,55]. Among these groups, 

the most recent study on TransVW [25, 26] demonstrated superiority by combining 

discriminative and restorative components into a single SSL framework. DiRA distinguishes 

itself from all previous works by demonstrating two key advances: (1) employing 

discriminative, restorative, and adversarial learning simultaneously in a unified framework; 

and (2) providing a general representation learning framework that is compatible with 

existing discriminative and restorative methods, regardless of their objective functions.

3. DiRA framework

As shown in Fig. 3, DiRA is a SSL framework comprised of three key components: 

(1) Discrimination (Di) that aims to learn high-level discriminative representations, (2) 

Restoration (R) that aims to enforce the model to conserve fine-grained information about 

the image by focusing on more localized visual patterns, and (3) Adversary (A) that aims 

to further improve feature learning through the restoration component. By integrating these 

components into a unified framework, DiRA captures comprehensive information from 

images, providing more powerful representations for various downstream tasks. In the 

following, we first introduce each component by abstracting a common paradigm and then 

describe the joint training loss.

3.1. Discriminative learning

Discriminative learning can be thought of as training an encoder to maximize agreement 

between instances of the same (pseudo) class in the latent space via a discriminative loss. As 

illustrated in Fig. 3, the discriminator branch is comprised of two twin backbone networks fθ 
and fξ, and projection heads hθ and hξ. fθ is a regular encoder, while fξ can be a momentum 

encoder [24, 27] or share weights with fθ [15, 26, 53]. Given two patches x1 and x2, 

which are cropped from the same image or different images, we first apply an augmentation 

function T( . ) on them. The two augmented patches are then processed by fθ and fξ to 

generate latent features y1 = fθ T x1  and y2 = fξ T x2 . The projection heads hθ and hξ 

projects the latent features to a unit sphere and output projections z1 = hθ(y1) and z2 = 
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hξ(y2). The discriminator’s objective is to maximize the similarity between the embedding 

vectors obtained from two samples of the same (pseudo) class:

ℒdis = ℓ z1, z2 (1)

where ℓ(z1, z2) is the similarity/distance function that measures compatibility between z1 

and z2. DiRA is a general framework that allows various choices of discrimination tasks 

without any constraint. As such, the declaration of class might range from considering every 

single image as a class (instance discrimination) to clustering images based on a similarity 

metric (cluster discrimination). Accordingly, x1 and x2 can be two views of the same image 

or two samples from the same cluster. Based on the nature of the discrimination task, the 

instantiation of ℒdis can be crossentropy [22,26,35,58], contrastive [3,8,12,27], redundancy 

reduction [21,53], etc.

3.2. Restorative learning

Our restorative learning branch aims to enhance discrimination learning by leveraging fine-

grained visual information. As shown in Fig. 3, the restoration branch is comprise of an 

encoder fθ and decoder gθ, where encoder fθ is shared with the discrimination branch. Given 

the input sample x1 distorted by T, the fθ and gθ aims to map the distorted sample back 

to the original one, i.e., fθ, gθ: (x, T) x. fθ and gθ are trained by minimizing the distance 

between the original sample and the restored one at pixel-level:

ℒres = Ex dist x1, x1′ (2)

where x1′ = gθ fθ T x1  denotes the restored image. dist (x1, x′1) presents the distance 

function that measures similarity between x1 and x′1, such as L1 or L2.

3.3. Adversarial learning

Adversarial learning aims to reinforce fθ by measuring how realistic the restored images 

are. As such, the adversarial discriminator Dϕ is formulated to distinguish (discriminate) 

the set of training images from the set of synthesized images, guiding encoder fθ to 

capture more informative features from images so that gθ can reproduce the original images 

effectively. Therefore, the encoder fθ and decoder gθ play a minimax game with adversarial 

discriminator Dϕ, and are optimized jointly with an adversarial loss [6, 36]:

ℒadv = Ex log Dϕ x1 + Ex log 1 − Dϕ x1′ (3)

3.4. Joint training

Finally, the combined objective for the proposed DiRA framework becomes:

ℒ = λdis * ℒdis + λres * ℒres + λadv * ℒadv (4)

where λdis, λres, and λadv are multiplication factors that determine the relative importance 

of different losses. Through our unified training scheme, DiRA learns a representation 
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that preserves fine-grained details within the samples while being discriminative among 

the image classes. In particular, the formulation of ℒdis encourages the model to capture 

high-level discriminative features. Moreover, ℒres forces the model to encode fine-grained 

information from the images by focusing on pixel-level visual patterns. This results in more 

descriptive feature embeddings that elevate the discrimination task. Finally, ℒadv elevates 

restoration based learning through capturing more informative features.

4. Implementations details

4.1. Pre-training protocol

DiRA is a general framework that is compatible with existing self-supervised discriminative 

and restorative methods, regardless of their objective functions. To assess the effectiveness 

of our framework, we adapt recent SOTA 2D and 3D self-supervised methods into DiRA, 

as described in the following. The pretrained models with DiRA are identified as DiRA 

subscripted by the original method name.

2D image pretraining settings.—We apply DiRA to MoCo-v2 [14], Barlow Twins [53], 

and SimSiam [15] for 2D image self-supervised learning. All DiRA models are pretrained 

from scratch on the training set of ChestX-ray14 [46] dataset. For each of these three 

discrimination tasks [14,15,53], we follow the original methods in the formulation of ℒdis, 

projection head architecture, and hyperparameters settings. Furthermore, we optimize the 

encoder and decoder networks fθ and gθ following the optimization setups in [14, 15, 53]. 

For all methods, we employ a 2D U-Net [38] with a standard ResNet-50 [28] backbone as 

the fθ and gθ. We adopt mean square error (MSE) as the ℒres. The adversarial discriminator 

network Dϕ consists of four convolutional layers with the kernel size of 3×3 [37], trained 

using the Adam optimizer with a learning rate of 2e-4 and (β1, β2) = (0.5, 0.999). We use 

batch size 256 distributed across 4 Nvidia V100 GPUs. λres, λadv, λdis are empirically set 

to 10, 0.001, and 1, respectively. Input images are first randomly cropped and resized to 

224×224; the image augmentation function T( . ) includes random horizontal flipping, color 

jittering, and Gaussian blurring. Additionally, we apply cutout [16, 37] and shuffling [10] to 

make the restoration task more challenging. More details are provided in the Appendix.

3D volume pretraining settings.—We apply DiRA to TransVW [26], the SOTA method 

for 3D self-supervised learning in medical imaging. We adapt TransVW in DiRA by adding 

an adversarial discriminator Dϕ into its training scheme. For fair comparisons, we follow 

the publicly available TransVW code for setting instance discrimination and restoration 

tasks. Moreover, similar to publicly released TransVW, DiRA models are pre-trained from 

scratch using 623 chest CT scans in the LUNA [40] dataset. We use 3D U-Net [20] as 

the encoder-decoder network and a classification head including fully-connected layers. The 

adversarial discriminator Dϕ includes four convolutional blocks with the kernel size 3×3 

×3. λres, λadv, λdis are empirically set to 100, 1, and 1, respectively. fθ, gθ, and Dϕ, are 

optimized for 200 epochs using Adam with a learning rate of 1e-3 and batch size of 8. More 

details are provided in the Appendix.
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4.2. Transfer learning protocol

Target tasks and datasets.—We evaluate the effectiveness of DiRA’s representations in 

transfer learning to a diverse suite of 9 common but challenging 2D and 3D medical imaging 

tasks, including: ChestX-ray14, CheXPert [31], SIIM-ACR [1], and NIH Montgomery [32] 

for 2D models, and LUNA, PE-CAD [41], LIDC-IDRI [2], LiTS [5], and BraTS [4] for 3D 

models (see Appendix for dataset details). These tasks encompass various label structures 

(multi-label classification and pixel-level segmentation), diseases (brain tumors and thoracic 

diseases, such as lung nodules, pulmonary emboli, and pneumothorax), organs (lung, liver, 

brain), and modalities (X-ray, CT, MRI). Moreover, these tasks contain many hallmark 

challenges encountered when working with medical images, such as imbalanced classes, 

limited data, and small-scanning areas for the pathology of interest [3, 29]. We use the 

official data split of these datasets when available; otherwise, we randomly divide the data 

into 80%/20% for training/testing.

Fine-tuning settings.—We transfer the pre-trained (1) encoder (fθ) to the classification 

tasks, and (2) encoder and decoder (fθ and gθ) to segmentation tasks. We evaluated the 

generalization of DiRA representations by fine-tuning all the parameters of downstream 

models. We use the AUC (area under the ROC curve), and the IoU (Intersection over 

Union) and Dice coefficient for evaluating classification and segmentation performances, 

respectively. Following [29], we strive to optimize each downstream task with the best 

performing hyperparameters (details in Appendix). We employ the early-stop mechanism 

using 10% of the training data as the validation set to avoid over-fitting. We run each method 

ten times on each downstream task and report the average, standard deviation, and statistical 

analysis based on an independent two-sample t-test.

5. Results

We conduct extensive experiments to better understand not only the properties of our 

framework but also its generalizability across 9 downstream tasks. Through the following 

groups of experiments, we establish that DiRA (1) enriches existing discriminative 

approaches, capturing a more diverse visual representation that generalizes better to different 

tasks; (2) addresses the annotation scarcity challenge in medical imaging, providing 

an annotation-efficient solution for medical imaging; (3) learns fine-grained features, 

facilitating more accurate lesion localization with only image-level annotation; and (4) 

improves SOTA restorative approaches, demonstrating that DiRA is a general framework for 

united representation learning.

5.1. DiRA enriches discriminative learning

Experimental setup: To study the flexibility and efficacy of our proposed self-supervised 

framework, we apply DiRA to three recent SOTA self-supervised methods with diverse 

discrimination objectives: MoCo-v2, Barlow Twins, and SimSiam. To evaluate the quality 

of our learned representations and ascertain the generality of our findings, we follow [29] 

and consider a broader range of four target tasks, covering classification (ChestX-Ray14 and 

CheXpert) and segmentation (SIIM-ACR and Montgomery).
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Results: As seen in Fig. 4, utilizing our DiRA framework consistently enhances its 

underlying discriminative method across all tasks (1) ChestX-ray14, (2) CheXpert, (3) 

SIIM-ACR, and (4) NIH Montgomery. Compared with the original methods, DiRAMoCo-v2 

showed increased performance by 0.76%, 1.17%, 1.35%, and 0.21%, respectively; Similarly, 

DiRABarlow Twins showed increased performance by 0.43%, 0.60%, 0.16%, and 0.03%. 

Finally, DiRASimSiam showed increased performance by 0.82%, 2.22%, 1.18%, and 0.45%. 

These results imply that DiRA is a comprehensive representation learning framework that 

encourages existing self-supervised instance discriminative approaches to retain more fine-

grained information from images, enriching their visual representation and allowing them to 

generalize to different medical tasks more effectively.

5.2. DiRA improves robustness to small data regimes

Experimental setup: We investigate the robustness of representations learned with DiRA 

in small data regimes to determine if the learned representation can serve as a proper 

foundation for fine-tuning. We randomly select 1%, 25%, and 50% of training data from 

ChestX-ray14, CheXpert, and Montgomery, and fine-tune the self-supervised pre-trained 

models on these training-data subsets.

Results: As shown in Tab. 1, our DiRA pre-trained models outperform their counterparts’ 

original methods in all subsets, 1%, 25%, and 50%, across ChestX-ray14, CheXpert, and 

Montgomery. In particular, the average of improvement for MoCo-v2 and SimSiam across 

all three downstream tasks in each underlying subset garnering: (1) 5.6 % and 7% when 

using 1%, (2) 2.9 % and 1.3% when using 25%, and (3) 2.2 % and 1% when using 50%. As 

seen in 1%, DiRA outperforms its counterparts MoCo-v2 and SimSiam by a large margin, 

demonstrating our framework’s potential for combating overfitting in extreme low data 

regimes. Although the Barlow Twins is more resistant to low data regimes than the previous 

two approaches, DiRA still improves its performance by 0.5%, 0.5%, and 0.6% on average 

across all three datasets when using 1%, 25%, and 50% of labeled data, respectively. In 

summary, our results in the low-data regimes demonstrate our framework’s superiority for 

providing more robust and transferable representations that can be harnessed for downstream 

tasks with limited amounts of data, thereby reducing annotation costs.

5.3. DiRA improves weakly-supervised localization

Experimental setup: We investigate our DiRA framework in a weakly supervised setting, 

comparing its applicability for localizing chest pathology to underlying discriminative 

methods. Given this goal, we follow [46] and use the ChestX-ray14 dataset, which contains 

bounding box annotations for approximately 1,000 images. For training, we initialize 

models with our DiRA pre-trained models, and train downstream models using only image-

level disease labels. Following [39, 46], bounding boxes are only used as ground truth 

to evaluate disease localization accuracy in the testing phase. To generate heatmaps, we 

leverage Grad-CAM [39]. Heatmaps indicate the spatial location of a particular thoracic 

disease.
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Results: As seen in Fig. 5, our framework learns more fine-grained representations, 

enabling it to localize diseases more accurately. In particular, heatmaps generated by 

MoCo-v2, Barlow Twins, and SimSiam models are highly variable, whereas DiRA models 

consistently achieve more robust and accurate localization results over each corresponding 

original method. Through the production of more interpretable activation maps, our 

DiRA framework demonstrates possible clinical potential for post-hoc interpretation by 

radiologists. Quantitative disease localization results are provided in the Appendix.

5.4. DiRA outperforms fully-supervised baselines

Experimental setup: Following the recent transfer learning benchmark in medical 

imaging [29], we compare the transferability of DiRA models, pre-trained solely on 

unlabeled images from ChestX-ray14, with two fully-supervised representation learning 

approaches: (1) supervised ImageNet model, the most common transfer learning pipeline in 

medical imaging and (2) supervised model pretrained on ChestX-ray14, the upper-bound in-

domain transfer learning baseline. The supervised baselines benefit from the same encoder 

as DiRA, namely ResNet-50. We fine-tune all pre-trained models for 4 distinct medical 

applications ranging from target tasks on the source dataset to the tasks with comparatively 

significant domain-shifts in terms of data distribution and disease/object of interest.

Results: As shown in Tab. 2, DiRA models achieves significantly better or on-par 

performance compared with both supervised ImageNet and ChestX-ray14 models across 

four downstream tasks. In particular, DiRAMoCo-v2 and DiRABarlow Twins, outperforms both 

supervised baselines in CheXpert, SIIM-ACR, and Montgomery, respectively. Moreover, 

DiRASimSiam outperforms the supervised ImageNet and the ChestX-ray14 pre-trained 

models in SIIM-ACR and Montgomery, respectively. These results indicate that our 

framework, with zero annotated data, is capable of providing more generic features for 

different medical tasks.

5.5. DiRA sets a new state-of-the-art for self-supervised learning in 3D medical imaging

Experimental setup: We further investigate the effectiveness of our framework for 

enhancing restorative representation learning by applying DiRA to TransVW [26], 

the state-of-the-art SSL approach for 3D medical imaging. We select TransVW as 

representative of restorative self-supervised methods because it shows superior performance 

over discriminative [42, 58], restorative only [10, 57], and restorative and adversarial 

[43] methods. Following the common evaluation pipeline [26], we evaluate our learned 

representations by transfer learning to five common and challenging 3D downstream tasks, 

including classification (LUNA and PE-CAD) and segmentation (LIDC, LiTS, and BraTS).

Results: As shown in Tab. 3, DiRA framework consistently enhances TransVW across all 

downstream tasks. In particular, DiRA improves TransVW in LUNA, LIDC-IDRI, LiTS, 

and BraTS, and offers equivalent performance in PE-CAD. These results imply that by 

utilizing three learning components in tandem, image-based self-supervision approaches 

capture a more diverse visual representation that generalizes better to different downstream 

tasks.
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6. Ablation study

Experimental setup:

We conduct a thorough ablation study to show how each component contributes to DiRA. 

To do so, we only vary the loss function of DiRA. For each underlying self-supervised 

method, i.e. MoCo-v2, Barlow Twins, and SimSiam (referred to as the base), we start with 

the discrimination component and incrementally add restorative and the adversarial learning. 

When all three components are unified, they represent the completed DiRA models. All 

models are pretrained on the ChestX-ray14 dataset and fine-tuned for four downstream 

tasks, including ChestX-ray14, CheXpert, SIIM-ACR, and Montgomery.

Results:

We draw the following observations from the results in Tab. 4: (1) Expanding discriminative 

self-supervised methods by adding a restoration task consistently enhances the original 

methods. In particular, incorporating ℒres into training objectives of MoCo-v2, Barlow 

Twins, and SimSiam outperforms the corresponding original methods, with the exception 

of SimSiam in ChestX-ray14, which shows slight performance degradation. Note that this 

gap later compensates after adding ℒadv, which signifies collaborative learning among 

restorative and adversary components in our framework. (2) The overall trend showcases 

the advantage of the adversarial discriminator when added to the restoration component, 

improving the performance of all methods in four downstream tasks. Our findings indicate 

that unifying the three components in DiRA models significantly enhances the original 

self-supervised methods by retaining more fine-grained information from images.

7. Conclusion and discussion

We propose DiRA, the first SSL framework that unites discriminative, restorative, and 

adversarial learning in a unified manner. The key contribution of our DiRA arises from the 

insights that we have gained into the synergy of these three SSL approaches for collaborative 

learning. Given DiRA’s generalizability, we envisage it will take a fundamental step towards 

developing universal representations for medical imaging. Our DiRA achieves remarkable 

performance gains, though we fixed the restorative learning tasks in all experiments when 

examining various formulations of discriminative learning. In the future, examining various 

choices of restoration tasks and searching for optimal collaborative learning strategies may 

lead to even stronger representations for medical imaging. In this paper, we have focused 

on medical imaging, but we envision that DiRA can also offer outstanding performance for 

vision tasks that demand fine-grained details.
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Appendix

A. Weakly-supervised localization

In this section, we provide quantitative and additional qualitative results for weakly-

supervised localization, discussed in the Sec. 5.3 of the main paper. Our quantitative results 

in Tab. 5, together with the qualitative results in Fig. 5 and Fig. 6, demonstrate the capability 

of our framework in learning fine-grained representations that can be used for more accurate 

pathology localization when just image-level annotations are available.

A.1. Quantitative results

Experimental setup:

Following the common protocol [11–13], we quantitatively evaluate the applicability of 

our DiRA framework in a weakly supervised setting using ChestX-ray14 dataset. First, we 

use min-max normalization to normalize each heatmap; then, following [11], we binarize 

the heatmaps by thresholding at {60, 180}, and generate bounding boxes around the 

isolated regions. To evaluate localization accuracy, we compute the intersection over union 

(IoU) between the generated and ground truth bounding boxes. According to [11, 12], a 

localization is correct when the bounding box prediction overlaps with the ground truth box 

with IoU ≥ δ. Following [11], we investigate the accuracy of localization under various δ 
values, from 10% to 60%. We run each method ten times and report the average accuracy 

across all runs.

Result:

Tab. 5 shows the pathology localization accuracy of our DiRA and underlying discriminative 

models. As seen, in each of the six IoU thresholds, DiRA models significantly outperform 

the corresponding discriminative models. In particular, the average of improvement for 

MoCo-v2, Barlow Twins, and SimSiam across all IoU thresholds is 2.38%, 5.4%, and 9.4%, 

respectively.

A.2. Qualitative results

Experimental setup:

During training, we initialize models with our DiRA pre-trained models, and fine-tune 

downstream models using only image-level disease labels. We use heatmaps to approximate 

the spatial location of a particular thorax disease. We generate heatmaps using Grad-CAM 

[13], a technique for highlighting the important regions in the image for predicting the 

pathology class.
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Results:

Fig. 6 presents the visualizations of heatmaps generated by DiRA and the corresponding 

discriminative models for 8 thorax pathologies in ChestX-ray14 dataset. As seen, DiRA 

models provide more accurate pathology localizations compared to the underlying 

discriminative methods. These results demonstrate the impact of restorative learning in 

providing fine-grained features that are useful for disease localization.

B. Datasets and tasks

We have examined our framework in a diverse suite of 9 downstream tasks, including 

classification and segmentation in X-ray, CT, and MRI modalities. In this section, we 

provide the details of each dataset and the underlying task, as well as the evaluation metric 

for each task.

ChestX-ray14:

ChestX-ray14 is a large open source dataset of de-identifie chest X-ray images. The dataset 

includes 112K chest images taken from 30K unique patients. The ground truth consists of 

a label space of 14 thorax diseases. We use the official patient-wise split released with the 

dataset, including 86K training images and 25K testing images. The models are trained to 

predict 14 pathologies in a multi-label classification setting. The mean AUC score over 14 

diseases is used to evaluate the classification performance. In addition to image-level labels, 

ChestX-ray14 provides bounding box annotations for approximately 1,000 test images. Of 

this set of images, bounding box annotations are available for 8 out of 14 thorax diseases. 

During testing, we use bounding box annotations to assess the accuracy of pathology 

localization in a weakly-supervised setting. The mean accuracy over 8 diseases is used to 

evaluate the localization performance.

CheXpert:

CheXpert is a hospital-scale publicly available dataset with 224K chest X-ray images taken 

from 65K unique patients. We use the official data split released with the dataset, including 

224K training and 234 test images. The ground truth for the training set includes 14 

thoracic pathologies that were retrieved automatically from radiology reports. The testing 

set is labeled manually by board-certified radiologists for 5 selected thoracic pathologies— 

Cardiomegaly, Edema, Consolidation, Atelectasis, and Pleural Effusion. The models are 

trained to predict five pathologies in a multi-label classification setting. The mean AUC 

score over 5 diseases is used to evaluate the classification performance.

SIIM-ACR:

This open dataset is provided by the Society for Imaging Informatics in Medicine (SIIM) 

and American College of Radiology, including 10K chest X-ray images and pixel-wise 

segmentation mask for Pneumothorax disease. We randomly divided the dataset into training 

(80%) and testing (20%). The models are trained to segment pneumothorax from chest 
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radiographic images (if present). The segmentation performance was measured by the mean 

Dice coefficient score.

NIH Montgomery:

This publicly available dataset is provided by the Montgomery County’s Tuberculosis 

screening program, including 138 chest X-ray images. There are 80 normal cases and 

58 cases with Tuberculosis (TB) indications in this dataset. Moreover, ground truth 

segmentation masks for left and right lungs are provided. We randomly divided the dataset 

into a training set (80%) and a test set (20%). The models are trained to segment left and 

right lungs in chest scans. The segmentation performance is evaluated by the mean Dice 

score.

Table 5.

Weakly-supervised pathology localization accuracy under different IoU thresholds (δ): 

DiRA models provide stronger representations for pathology localization with only image-

level annotations. For each method, we report the average performance over ten runs. 

The green arrows show the improvement of DiRA models compared with the underlying 

discriminative method in each IoU threshold.

Method δ = 10% δ = 20% δ = 30% δ = 40% δ = 50% δ = 60%

MoCo-v2 [3] 54.89 39.43 24.81 14.59 7.58 2.68

DiRAMoCo-v2 58.13 (↑ 3.2) 42.74 (↑ 3.3) 27.52 (↑ 2.7) 16.25 (↑ 1.7) 9.30 (↑ 1.7) 4.35 (↑ 1.7)

Barlow Twins [4] 50.54 38.01 26.36 16.93 9.31 4.69

DiRABarlowTwins 58.98 (↑ 8.4) 45.26 (↑ 7.2) 32.71 (↑ 6.3) 21.71 (↑ 4.8) 13.62 (↑ 4.3) 6.26 (↑ 1.6)

SimSiam [5] 30.24 19.80 11.46 5.62 2.30 0.79

DiRASimSiam 51.07 (↑ 20.8) 34.24 (↑ 14.4) 20.64 (↑ 9.2) 11.32 (↑ 5.7) 6.46 (↑ 4.2) 2.90 (↑ 2.1)

LUNA:

This publicly-available dataset consists of 888 lung CT scans with a slice thickness of less 

than 2.5mm. The dataset were divided into training (445 cases), validation (178 cases), 

and test (265 cases) sets. The dataset provides a set of 5M candidate locations for lung 

nodule. Each location is labeled as true positive (1) or false positive (0). The models are 

trained to classify lung nodule candidates into true positives and false positives in a binary 

classification setting. We evaluate the classification accuracy by Area Under the Curve 

(AUC) score.

PE-CAD:

This dataset includes 121 computed tomography pulmonary angiography (CTPA) scans with 

a total of 326 pulmonary embolism (PE). The dataset provides a set of candidate locations 

for PE and is divided at the patient-level into training and test sets. Training set contains 

434 true positive PE candidates and 3,406 false positive PE candidates. Test set contains 253 

true positive PE candidates and 2,162 false positive PE candidates. We pre-processed the 
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3D scans as suggested in [6]. The 3D models are trained to classify PE candidates into true 

positives and false positives in a binary classification setting. We evaluate the classification 

accuracy by Area Under the Curve (AUC) score at candidate-level.

LIDC-IDRI:

The Lung Image Database Consortium image collection (LIDC-IDRI) dataset is created by 

seven academic centers and eight medical imaging companies. The dataset includes 1,018 

chest CT scans and marked-up annotated lung nodules. The dataset is divided into training 

(510), validation (100), and test (408) sets. We pre-processed the data by re-sampling the 

3D volumes to 1-1-1 spacing and then extracting a 64×64×32 crop around each nodule. The 

models are trained to segment long nodules in these 3D crops. The segmentation accuracy is 

measured by the Intersection over Union (IoU) metric.

LiTS:

The dataset is provided by MICCAI 2017 LiTS Challenge, including 130 CT scans with 

expert ground-truth segmentation masks for liver and tumor lesions. We divide dataset into 

training (100 patients), validation (15 patients), and test (15 patients) sets. The models 

are trained to segment liver in 3D scans. The segmentation accuracy is measured by the 

Intersection over Union (IoU) metric.

BraTS:

The dataset includes brain MRI scans of 285 patients (210 HGG and 75 LGG) and 

segmentation ground truth for necrotic and non-enhancing tumor core, peritumoral edema, 

GD-enhancing tumor, and background. For each patient, four different MR volumes are 

available: native T1-weighted (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), 

and T2 fluid attenuated inversion recovery (FLAIR). We divide dataset at patient-level into 

training (190 patients) and testing (95 patients) sets. The models are trained to segment 

brain tumors (background as negatives class and tumor sub-regions as positive class). The 

segmentation accuracy is measured by the Intersection over Union (IoU) metric.

C. Implementation

C.1. Pre-training settings

We apply DiRA to four existing self-supervised methods [1, 3–5]. To be self-contained, 

we’ll explain each method briefly here. Also, we provide additional pretraining details that 

supplements Sec. 4.1.

MoCo-v2 [3]:

We adopt MoCo-v2— a popular representative of contrastive learning methods, into our 

framework. MoCo leverages a momentum encoder to ensure the consistency of negative 

samples as they evolve during training. Moreover, a queue K = {k1, k2, …kN} is utilized 

to store the representations of negative samples. The discrimination task is to contrast 
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representations of positive and negative samples. As MoCo-v2 is adopted in DiRA, the 

encoder fθ and projection head hθ are updated by back-propagation, while fξ and hξ are 

updated by using an exponential moving average (EMA) of the parameters in fθ and hθ, 

respectively. The discrimination branch is trained using InfoNCE loss [7], which for a pair 

of positive samples x1 and x2 defined as follows:

ℒdis = − log exp z1 ⋅ z2/τ
∑n = 0

N exp z1 ⋅ kn/τ (5)

where z1 = hθ(fθ(x1)) and z2 = hξ(fξ(x2)), τ is a temperature hyperparameter, and N is 

the queue size. Following [3], fθ is a standard ResNet-50 and hθ is a two-layer MLP head 

(hidden layer 2048-d, with ReLU). Moreover, when adopting MoCo-v2 in DiRA, fθ, hθ, and 

gθ are optimized using SGD with an initial learning rate of 0.03, weight decay 0.0001, and 

the SGD momentum 0.9.
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Figure 6. Visualization of Grad-CAM heatmaps:
We provide the heatmap examples for 8 thorax diseases in each column. The first row 

in each sub-figure represents the results for the original self-supervised method, while the 

second row represents the original method when adopted in DiRA framework. The black 

boxes represents the localization ground truths.

SimSiam [5]:

We adopt SimSiam— a popular representative of asymmetric instance discrimination 
methods, into our framework. SimSiam trains the model without negative pairs and directly 

maximizes the similarity of two views from an image using a simple siamese network 
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followed by a predictor head. To prevent collapsing solutions, a stopgradient operation is 

utilized. As such, the model parameters are only updated using one distorted version of the 

input, while the representations from another distorted version are used as a fixed target. 

As SimSiam is adopted in DiRA, the encoder fθ and projection head hθ share weights 

with fξ and hξ, respectively. The model is trained to maximize the agreement between the 

representations of positive samples using negative cosine similarity, defined as follows:

D z1, y2 = − z1
z1 2

⋅ y2
y2 2

(6)

where z1 = hθ(fθ(x1)) and y2 = fξ(x2). The discrimination branch is trained using a 

symmetrized loss as follows:

ℒdis  = 1
2D z1, stopgrad y2 + 1

2D z2, stopgrad y1 (7)

where stopgrad means that y2 is treated as a constant in this term. Following [5], fθ is a 

standard ResNet-50 and hθ is a three-layer projection MLP head (hidden layer 2048-d), 

followed by a two-layer predictor MLP head. Moreover, when adopting SimSiam in DiRA, 

fθ, hθ, and gθ are optimized using SGD with a linear scaling learning rate (lr×BatchSize/

256). The initial learning rate is 0.05, weight decay is 0.0001, and the SGD momentum is 

0.9.

Barlow Twins [4]:

We adopt Barlow Twins— a popular representative of redundancy reduction instance 
discrimination learning methods, into our framework. Barlow Twins makes the cross-

correlation matrix computed from two siamese branches close to the identity matrix. By 

equating the diagonal elements of the cross-correlation matrix to 1, the representation will 

be invariant to the distortions applied to the samples. By equating the off-diagonal elements 

of the cross-correlation matrix to 0, the different vector components of the representation 

will be decorrelated, so that the output units contain non-redundant information about the 

sample. The discrimination loss is defined as follows:

ℒdis = ∑
i

1 − Cii
2 + λ∑

i
∑
i ≠ j

Cij
2

(8)

where C is the cross-correlation matrix computed between the outputs of the hθ and hξ 
networks along the batch dimension. λ is a coefficient that determines the importance of the 

invariance term and redundancy reduction term in the loss. Following [4], fθ is a standard 

ResNet-50 and hθ is a three-layer MLP head. Moreover, when adopting Barlow Twins in 

DiRA, fθ, hθ, and gθ are optimized using LARS optimizer with the learning rate schedule 

similar to [4].
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TransVW [1]:

TransVW defines the similar anatomical patterns within medical images as anatomical 

visual words, and combines the discrimination and restoration of visual words in a single 

loss objective. As TransVW is adopted in DiRA, the encoder fθ and projection head hθ 
are identical to fξ and hξ, respectively. In particular, the discrimination branch is trained to 

classify instances of visual words according to their pseudo class labels using the standard 

crossentropy loss:

ℒdis = − 1
B ∑

b = 1

B
∑

c = 1

C
Ybc log Pbc (9)

where B denotes the batch size; C denotes the number of visual words classes; Y and P
represent the ground truth (onehot pseudo label vector obtained from visual word classes) 

and the prediction of hθ, respectively. Following [1], we use 3D U-Net as the fθ and gθ. 

hθ includes a set of fully-connected layers followed by a classification head. fθ and gθ are 

trained with the same setting as [1].

Joint training process:

Following [8, 9], we perform the overall pre-training with the discrimination, restoration, 

and adversarial losses in a gradual evolutionary manner. First, the encoder fθ along with 

projector hθ are optimized using the discrimination loss ℒdis according to the learning 

schedule of the original discriminative methods [1, 3–5], empowering the model with an 

initial discrimination ability. Then, the restoration and adversarial losses are further fused 

into the training process incrementally. To stabilize the adversarial training process and 

reduce the noise from imperfect restoration at initial epochs [9], we first warm up the fθ and 

gθ using the ℒdis + ℒres, and then add the adversarial loss ℒadv to jointly train the whole 

framework; the optimization of the framework by incorporation of ℒres and ℒadv takes up 

to 800 epochs. Following [2], we use the early-stop technique on the validation set, and the 

checkpoints with the lowest validation loss are used for fine-tuning.

C.2. Fine-tuning settings

Preprocessing and data augmentation:

Following [10], for 2D target tasks on X-ray datasets (ChestX-ray14, CheXpert, SIIM-ACR, 

and Montgomery), we resize the images to 224×224. For thorax diseases classification tasks 

on ChestX-ray14 and CheXpert, we apply standard data augmentation techniques, including 

random cropping and resizing, horizontal flipping, and rotating. For segmentation tasks on 

SIIM-ACR and Montgomery, we apply random brightness contrast, random gamma, optical 

distortion, elastic transformation, and grid distortion. For 3D target tasks, we use regular 

data augmentations including random flipping, transposing, rotating, and adding Gaussian 

noise.

Haghighi et al. Page 18

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. Author manuscript; available in PMC 2022 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Training parameters:

We endeavour to optimize each downstream task with the best performing hyperparameters. 

In all 2D and 3D downstream tasks, we use Adam optimizer with β1 = 0.9, β2 = 0.999. We 

use early-stop mechanism using the 10% of the training data as the validation set to avoid 

over-fitting. For 2D classification tasks on ChestX-ray14 and CheXpert datasets, we use a 

learning rate 2e − 4 and ReduceLROnPlateau as the learning rate decay scheduler. For 2D 

segmentation tasks on SIIM-ACR and Montgomery, we use a learning rate 1e − 3 and cosine 
learning rate decay scheduler. For all 3D downstream tasks, we use ReduceLROnPlateau 
as the learning rate decay scheduler. For downstream tasks on LUNA, PECAD, LIDC, and 

LiTS, we use a learning rate 1e − 2. For BraTS dataset, we use a learning rate of 1e − 3.
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Figure 1. 
Despite the critical contributions of discriminative, restorative, and adversarial learning 

to SSL performance, yet no SSL method simultaneously employs all three learning 

ingredients. Our proposed DiRA, a novel SSL framework, unites discriminative, restorative, 

and adversarial learning in a unified manner to collaboratively glean complementary visual 

information from unlabeled data for fine-grained semantic representation learning.
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Figure 2. 
Photographic images typically have large foreground objects with apparent discriminative 

parts, whereas medical images contain consistent anatomical structures with semantic 

information dispersed over the entire images. As a result, recognition tasks in photographic 

images are mainly based on high-level features, while medical tasks demand holistic fine-

grained discriminative features captured throughout images.
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Figure 3. Our proposed framework.
DiRA consists of three learning components: discriminative, restorative, and adversary. 

Given two input patches x1 and x2, we perturb them with T( . ) and provide them as input 

to discrimination and restoration branches. The discrimination branch consists of encoders 

fθ and fξ, and projectors hθ and hξ, and maximizes the agreement between (high-level) 

embedding vectors of samples from the same (pseudo) class. The restoration branch consists 

of encoder fθ and decoder gθ, and maximizes the (pixel-level) agreement between original 

sample x1 and restored x′1. Adversarial discriminator Dϕ contrasts the original samples with 

the restored ones, reinforcing the restoration to preserve more fine-grained details.
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Figure 4. Comparison with discriminative self-supervised methods:
We apply our DiRA to three representative SOTA self-supervised methods with different 

discrimination objectives: MoCo-v2 [14], Barlow Twins [53], and SimSiam [15]. DiRA 

empowers discriminative methods to capture more fine-grained representations, yielding 

significant (p < 0.05) performance gains on four downstream tasks.
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Figure 5. Visualization of Grad-CAM heatmaps
for (a) MoCo-v2 vs. DiRAMoCo-v2, (b) Barlow Twins vs. DiRABarlow Twins, and (c) SimSiam 

vs. DiRASimSiam. Ground truth bounding box annotations are shown in black. Training with 

DiRA leads to improvements in weakly-supervised disease localization. While both DiRA 

and underlying models predict the correct disease label on the test images, DiRA models 

capture the diseased locations more precisely than the baselines which attune to larger 

regions of the image (e.g. (c), second row) or provide inaccurate localization with no overlap 

with the ground truth (e.g. (b), second row).
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Table 3.
Comparison with restorative self-supervised method:

We apply our DiRA to the TransVW as the SOTA restorative self-supervised method. DiRA enhances 

TransVW by conserving more fine-grained details, resulting in performance boosts in four 3D downstream 

tasks.

Dataset
Method

Random TransVW [26] DiRATransVW

LUNA 94.25±5.07 98.46±0.30 98.87±0.61(↑ 0.41)

LIDC-IDRI 74.05±1.97 77.33±0.52 77.51±1.36(↑ 0.18)

LiTS 79.76±5.42 86.53±1.30 86.85±0.81(↑ 0.32)

BraTS 59.87±4.04 68.82±0.38 69.57±1.13(↑ 0.75)

PE-CAD 80.36±3.58 87.07±2.83 86.91±3.27
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