Skip to main content
. Author manuscript; available in PMC: 2022 Oct 28.
Published in final edited form as: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2022 Sep 27;2022:20792–20802. doi: 10.1109/cvpr52688.2022.02016

Table 3. Comparison with restorative self-supervised method:

We apply our DiRA to the TransVW as the SOTA restorative self-supervised method. DiRA enhances TransVW by conserving more fine-grained details, resulting in performance boosts in four 3D downstream tasks.

Dataset Method
Random TransVW [26] DiRATransVW
LUNA 94.25±5.07 98.46±0.30 98.87±0.61 (↑ 0.41)
LIDC-IDRI 74.05±1.97 77.33±0.52 77.51±1.36 (↑ 0.18)
LiTS 79.76±5.42 86.53±1.30 86.85±0.81 (↑ 0.32)
BraTS 59.87±4.04 68.82±0.38 69.57±1.13 (↑ 0.75)
PE-CAD 80.36±3.58 87.07±2.83 86.91±3.27