Skip to main content
. Author manuscript; available in PMC: 2022 Oct 28.
Published in final edited form as: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2022 Sep 27;2022:20792–20802. doi: 10.1109/cvpr52688.2022.02016

Table 4. Ablation study on different components of DiRA:

We study the impact of each component of DiRA, including discrimination, restoration, and adversary, in four downstream tasks. Adding restorative learning (Lres) to discriminative learning leads to consistent performance improvements. Furthermore, equipping models with adversarial learning (Ladv) yields performance boosts across all tasks.

Base Pretraining dataset Ldis Lres Ladv Classification [AUC (%)] Segmentation [Dice (%)]
ChestX-ray14 CheXpert SIIM-ACR Montgomery
× × 80.36 ±0.26 86.42±0.42 67.89±1.14 98.03±0.22
MoCo-v2 ChestX-ray14 × 80.72±0.29 86.86 ±0.37 68.16± 1.07 98.19±0.08
81.12±0.17 87.59±0.28 69.24±0.41 98.24±0.09
× × 80.45±0.29 86.90 ±0.62 69.71±0.34 98.13±0.13
Barlow Twins ChestX-ray14 × 80.86 ±0.16 87.44±0.33 69.83±0.29 98.15±0.14
80.88±0.30 87.50±0.27 69.87±0.68 98.16±0.06
× × 79.62±0.34 83.82±0.94 67.58±1.89 97.72±0.27
SimSiam ChestX-ray14 × 79.41 ±0.42 84.45±0.46 68.35±1.16 98.02±0.21
80.44±0.29 86.04±0.43 68.76±0.69 98.17±0.11