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ABSTRACT: Artificial intelligence (AI) methods have been and are now being increasingly
integrated in prediction software implemented in bioinformatics and its glycoscience branch
known as glycoinformatics. AI techniques have evolved in the past decades, and their
applications in glycoscience are not yet widespread. This limited use is partly explained by
the peculiarities of glyco-data that are notoriously hard to produce and analyze. Nonetheless,
as time goes, the accumulation of glycomics, glycoproteomics, and glycan-binding data has
reached a point where even the most recent deep learning methods can provide predictors
with good performance. We discuss the historical development of the application of various AI methods in the broader field of
glycoinformatics. A particular focus is placed on shining a light on challenges in glyco-data handling, contextualized by lessons learnt
from related disciplines. Ending on the discussion of state-of-the-art deep learning approaches in glycoinformatics, we also envision
the future of glycoinformatics, including development that need to occur in order to truly unleash the capabilities of glycoscience in
the systems biology era.
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1. INTRODUCTION
Glycoinformatics, sometimes also called glycobioinformatics,1

can be straightforwardly defined as the application of
bioinformatics to glycoscience. Bioinformatics, according to
Wikipedia, refers to the creation and advancement of databases,
algorithms, computational and statistical techniques, and theory
to solve formal and practical problems arising from the
management and analysis of biological data [https://en.
wikipedia.org/wiki/Bioinformatics]. With the rise of systems
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biology and the expansion of -omics technologies, bioinfor-
matics has become an integral part of research in life science.

The sheer size of experimental -omics data sets has grounded
bioinformatics into data science. In recent years, emphasis has
been put on the generation of findable, accessible, interoperable,
and reusable (FAIR) biological data.2 Findable is indispensable,
because data search is a frequent task that should obviously be
made easy to the largest community of life scientists. However,
as simple as this task seems, it still primarily requires that data
and related metadata (information supplementing data) be
associated with a unique and persistent identifier and,
secondarily, readability by both humans and computers.
Accessible is highly practical because it involves retrieval using
these identifiers with a standardized protocol such as hypertext
transfer protocol (HTTP). Interoperable is a crucial constraint
in attempts to merge or integrate data from different sources. To
become interoperable, data need to be described with standard
languages reflecting knowledge representations, commonly
known as ontologies, otherwise also qualified as controlled
vocabularies. For example, gene ontology3 has revolutionized
biomolecular data annotation and enabled rational cross-
referencing between data resources. The first three FAIR
principles precede the fourth, which ultimately is the goal of
these efforts for data sustainability. Reusability can finally be
achieved through well-described metadata, including data
provenance and community standards. In the end, FAIRness
rights to reuse data can be regulated by licensing but FAIR/O
cancels any possible limitation and allows for free data reuse and
open science. The surge of data generation, sharing, and usage in
the recent SARS-CoV-2 pandemic is a good example of
application of FAIR principles for everyone’s benefit.

Large volumes of consistent data are the ideal input for
developingmodels andmethods to predict a biological outcome.
Myriads of solutions to predicting molecular shapes/structures,
locations, expressions, as well as interactions populate
bioinformatics toolboxes. A significant proportion of them rely
on artificial intelligence (AI), mostly learning methods.
Nonetheless, to achieve robustness and accuracy, these tools
require not only quality data but also fine-tuning over time. A
striking example is the prediction of protein 3D structure from
sequence. Most learning approaches predicting structure from
sequence leverage evolutionary information (e.g., via multiple
sequence alignments) and/or existing structural information
from homologous proteins. Neural networks were actually first
used in the late 1980s to predict protein secondary structure
from sequence,4 but the application of such AI-based prediction
to 3D structure was delayed for over a decade. Early
implementations relied on the prediction of amino acid contact
maps,5 and, again, it took over another decade to bring this
approach to the next level with RaptorX-Contact.6 Such
progress was easy to follow through the critical assessment of
protein structure prediction (CASP) competition designed to
assess the quality of 3D structure prediction tools every second
year since 1994 [https://predictioncenter.org/]. RaptorX-
Contact used residual convolutional neural networks to predict
contact maps from evolutionary coupling and sequence
conservation with superior results on CASP11, the 2014 edition.
This paved the way to AlphaFold27 that outshined CASP14, the
2020 edition, with further improvements and fined-tuned deep
learning-based methods. AlphaFold2 predictions are increas-
ingly accessible to users of major bioinformatics reference
databases and portals (e.g., UniProt8), or to experienced
bioinformaticians using community implementations (e.g.,

ColabFold9). In a nutshell and unsurprisingly, decades were
needed to reach such excellence.

As a subset of bioinformatics, glycoinformatics faces similar
challenges. Glyco-data, much like broad biological data, are
spread across biology and chemistry, yet the complexity and the
diversity of carbohydrate molecules, as well as their nontemplate
driven biosynthesis, have created a wider gap between the two
fields.

Carbohydrate chemistry research has been internationally
coordinated for many decades through the International Union
of Pure and Applied Chemistry (IUPAC), of which it became an
associated organization in 1970 [https://ico.chemistry.unimelb.
edu.au/]. This age-old grounding in international exchange
prompted the need for collecting data which eventually
happened in the form of CarbBank,10 setting the premises of
glycoinformatics at a time when bioinformatics was in its
infancy. Unfortunately, the path to expansion was rough and
long before the field was recognized, as reported in several
reviews11−14 and a dedicated chapter in a reference manual,15

and despite the hurdles and various intermediary short-lived
initiatives for collecting and storing glycan structural data, these
have now found a safer place in the universal repository named
GlyTouCan, first released in 2016 and hosted in Japan.16−18

In parallel, glycobiologists have concentrated their effort on
multiple forms of functional studies to reveal that glycosylation
is site-specific,19 tissue-dependent,20 and influenced by environ-
ment.21 Glycomics and glycoproteomics have matured to
provide increasingly comprehensive data sets22 that have just
begun to populate databases.23 Furthermore, the development
of array technology, starting with the Consortium for Functional
Glycomics (CFG) initiative, channelled screening data into a
single location [http://www.functionalglycomics.org/
glycomics/publicdata/home.jsp].

Up to this point in this Introduction, it appears that
carbohydrate chemists determine the structural pieces of the
puzzle while glycobiologists attempt to place them into a
biological context. Yet biochemists hold another key with the
elucidation of carbohydrate metabolism and catabolism.
Bridging information provided by these different views is
challenging. The attachment of solved structures on their
conjugate(s) is often unspecified, and the correlation between a
set of structures and their biosynthetic pathways is not obvious
because chronology may be hard to establish and glycosyl-
transferase availability is frequently unknown. Quantitative
evidence can be sought in transcriptome analyses that can shed
light on the expression of carbohydrate biosynthetic enzymes
that is notoriously different in distinct tissues, cell types, or
diseases. Additional structural constraints can be determined
because protein glycosylation is mainly regulated at the level of
both the enzymatic machinery and the glycoprotein structure.24

Nonetheless, glycan-binding experiments are centered on
ligands independent of their natural occurrence, making it
difficult to reconcile all viewpoints. This situation is clearly
presented in a recently published comprehensive overview25

that will not be reproduced or paraphrased here. Rather, the
present review extends this prior description of the glyco-
informatics landscape with a focus on learning methods and
their applications in glycobiology. To do so, we briefly survey the
specificity of glyco-data in the life science data ecosystem as well
as the long-standing presence of AI methods in bioinformatics
and glycoinformatics. The two aspects, data and AI, are tightly
interrelated as exposed throughout this review. Importantly, AI
methods are data hungry, and, unavoidably, our coverage is
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therefore biased toward the most abundantly generated glyco-
data, which tends to be related to glycans in association with
glycoproteins (N-/O-linked) and, to a lesser extent, glycan-
binding proteins. This panorama is followed by a focus on the
spreading of deep learning approaches in glycoscience. Finally,
we summarize our view of future development in AI-based
applications in this context.

2. IDIOSYNCRASIES OF EXPERIMENTAL DATA IN
GLYCOSCIENCE

Any prediction or modeling tool requires data processing, and
themore precise the definition of the possible solution space, the
better the tool will perform. Recalling the fragmented situation
presented in the introduction, glycoscience data have unique
features that need to be considered.
2.1. Sparsity

At this point in time, the estimate of the “glycan space”
dimension is controversial and reminiscent of the debated
estimate of the human genome content prior to sequencing it.
Speculation about the gene count ranged between 30 000 and
500 000, and actual data forced everyone into a more or less
drastic downscaling. Our current knowledge of glycan biosyn-
thesis makes it difficult to set boundaries. In theory, there could
be billions of structures considering all known species, but,
practically, GlyTouCan currently contains close to ∼51 000
structures (version 3.1.0), many of which are redundant due to
varying degrees of resolution. Considering one species at a time,
Homo sapiens is probably the most studied and the figures are
not any more precise. At present, the range is often suggested to
be on the order of magnitude of 104 and it is not clear whether
the array of experimental techniques used to solve structures

guarantees an exhaustive coverage of glycan structures. In fact,
the regular occurrence of paradigm-shifting discoveries of a new
glycan type with unconventional strategies tends to suggest that
“standard” workflows may miss unexpected structures. The
latest examples have revealed bisecting Lewis X structures in the
human brain26 and even to-be-confirmed glycosylated RNA.27

Additionally, the attention of researchers is predominantly
focused on protein-associated N- andO-linked glycans, with less
consideration for glycolipids, which is even worse for
glycosaminoglycans, lipopolysaccharides, or polymeric glycans.
Reasons for this can be seen in the lack of accessible, large-scale,
and comprehensive methods to study these molecules as well as
their intrinsically higher heterogeneity. In a nutshell, the extent
of the glycome remains a very open question. In this situation,
data can be qualified as sparse because of their uneven spread in
the glycan space. Specifically, the sparsity stems from at least two
main sources: (i) the fraction of glycans yet unknown to us in
any given species and (ii) the fraction of glycans that is not being
measured (or cannot be annotated) in glycomics experiments
due to sample processing, low abundance, ionization difficulties,
isomers, and many other potential issues. Now, if we consider
the estimate of 104 total human glycans, the pool of currently
known human glycans can be placed somewhere around 3000,
while a typical glycomics experiment merely measures dozens to
low hundreds of glycans. Both types of sparsity are not only
substantial but also due to systematic biases, some of which are
mentioned above, making a systems perspective more difficult.
2.2. Heterogeneity

As mentioned earlier, the full qualification of the structure and
the function of a glycan usually requires a set of experiments
spanning chemistry, biochemistry, affinity, and screening

Figure 1. Summary of information collectable from the structure of the C62H104N4O45compound, reflecting the diversity of questions addressed in
glycoscience. Whether information is chemical (upper center), biochemical (upper left), and structural (upper right), it requires functional
complements dependent on affinity or screening methods. In this example, C62H104N4O45 is shown to be attached to an immunoglobulin γ (lower
center) and its terminalN-acetyllactosamine moiety recognized by galectin 1 and 3 (lower right) and possibly screened with array technologies (lower
left).
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technologies that are diverse and the results of which are difficult
to corroborate. The situation is illustrated in Figure 1, where the
various ways of collecting information on Gal(β1-4)GlcNAc-
(β1-2)Man(α1-6)[GlcNAc(β1−2)Man(α1-3)]Man(β1-4)-
GlcNAc(β1-4)[Fuc(α1-6)]β-GlcNAc are highlighted. In each
case, the nature of the information and its extraction entails
substantially different means, resulting in challenging matching
and adjustment tasks in order to rationalize the presence of the
glycan in the conditions where it was observed.

Many techniques used in glycoscience require a compromise
between efficiency (breadth) and precision (depth), especially
in the high-throughput era. Mass spectrometry (MS) will be
preferred to nuclear magnetic resonance (NMR) if the
experiment entails minimizing the sample load and maximizing
the throughput, but it is likely to lower the level of structural
details. This aspect as well as further details of glycan structural
data acquisition are extensively covered in two recent
reviews.28,29 For our purposes, suffice to say that distinguishing
mass isomers is challenged by the multiplicity of commonly
occurring monosaccharides such as hexoses present in the form
of equally measurable glucose, mannose, or galactose, with the
same chemical composition and mass. Here, various techniques
such as digestion by monosaccharide-specific exoglycosidases or
further fragmentation with mass spectrometry (MS2 to MSn)

may result in less ambiguous identification. Likewise, glycomics
MS data usually provide quality structural data but no protein
site-specific information, while glycoproteomics MS data are
precise on mapping glyco-sites but only with low resolution
glycan compositions. In the end, the various sources are difficult
to merge into a single and clear view of a glycome.
2.3. Field-Specific Encoding

The complications involved in determining a full glycome have
two immediate consequences. Generally, the required time and
expertise prevent glycoscientists from venturing into any other
related-omic field. In turn, life scientists with no training in
glycoscience are often disinclined to undertake sizable extra
work to investigate glycosylation. In the end, a partial
disconnection with biology tends to characterize the production
of glyco-data.

From a bioinformatics point of view, the divide also exists. In
the past decade, the mapping of metabolic pathways from
genomes has brought cheminformatics closer to bioinformatics.
This entails sharing data formats to promote data exchange so
that reactions can be precisely described,30,31 with unambiguous
substrates and products as well as definite enzymes initially
translated from genomic sequences. All chemical compounds of
the reference PubChem32 and ChEBI33 databases are described
with SMILES34 and InChi/InChi Key35 encodings that are

Figure 2. Contrast of encoding schemes for the same compound in cheminformatics and glycoinformatics. The left panel shows the depiction of
C62H104N4O45 as provided in the PubChem and ChEBI databases of chemical compounds. These resources rely on the SMILES and InChi or InChi
Key encodings that are used as popular input formats in many cheminformatics and bioinformatics tools. The right panel displays the most commonly
used formats in glycoinformatics, namely IUPAC, GlycoCT, and WURCS. In the center, C62H104N4O45 is depicted in the symbol nomenclature for
glycans (SNFG), now spreading both in glycoinformatics and in the literature.
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readable by the vast majority of cheminformatics tools. All
corresponding depictions are generated from MDL molfiles.
The specification of biochemical pathways relies on the
knowledge stored in PubChem and ChEBI.

The convergence of cheminformatics with glycoinformatics is
not as clear. All glycans of GlyTouCan are encoded in in
IUPAC,36 GlycoCT,37 and WURCS.38 Each structure in this
database is represented in the symbol nomenclature for glycans
(SNFG) that has been adopted as a standard in glyco-
science.39,40 Nonetheless, in recent years, closer interactions
between GlyTouCan, PubChem, and ChEBI led to include the
WURCS encoding and the SNFG notation in glycan entries of
the latter two databases. Figure 2 illustrates the parallel options
taken in cheminformatics and glycoinformatics. It should be
noted that Figure 2 highlights the best case scenario of a fully
defined structure. In reality, glyco-data often lack compositional
or linkage information that is better handled by glycoinfor-
matics-specific formats.41

The usage of multiple nomenclatures requires continuous
harmonization. For example, when a new monosaccharide
substituent (or modification, such as added phosphate or
methyl) is discovered, it must be included in the encoding
format (except for WURCS that was created partly to avoid this
situation). This, in turn, impacts conversion software that must
be maintained.42 These efforts are costly but essential in keeping
a connected community. Another illustration of confusion
created by multiple and independent contributions is the case of
drawing glycan structures. The uncoordinated development of
web interfaces have resulted in a panoply of different tools,43

which allow researchers to easily visualize glycan structures in
their presentations and publications. This gave rise to a
substantial variety of (i) specific colors for monosaccharides,
(ii) depictions of linkage (undirected, directed, dashed) (iii) and

linkage label (β1-4, β4, 4, 14β), and (iv) choice of reducing end
depiction (nothing, protein backbone, OH). In the case of plant
or fungal polysaccharides, there is also an abundance of trivial
names (such as arabinan or glucan) as well as the ambiguity of
where the repeating unit starts. Not only is such a variety
detrimental to the implementation of a universal depiction such
as SNFG, it also makes it confusing for newcomers to the field to
understandmeaningful associations in the visualization of glycan
structures.

3. GLYCO-DATA REPRESENTATION

3.1. Lessons Learned from Bioinformatics

The precise recording and depiction of the heterogeneous
information illustrated in Figure 1 is a definite glycoinformatics
challenge. Figure 3 highlights the possibility of referring each
and every entity: a glycan, its biosynthetic pathway, or the
epitopes it contains, in an appropriate database, with a unique
and stable identifier. This view is widely spread in bioinformatics
and not completely realistic in glycoinformatics. To be effective,
FAIR principles mentioned in the introduction apply to data and
metadata (information about that data). For that reason,
minimizing ambiguity is of the essence. The precision of
description is guaranteed by associating each piece of data with a
database identifier, shown as green tags in Figure 3 in a
reproduction of Figure 1. Most of the cited databases also
contain metadata.

Biochemical knowledge has been traditionally covered by the
CAZy database, where cazymes (carbohydrate-active enzymes)
are collected and classified.44 CAZy revolves around amino acid
sequence annotation and has grown in the past decades in close
relation with NCBI genomes,45 Swiss-Prot,46 and UniProt,8

allowing the unambiguous characterization of cazymes via

Figure 3. Diversity of bioinformatics resources with database identifiers. The exact same illustration of Figure 1 is kept and complemented with IDs
(green tags) from the selection of relevant databases. Enzyme data can be found in both the CAZy and the UniProt databases. The GlyGen Sand Box
provides the details of each step of biosynthesis. Structural details of glycoproteins and glycan-binding proteins are provided by the PDB channelled
through the GlyConnect and UniLectin3D databases, respectively. Screening data are not precisely specified.
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sequence accession numbers. In 2021, the GlyGen project47

released an interface to visualize the stepwise synthesis of
GlyTouCan registered structures, called the SandBox [https://
glygen.ccrc.uga.edu/sandbox/]. From a structural biology point
of view, precision is brought by the knowledge of three-
dimensional protein structures stored in the Protein Data Bank
(PDB).48 A plugin to the LiteMol structure visualization
software conveniently represents carbohydrates attached or
bound in the 3D-SNFG representation;49 in this example, the
known N-acetyllactosamine terminal motif of the example N-
glycan structure, referred to as ID G27919IH in GlyTouCan.N-
Acetyllactosamine is also recorded in GlyTouCan as ID
G51331BY to provide a precise ligand definition, which can be
used in turn by UniLectin3D50 that covers knowledge of lectins,
also known as carbohydrate-binding proteins. UniLectin3D uses
PDB IDs to reference lectins that are human galectins in this
example. GlyTouCan ID G27919IH also appears in the
GlyConnect database51 as attached to human immunoglobulin
gamma (GlyConnect ID 278; UniProt P01868; PDB 3ZO0).
Figure 3 also reveals the weakness of the screening information.
Many array experiments are undertaken, but very few are
collected. It was the purpose of the Consortium for Functional
Glycomics52 at the turn of the century, but this initiative has
ended. The National Center for Functional Glycomics has taken
over and is preparing the launch of a new repository [https://
ncfg.hms.harvard.edu/microarrays]. Other initiatives, such as

GlyMDB53 or CarbArrayArt, have made provision for storing
array data in a rational manner.54

Glycan data management and exchange is significantly helped
by the Minimum Information Required About a Glycomics
Experiment (MIRAGE) project initiated by the Beilstein
Institute in 2011 [https://www.beilstein-institut.de/en/
projects/mirage/].55 It follows the Minimum Information
Standard movement that has produced sets of guidelines and
formats for reporting experimental data in the past two decades,
especially those generated with high-throughput methods
[https://en.wikipedia.org/wiki/Minimum_information_
standard]. At this point in time, very few glycoinformatics
resources collect raw data to make them accessible to the
community. As discussed for mass spectrometry data,56

channelling data through a pipeline is needed but to date still
incomplete. GlycoPOST57 is the first implementation of a
working MS data repository. Cited glycan array-related projects
are compliant with the corresponding guidelines.58

Each of the data sources mentioned above attempt to comply
with existing controlled vocabularies and ontologies as pointed
out as mandatory in the FAIR principles.
3.2. Lessons Learned from Proteomics

The dominance of mass spectrometry (MS) in proteomics sets a
precedent for glycomics. In particular, the evolution of peptide
MS data processing offers clues to handling glycan and
glycopeptide MS data. In the early days of proteomics, the

Figure 4. Relatedness of glycan structures of the human α-fetoprotein glycome (mapped with GlyConnect Compozitor). This representation
emphasizes how listed glycans composing a protein glycome are tied together in terms of shared substructures. In this graph, cyan incoming paths
connect glycan compositions and associated structures to GlyTouCanID G27919IH, as its substructures while orange outgoing paths connect
G27919IH to glycan compositions and associated structures that include it.
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main objectives of MS data processing were the improvement of
protein identification and the increase of its rate via
automation,59,60 giving rise to lists of identified proteins in
association with a tissue or a cell line. Rapidly, the need for
making sense of those lists spurred the implementation of tools,
enabling comparative methods.61 Finally, the concomitant
development of interactomics led to map protein interaction
networks to support the interpretation of coidentified proteins
in a sample.62 As glycomics lags behind proteomics, the
progression is similar but not as advanced. At this point in
time, lists of identified glycans are being published yet often still
lacking a precise identifier despite the existence of a universal
glycan data repository.18 These lists are often provided as
independent items and their possible relatedness limited to the
determination of trends. Many publications report sialylation,
fucosylation, or bisecting GlcNAc (among others) as prevalent
features of a glycome content, which are in turn considered as a
summary representation of a list. Nonetheless, the dependency
of listed structures is reflected in glycan synthesis, which is a
stepwise process easily visualized with graphs in which each
connection represents the addition of a single monosaccharide.
Figure 4 shows such a graph where GlyTouCanID G27919IH is
now shown as a component of the human alpha-fetoprotein
(UniProtID P02771). This representation was generated by
GlyConnect Compozitor that processes glycan compositions,63

as opposed to defined structures, to handle current glyco-
proteomics data stored along glycomics data in the GlyConnect
database. In Figure 4, the graph represents the glycome of
human α-fetoprotein (UniProt ID: P02771) as recorded in
GlyConnect and curated from seven publications. The view is
centered on the composition corresponding to G27919IH and
shows highlighted paths in cyan to map G27919IH
substructures and in orange to map all structures, of which
G27919IH is a substructure. Each leaf of the graph in that
example is shown to emphasize the possible diversity in a single
protein glycome.

4. CLASSICAL MACHINE LEARNING IN
BIOINFORMATICS

4.1. Decades of Trials and Errors

It took almost two decades to realize the power of applying
dynamic programming64 to amino acid sequence alignment65

but only two years for early bioinformaticians (not designated as
such at the time) to implement revitalised neural networks66 in
gene promoter67 or protein secondary structure4,68 prediction
from sequence data. From then on, the most efficient sequence
motif/pattern prediction methods have heavily relied on
machine learning (ML) methods. This approach was soon
popularized in bioinformatics through the dissemination of a
reference manual69 (2nd edition in 2001).

ML methods in the form of neural net(work)s (NN), support
vector machine (SVM), and some versions of hidden Markov
models (HMM) have been applied to a broad variety of
prediction, classification, and discovery related problems. The
point of this review is not to cover these topics in detail and
repeat previous work (see numerous references in Brief ings in
Bioinformatics, Oxford Press) but to provide a few landmarks in
order to set the scene for introducing the application of ML in
glycoscience. Note that ML in cheminformatics was previously
and extensively described in this journal for text mining.70

In a nutshell, ML techniques require a set of examples
(training set) from which regular features are extracted to define

the profile of elements of the training set. A scoring function is
then defined and used to decide whether a new object matches
the learned profile. This very short summary emphasizes the
importance of describing the examples with appropriate
descriptors that will provide the salient features to be extracted.
Furthermore, the examples need to be carefully selected to be
considered as representative of the aimed-for trend and, unless
maintained and/or providing the option of retraining, the
application of an ML method is not valid for long.

Numerous ML-based applications have come and gone with
the expansion of -omics and systems biology. On the one hand,
the exponential growth of data sets has regularly challenged
bioinformatics tools that could not scale or keep up with
updates. On the other hand, examples in genomics suggest that it
can be exceedingly difficult to avoid bias and overconfidence
when applying ML to biological data.71 In contrast, the
prediction of protein export cleavage sites illustrates the value
of a well-defined problem that finds a suitable ML solution
withstanding the test of time. SignalP72 was first released in 1997
and, in its current sixth version, is still widely used for predicting
the presence of an N-terminal signal peptide. The full coverage
of the development and evolution of the tool up to version five
was recently reviewed.73 Suffice to say that SignalP 1.0 was
implemented a neural network (NN), while SignalP 2.0
included a supplementary HMM prediction. This addition
aimed at distinguishing signal peptides from anchors. SignalP 3.0
introduced a new D-score to strengthen the specificity of signal
peptides compared to other sequences complementing the
HMM prediction. SignalP 4.0 was shaped back as a pure NN-
based method that turned out having blind spots that were
corrected in SignalP 4.1. To keep up with learning method
improvement, a shift to deep learning was initiated in 2018 with
the release of SignalP 5.0,74 designed to account for signal
diversity across species. In fact, SignalP 5.0 and its recent
successor SignalP 6.075 belong to section 5 of this review, and
they are cited here simply to highlight the value of a well-
formulated problem relying on well-defined data. In this case, an
ML-based prediction tool was adapted over 25 years, to evolving
technology through thoughtful upgrades. SignalP 6.0 now
considers five types of signal peptide at each position and relies
on a BERT-type language model (see section 5).
4.2. Useful Toolboxes

ML methods have been democratised with the release of
libraries such as WEKA,76 Shogun [https://www.shogun-
toolbox.org/], and mlpack,77 to name a few, that allow for fast
implementation and integration into computational analyses .
Next to providing predictions from biological data, MLmethods
also allow researchers to work with learned similarities (also
called representations or embeddings), to visually and
quantitatively compare samples. Ranging from protein sequen-
ces to tandem mass spectrometry spectra, complex data is
usually very high-dimensional and therefore hard to visualize
and understand in a granular manner. A benefit of applying
machine learning to these types of data is that a numerical
representation is learned, which can be projected into two-
dimensional space (amenable to plotting it) by a variety of
methods. Examples of this are distributed stochastic neighbor
embedding (t-SNE) or uniform manifold approximation and
projection (UMAP78), both of which aim at finding a two-
dimensional formulation of the data that best preserves distances
in the original dimensionality.79 These methods are particularly
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popular in the single cell-based -omic fields with a tendency to
create opposing communities.80,81

4.3. First-Generation AI for Glycomics (1990−2004)
4.3.1. Optimizing Mass Spectrometry Processing.

Some parts of the mass spectrometry (MS) pipeline provide
opportunities for automation and enhancement via machine
learning. Although initially designed for proteomics, the fine-
tuning of data analysis offers valid points for glycomics.
Probabilistic models were first introduced to train the prediction
of peptide fragment intensities in MS/MS.82 Then, the
generalized use of a false discovery rate (FDR) as a confidence
assessment of peptide identification has led to the design of
efficient scoring schemes supporting the discrimination between
experimental and decoy mass spectra, as implemented in
Percolator83 or in Barista84 software tools. Note that FDR
calculations are still lacking in most glycoproteomics data
analysis software, as revealed in a recent community challenge.85

De novo sequencing is another challenging area of MS-based
identification both in proteomics and glycomics, although not
yet conclusive in the latter case. A support vector machine
(SVM)model was for instance proposed to optimize the score of
cross-ring ions and other structural features in order to improve
structure assignment from MS/MS spectra.86

4.3.2. Predicting Glycosylation Sites. Searching for
glycosylation patterns has very early on provided challenging
questions for ML methods. In N-glycosylation, glycans are
bound to a nitrogen atom of an asparagine (Asn or N) residue.
The attachment on this amino acid was shown to be
characterized by a short consensus sequence: N-X-S/T where
S is a serine (Ser), T is a threonine (Thr), and X is any amino
acid except proline87 (Pro or P). In O-glycosylation, glycans are
linked to an oxygen atom of a serine (S) or a threonine (T) and,
occasionally, to a hydroxyproline or a tyrosine. No consensus
sequence has been observed around O-glycosylated sites except
for an unusual abundance of hydroxylated amino acids.
Sequence alignments emphasized the frequent occurrence of
proline residues close to the glycosylation sites, especially just
before and three positions after the glycosylated residue. In
contrast, the presence of charged amino acids at these sites tends
to prevent the placement of glycans.88 In C-glycosylation, also
calledC-mannosylation, glycans get attached to the carbon atom
of a tryptophan (Trp orW) residue and theW-X-X-Wmotif was
identified as the acceptor consensus sequence for glycan
binding.

Notable efforts in bioinformatics have boosted both the
discovery and mapping of O- and N-glycosylation sites. Results
of large-scale mapping of human N-sites has been collected in
UniPep89 (found on proteins isolated from plasma, cerebrospi-
nal fluid, various tissues, and cell sources) and N-glycosite
Atlas90 (22 human tissues/body fluids). A genetic engineering
approach using human cell lines has enabled proteome-wide
discovery of GalNAc-type O-glycosylation sites.91 Despite the
value of these data sets and the development of new
technologies, the experimental determination of glycosylation
sites only roughly characterizes glycans. To compensate for the
lack of data, in silico prediction has been, and continues to be,
developed mainly based on ML methods. These were trained
primarily to recognize the protein sequence context but also
secondary structure features and accessibility of glycosylated
residues.

Neural networks were implemented early on in a set of online
tools made available from the late 1990s on a server of the

Technical University of Denmark. The collection spanned the
prediction of N-glycosites with NetNGlyc, O-glycosites with
NetOGlyc, as well as in O-GlcNAc sites with YinOYang.92 The
training sets used in each case were very limited at the time and,
expectedly, did not yield highly reliable results. Nonetheless,
they settled as references in the field. Years later, the sensitivity
of NetOGlyc considerably improved following the massive
information input provided by Clausen and colleagues.91

4.4. Second Generation (2005−2015)
4.4.1. Random Forest and Support Vector Machines.

Two approaches destined to increase learning quality of neural
networks were introduced a few years later, namely support
vector machines (SVMs)93 and random forest (RF),94 and both
were used to refine the quality of glycosite prediction. All of the
corresponding contributions demonstrated how they out-
performed NetNGlyc and NetOGlyc following this enhance-
ment. On the basis of a random forest implementation,
GlycoMine95 was shown to improve the prediction performance
for the three major types of glycosylation in human. Themethod
relies on employing intensive feature selection techniques and
integrating several informative features (e.g., sequence-based,
structural, and functional features) to predict the glycosylation
sites in a protein of interest. However, the online version of
GlycoMine was last updated in August 2017 and is currently
accessible only via an archived web-link [https://web.archive.
org/web/20170812131319/http://www.structbioinfor.org/
Lab/GlycoMine/]. The GPP (glycosylation prediction pro-
gram)96 also relies on a random forest predictor exclusively
based on protein sequence features. Other software solutions
hinge on the implementation of SVMs, whether single in
GlycoEP97 on multiple protein features (sequence, structure,
etc.) or combined in EnsembleGly98 on strictly sequence
features or part of a multistage approach as in N-GlyDE,99 also
relying on multiple structural protein features and calculated
features such as gapped dipeptides. Table 1 recapitulates this

range of published tools and helps comparison. In general, pre-
existing methods to calculate protein features such as secondary
structure,100 are selected and integrated in the prediction
workflow.

The prediction of O-GlcNAcylated sites in DB-OGap101 was
also considered an improvement over YinOYang with an amino
acid sequence-based SVM model and more recently with a
combination of techniques spanning SVM and random forest.102

In the end, none of these methods include training data
accounting for the actual structures attached on N- or O-sites

Table 1. Summary Table of Cited Methods for Glycoprotein
Site Prediction

tool name
N/O

glycans method features

NetNGlyc N NN sequence
NetOGlyc O NN sequence, structure
GlycoMine N/O RF sequence, structure, functional
GPP N/O RF sequence
GlycoEP N/O SVM sequence, structure, evolutionary
EnsembleGly N/O SVM sequence
N-GlyDE N SVM sequence (gapped dipeptides),

structure
SPRINT-Gly N/O SVM/

NN
sequence, structure,
physicochemical, evolutionary

DeepNGlyPred N NN sequence (gapped dipeptides),
structure, evolutionary
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despite the earlier suggestion that distinct structural features of
glycans correlate with protein structure103 and the observed
changes in protein sequence alignment surrounding sites
depending on the properties of attached structures, e.g., core-
fucosylated vs nonfucosylated.104

Naturally, improvement was also sought in N-glycopeptide
identification from tandemMS data. SVMs105 as well as random
forest106 were introduced to define more effective scoring
schemes for intact glycopeptide-spectrum matches. Yet the
limited reliability of intact glycopeptide identification from MS
data, as recently demonstrated,85 is not related to the use or
absence of use of ML-based scoring functions.
4.4.2. Classifying Glycans. Probabilistic models and

machine learning methods are commonly brought together as
complementary approaches in bioinformatics and this observa-
tion transfers to glycoinformatics. In particular, the tree-shaped
structures of glycans have inspired bioinformaticians to use
hiddenMarkovmodels (HMMs) to classify glycan structures.107

Other attempts produced SVM-based glycan classification,108

but these paths have not been further explored.

5. NEXT-GENERATION MACHINE LEARNING

5.1. Background

Deep learning has recently revolutionized the analysis of large
volumes of biological sequences. One key advantage of deep
learning is the ability to work with “unstructured” data, such as
sequences or images, without having to define or calculate
features that are used for establishing correlations or for training
a model.109 Instead, the deep learning model (ideally) learns the
relevant features in a data-driven manner that are then used for
prediction. This makes large data sets, such as sequence
repositories, directly accessible for being used for model training
and has the potential to be less biased and more potent, as
features are not restricted to human-defined data characteristics.
A key distinction in deep learning models is their separation into
“supervised” and “unsupervised” models. Supervised models are
trained with known labels, which means that, given the features
(e.g., sequence etc.) of a data point, the model aims to predict
the label (e.g., protein function). Unsupervised models, on the
other hand, only have access to features, not labels. In this case,
the model merely learns similarities of data points based on their
features. An example would be an unsupervised model trained
on protein sequences that would allow clustering of these
proteins based on their learned similarity.

A multitude of different model architectures, algorithms of
how to learn mapping the input to the output, are available and
used in deep learning applied to biology. The ones relevant in
the context of glycobiology are feed-forward neural networks,
recurrent neural networks, graph neural networks, and trans-
former-based models. In feed-forward neural networks, a
number of layers is constructed, in which each layer learns a
function for combining the output from the previous layer to
achieve a meaningful prediction of the output at the final
layer.110 This architecture was one of the first historical deep
learning methods and remains relatively simple yet popular in
usage. Language models, such as recurrent neural networks
(RNNs) or transformer-based methods, were originally
developed to analyze human languages such as English, yet
have been applied to the analysis of biological “languages”, such
as DNA or proteins, as well. Another prominent architecture
that recently also surfaced in computational biology is the
transformer. In RNNs, inputs are analyzed sequentially, e.g.,

using each word of a sentence as an input to the model and
propagating the intermediate output of this procedure to the
analysis of the next word.111 As a consequence, RNNs exhibit a
limited form of memory, important in analyzing sequential data.
The key principle of transformer-based methods is to abandon
the sequential approach and analyze language-based data
simultaneously.112 This is made possible by the application of
“attention”, an algorithmic trick to let the model learn which
parts of the sentence/sequence are relevant in the context of
prediction. Finally, graph neural networks have been developed
to analyze nonlinear data formats, from social media networks to
protein 3D structures.113 The key operations here are
convolutions and pooling to convert the irregularly shaped
graph input into a fixed-size set of numbers that can be used to
reach a prediction. Convolution operations describe nodes in a
graph by the features of its neighbors, while pooling operations
condense the information from this process, for instance, by
collecting maximal or mean values from the convolutions across
the graph.

Themost prominent application of deep learning in biology in
recent history can be seen with the emergence of protein
structure prediction models such as AlphaFold2.7 Providing a
scalable means of predicting 3D structures of proteins from their
sequence, AlphaFold2 also already impacted glycobiology, with
the potential of integrating modeled carbohydrate structures
with AlphaFold2-derived protein structures.114 Another exam-
ple of how deep learning, applied to biological sequences, has
advanced glycobiology can be found in the prediction of
glycosites using neural networks and protein sequences,91 as
discussed above. From a chemistry perspective, Ardejani et al.
recently presented the combination of quantum mechanical
calculations and machine learning to study protein−N-glycan
interactions in detail.115 These applications and others
predominantly build on the prolific literature on protein-focused
deep learning and large associated data sets.
5.2. Deep Learning and Glycobiology

Despite the proliferation of the literature on this topic, the deep
learning-driven analysis of proteins has only begun relatively
recently, with the development of algorithms such as UniRep116

in 2019, that was designed to learn the fitness of point mutation
variants. In the case of UniRep and most other deep learning-
based language models, protein sequences are viewed as a
biological language, with amino acids as characters of a (very
long) protein “word”. The model is then trained by predicting
the next character (i.e., amino acid), given the preceding
characters. For this prediction task, models such as UniRep not
only consider the identity of amino acids but also can learn
amino acid properties (akin to size, polarity, etc.) via a trainable
embedding or, synonymously, representation. This representa-
tion vector, once properly trained, can be viewed as expressing
amino acid similarity, as the distance of the representation of two
physicochemically similar amino acids such as aspartate and
glutamate, should be smaller than two very dissimilar amino
acids such as glycine and arginine. Once trained on this
character-by-character approach, the final model can then
consider the full protein sequence to predict protein properties.

Machine and deep learning approaches for protein sequences
can have immediate implications for glycobiology, such as when
they are applied to glycosyltransferases. Using calculated protein
sequence properties as input for a gradient-boosted regression
tree model, monosaccharide donor specificity could be
predicted for fold A glycosyltransferases.117 Shortly after, the
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same authors presented a deep learning approach, using a
convolutional neural network with attention, to predict the fold
of glycosyltransferases from their sequence.118 This allowed
them to identify glycosyltransferase families which are likely to
exhibit novel folds that should be further investigated with
regard to their structure.

Corresponding analyses for applying deep learning directly to
glycans have emerged later than those for proteins, such as
SweetTalk.119 Many reasons for this delay could be mentioned:
(i) a relative lack of available sequence data that could support
large unsupervised model training, (ii) a relative lack of available
labeled data that connects glycans with properties or outcomes
for supervised model training, and (iii) the sequence diversity of
glycans, comprising hundreds of building blocks and nonlinear
sequences due to branching.

The first advances of deep learning applied to glycan
sequences have largely mirrored developments in applying AI
to proteins. This included the development of models treating
glycans as a list of features (see GlyNet120), a biological language
(see SweetTalk119 and glyBERT121), or asmolecular graphs (see
SweetNet122). A general observation here is that, over time,
models have changed to accommodate the branched, nonlinear
nature of glycans, which has led to substantial improvement in
the quality of predictions.122

Models treating glycans as a list of features stem from a long
history in drug development, for which “fingerprinting” is a
common practice.123 Here, a chemical is described by a list of
standardized features, for instance the absence/presence of
certain chemical moieties or the connectivities of atoms.

Analogously, glycans can be characterized by a vector
cataloguing the absence/presence/number of sequence motifs,
for instance on the monosaccharide or disaccharide level.
Importantly, fingerprints of this type are not bijective, as it is not
generally possible to uniquely reconstruct a glycan from its
fingerprint, and one fingerprint may describe several distinct
glycans exhibiting these motifs in different configurations. The
fingerprint is then used as input for, typically, a feed-forward
neural network, a model with multiple layers that learns a
function to combine information from previous layers into
subsequent layers. Here, each neuron of the first layer has access
to information on one feature of the fingerprint, which then is
further combined in later layers of the model before arriving at a
prediction that is informed by information from the fingerprint.

Glycan language models are closest to the protein language
models mentioned above. However, differences arise between
the different language models. One distinctive aspect is what a
token signifies in a model. One such model type would be the
transformer, a model designed for handling sequential data. A
transformer does not process a sequence from beginning to end
but rather learns from parts of the sequence. In other words, a
transformer identifies the meaningful bits. In the transformer-
based glyBERT, a token corresponds to amonosaccharide, while
the recurrent neural network-based SweetTalk considers larger
units, trisaccharides, as tokens in the language of glycans. A
recurrent neural network is also designed for sequential data but
does process a sequence from beginning to end, keeping
previous parts of the sequence in memory to arrive at a final
prediction. Next, the process of model training also differs

Figure 5. Applying next-generation machine learning to glycobiology. (A) Neural network-based models can be used to predict glycosylation sites
from protein sequences. (B) The fucosylation state of glycopeptides can be predicted via neural networks or support vector machines from ion
fragments. (C) On the basis of a metabolic model and a neural network, the distribution of glycosylation states of recombinant proteins could be
predicted in CHO cells. (D) Using deep learning to predict glycan properties. Several algorithms with their conceptual approach to analyzing glycan
sequences are shown. These algorithms learn a glycan similarity or representation that can be used for clustering. The same learned features can also be
used to predict a variety of glycan properties, some of which are shown here.
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between the two model types. SweetTalk-type models function
analogous to UniRep described before by predicting the next
token given the previous tokens. Transformer-based models
such as glyBERT, however, operate by the principle of
attention:124 given the whole sequence, the model learns
which parts are salient (i.e., important for prediction) in order to
focus on them with regard to prediction. Both types of models
also have an embedding layer, as described in the context of
UniRep, to learn similarities of monosaccharides or larger
structures.

Finally, graph neural networks consider glycans to be akin to
molecular graphs, with precedent models in drug discovery that
treated chemicals as molecular graphs.125 This is fitting in the
context of glycans, as glycans are trees, branched sequences with
no full cycles, and therefore a special case of graphs. From this
viewpoint, a monosaccharide can be considered a node in this
graph and, similar to the other discussed techniques, each node
type can have its own features, namely a trainable embedding
vector. Graph convolutional neural networks, such as the
mentioned SweetNet, learn graph “neighbourhoods” via several
convolution operations. A convolution in this context is a filter
that is iteratively applied over the whole graph to only continue
with relevant information in the rest of the model. Each
convolution considers the features (i.e., embeddings) of
neighboring nodes to describe a node. Each subsequent
convolution then has a wider definition of what constitutes
“neighbouring”, describing a larger portion of the graph in the
process. After doing this for every node and its neighborhood,
these description features are then passed along to a neural
network that uses this learned graph representation to arrive at a
prediction.

As already mentioned, deep learning models for glycans have
the additional advantage of learning glycan similarity, a concept
which can of course also be expressed without machine learning
in principle, for instance via counting motifs.126 In various
contexts, learned glycan similarities have been shown to cluster
by glycan class and/or characteristic motifs.122 Next to being
used for downstream models that can use these similarities as
new features for prediction, learned glycan similarities can be
used to visualize clusters of related glycans, for instance via t-
SNE or UMAPmentioned above, and allow for interpretation of
learned glycan associations. In a recent study, this has been for
instance used for an in-depth investigation of the role and
properties of different fucose-containing motifs across taxo-
nomic kingdoms.127

5.3. Glycosite Prediction

As mentioned in section 4.4.1, glycosite prediction remains a
challenge without the inclusion of glycan data. Nonetheless, the
two most recent additions to the available models for the
prediction of N-glycosylation have implemented deep learning
methods (see Figure 5A). SPRINT-Gly128 trained an SVM and
deep NNs on calculated amino acid, evolutionary, structural,
and physicochemical features, and, in the same vein, Deep-
NGlyPred129 is a deep NN, trained on sequence-based features
(e.g., gapped dipeptides), predicted structural features, and
evolutionary information. Table 1 recapitulates the glycosite
predictive tools cited in sections 4.3.2 and 4.4, as well as in the
present one.
5.4. From Mass Spectrometry to Glycosylation

To solve, or at least ameliorate, the relative lack of data in
glycobiology, improvements in the data acquisition pipeline are
necessary for advancing glycan-focused deep learning. Recent

work has focused on evaluating the potential of machine learning
and deep learning to achieve these improvements. For example,
both support vector machines (SVM; machine learning) and
neural networks (NN; deep learning) were assessed to predict
core and outer fucosylation from glycopeptides, specifically from
CID-based ions130 (see Figure 3B). Encouragingly, both the
SVM and the NN model matched manual interpretation,
resulting in a near-perfect prediction when assuming that the
manual interpretation reflects the biological reality. Approaches
such as this could lead to a considerable improvement in speed,
cost-efficiency, and, thereby, throughput. Other recent endeav-
ors rely on deep learning, such as on the usage of bidirectional
recurrent neural networks, to predict fragment ion intensities.131

Deep learning was also used in Prosit,132 with which both
fragment ion intensity and retention time are predicted. Prosit
combines a bidirectional recurrent neural network, applied to
protein sequences, with an attention layer. Similar methods for
the prediction of glycan fragmentation would be advantageous
for advancing glycomics.

In data-independent acquisition, the prediction of peptide
fragmentation in tandem mass spectrometry is a major focus for
deep learning approaches, with great progress for predicting
peptide fragmentation,133 while glycopeptide fragmentation
prediction still may require further advances until spectral
libraries are no longer necessary.134

Generating glycosylation information without mass spec-
trometry would represent a paradigm shift in glycobiology.
Thus, approaches that build on the knowledge base constructed
so far and aim at this goal are not only a worthwhile focus but
also dependent on advanced algorithms such as from deep
learning. A recent neural network based on a metabolic model
predicting nucleotide sugar donor concentrations as inputs,
demonstrated that the proportions of a limited set of N-linked
glycans could be predicted on four recombinant glycoproteins
from three CHO cell lines135 (see Figure 5C). Extension and
generalization of such a model could hold promise to advance
glycoengineering efforts in the production of biopharmaceut-
icals.136

5.5. Using Deep Learning to Predict Glycan Properties

While the above section discussed advances in obtaining glycan
sequences, we now turn to the question of what to eventually do
with obtained glycan data to gain further insight into biological
contexts. Analogous to deep learning models predicting protein
properties from sequences, such as GO terms or EC numbers,137

recent developments in glycobiology have introduced a new
generation of deep learning-based sequence-to-function models
(see Figure 5D).

Current examples of predicting glycan properties from
sequences include prediction of glycan class, taxonomy,
immunogenic potential, and association with bacterial pathoge-
nicity.119,122 Trained models in these tasks not only can be used
to infer the properties of newly discovered glycans but also can
be used to retrieve motifs that are important to endow a glycan
with a property, such as human-like glycan motifs used in
molecular mimicry by pathogenic Escherichia coli strains. Other
notable efforts in this area, using machine learning, are the
investigation of the association of clinical characteristics with
glycans from cancer patients138 or the prediction of α-
fetoprotein (AFP)-negative hepatocellular carcinoma using
glycan fingerprints,139 both of which could offer a promising
target for deep learning in the future. The key limiting factor in
all applications of this type of supervised learning in
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glycobiology is the lack of labeled data of glycan sequences with
known information about their properties or functions that
could be used to train a model. Often this information may exist
in sufficient quantity across the literature yet is scattered and
would require exhaustive manual curation that may be
prohibitively expensive.

One domain which has made considerable progress in solving
this bottleneck via organized databases and resources, as
mentioned above, is the study of lectin−glycan interactions.
Here, resources such as the CFG array database or the
UniLectin3D database for lectin−glycan crystal structures
offer data that are more suitable for machine learning and
related endeavors. Therefore, several machine and deep learning
approaches have recently joined the statistical motif-counting
methods to analyze glycan-binding data. An example is a recent
study140 that used the structural data of UniLectin3D to train
random forest-based models on computed physicochemical and
geometric features of proteins to predict their binding to
observed glycan fragments.

Other approaches have used glycan-binding data from glycan
arrays, where lectins are probed for their binding to immobilized
glycans on a glass slide.141 One example for this would be
GlyNet,142 a neural network-based approach for using themotifs
that occur in a glycan to predict its binding to the lectins that
have historically been assayed on the CFG platform. Combining
interpretable, rule-based machine learning with expert annota-
tion has also recently resulted in the detailed elucidation of the
binding motifs of a large set of commonly used lectins.143 In
other work, glyBERT has been introduced as a transformer-
based model for glycans that can also be used to learn the
binding specificity of a lectin, provided that binding data exist.
All the approaches above require dedicated binding data of the
lectin that is being studied. Another recent approach to solve this
limitation and the problem of predicting the binding specificity
of a lectin has been put forward with LectinOracle,144 a deep
learning model that combines a language model for the lectin
sequence (the ESM-1b transformer model145) and a graph
neural network for the glycan sequence (SweetNet) to predict
lectin-glycan binding. By also considering the information of
proteins, LectinOracle can generalize to new proteins as well as
new glycans. For the relatively data-sparse field of glycobiology,
such a strategy is crucial to at least provide predictions that can
in turn generate new hypotheses for contexts with many
uncharacterized lectins, such as the microbiome.

6. GRADUAL IMPACT ON GLYCOSCIENCE AND
DEVELOPMENT PROSPECTS

At this stage of method development in glycoscience,
glycoinformatics provides a real chance for unifying a view of
the molecular interactions mediated by glycans. From measure-
ment (e.g., mass spectrometry fragmentation prediction) to
biological context (e.g., glycosite prediction) and glycan
properties as well as functions, glycoinformatics is advancing
every facet of glycoscience and has the potential to continue
doing so in the future.
6.1. Expected Evolution of AI in Glycoinformatics

6.1.1. Evolution of Data. At this point in time, a simple
explanation for glycomics lagging behind other -omics lies in the
absence of high-throughput sequencing of glycans. Conse-
quently, data accumulates substantially slower than in genomics
or transcriptomics. This is especially true for glycan classes
outside of N- and O-linked glycans. The contrast is even more

striking as bioinformatics is now geared to process petabytes of
nucleotide sequences and run smart searches to reveal hidden
information. Such massive sequence data crunching has already
led to the identification of ∼105 unknown viral species.146 In that
sense, the future of glycomics hinges on new technological
development that may enable glycan high-throughput sequenc-
ing and also improve the analysis of other types of glycans such
as glycosaminoglycans. Efforts in other fields, such as the recent
advances toward protein sequencing, demonstrate that sequenc-
ing in principle can also be applied to non-nucleic acid
biopolymers.147

Another key point regarding data collection is the current
limited availability of quantitative data that would allow more
accurate profiling. At present, immunoglobulin profiling is by far
the most advanced in comparison to other glycoconju-
gates.148,149 Other prospects can be expected to expand from
improved techniques in glycan and tissue imaging.150,151

6.1.2. Improved Prediction. Like in many scientific fields,
AI methods are increasingly implemented to improve
classification and prediction. Machine learning applied in
various aspects of glycoscience (e.g., glycosite prediction or
monosaccharide donor prediction for glycosyltransferases) still
predominantly rely on human-devised, calculated features as
model input. This is presumably the reason why classical
machine learning methods (SVM, RF, etc.) currently often still
outperform deep learning approaches on these tasks. One of the
most important advantages of deep learning is that it allows for
access to information beyond the rationally chosen features of a
sample. It is therefore to be expected that deep learning
approaches using raw sequences in a proper format will yield
improved performance in the future. Another promising
direction is the combination of calculated features and raw
inputs, such as sequences, that has been shown to improve
performance for small molecule property prediction.152

Additionally, while existing models are largely inclusive of less
well-studied glycan classes, such as plant and fungal poly-
saccharides, in terms of their model architecture, there might be
approaches that could perform better on tasks involving these
polymers, for instance by considering their repeat structure.
However, existing data for most prediction tasks described in
this manuscript are largely restricted to N- and O- linked glycans
as well as glycolipids and, in a limited manner, glycosaminogly-
cans. Therefore, both available data and existing models will
likely need to be improved to fully leverage the information in
polymeric glycans.

On the other end, the purpose of predicting glycan-binding is
to design specific ligands, for instance to inhibit glycan-binding
proteins of pathogens, but more context-sensitive information
will be required to qualify specificity. In particular, realistic
binding prediction is likely to depend on additional character-
istics, such as expression of the lectin and physiological
conditions. Ultimately, models will need to account for all of
these aspects, as well as the structural features of glycoconjugates
and glycan-binding proteins. These will be helped if 3D models
are more systemically built while taking glycans into
consideration, as made possible with AlphaFold2 predictions.114

6.1.3. Improved Representation. The learned numerical
representation by ML models can also be used to find the most
similar known data point, given a new unknown data point. In
the context of tandemmass spectrometry in proteomics, this has
been used to quickly assign unidentified spectra to peptides.153 A
similar procedure in glycomics or glycoproteomics could
advance these fields as well. Next to similarity, the learned
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representation gained by an unsupervised model can also be
viewed as learned features of, say, a protein sequence, which can
be used by another downstream model. An example for this can
be found in the case of evolutionary scale modeling 1b (ESM-
1b), a transformer-based language model trained on protein
sequences.145 The learned representations from ESM-1b are
multipurpose and can be used to predict various properties such
as protein structure, stability, or function, with downstream
models that do not need as many parameters as one would need
if themodel would be trained on protein sequences from scratch.
While these learned protein features can be very useful in the
glycosciences (e.g., glycosite prediction, glycan-binding pre-
diction, etc.), eventually an analogous model for glycans might
be needed to improve prediction tasks. This is especially relevant
as the number of available labels for glycans, that could be used
for training a model, is typically much lower than is the case for
proteins, necessitating the usage of such a pretrained model for
satisfactory performance.

Current models all focus on glycan sequences, processed in
various ways. However, future models might have to include
chemical as well as 3D information to achieve optimal results.154

In the case of proteins, joint representations of sequence and
structure have shown improved performance for downstream
models.155 There are already numerous indications that glycan
conformation influences function and including this information
into predictive models is bound to place them closer to the
biological reality. Key challenges here are (i) how best to
incorporate this information into existing or future glycan-
focused artificial intelligence models given the conformational
flexibility of glycans and (ii) how to obtain a sufficient number of
glycan conformations. As reviewed earlier, the answers lie in the
constant improvement of experimental techniques (for example,
intact glycoprotein resolution can benefit from cryoelectron
microscopy) as well as that of molecular dynamics (MD)
simulation algorithms.156 The latter critically depend on the
further increase of computer power and on the refinement of
molecular aspects such as glycan placement on proteins.
6.2. Bridging Glycoinformatics and Bioinformatics

The importance of applying FAIR principles, promoted in
bioinformatics and emphasized in the introduction as well as in
section 3, has beneficial effects on glycoinformatics development
that increasingly bridges with resources of other -omics and
provides the means to expand systematism.

Single cell technologies have spread like wildfire in most
-omics applications, providing each discipline with more specific
and refined information on molecular activity and interactions.
Glycomics has not yet benefited from such a step forward. It
remains open to debate whether information is easier to obtain
from genes and biosynthetic pathways that regulate glyco-
sylation than from the direct analysis of glycan structures. At
present, glycoengineering tends to be more advanced when
handling genes,157 but this does not rule out a yet-to-come
strictly single cell glycomics approach. First steps in this
direction have added partial/fragmentary glycan information to
the analysis of single cells and/or a combination with their
transcriptome.158,159 Data integration will be facilitated by
collecting same level information from different and comple-
menting -omics. Nonetheless, attempts at combining views on
regulation have already emerged, for example, by considering
the interplay between microRNA and glycan expression160 or
between gene transcription and glycan expression,161 and these
are likely to expand in the very near future. In all cases, both

bioinformatics and glycoinformatics resources are needed in this
context. This bridging process is the core of an international
cooperative approach named GlySpace,23 designed to facilitate
structural and functional glycomic data sharing and information
exchange and committing to provide high quality, reliable, well-
referenced, and accurate data to the benefit of users. In parallel,
the release of software libraries tailored for glycoinformatics
applications consolidates this initiative. Several examples
spanning the management of mass spectrometry data in
Python162 or Java163 or handling ML tools164 are readily
available for software developers.
6.3. Multiscale View
As mentioned in the introduction, the variety and disparity of
sources of information that are needed to understand the details
of glycan structure and function are still a hindrance to rapid
progress in glycobiology. Ultimately, the goal of glycoinfor-
matics is to restore a more thorough picture from pieces created
artificially by technological constraints. For as long as this puzzle
is, if not complete, at least advanced enough to allow for reliable
predictions, it will concentrate efforts within glycoscience.
However, the key contribution of glycans to biological
processes, especially in cell−cell communication, cannot be
ignored and, as mentioned above, glycomics should be
combined with other omics. In fact, the ideal view of
understanding living organisms is dynamic and starts from the
atomic to the cellular, tissue, and organ levels. Multiscale
modeling as the holy grail of systems biology must be fed with a
refined knowledge of glycoscience.
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ABBREVIATIONS/ACRONYMS
AI = artificial intelligence
BERT = bidirectional encoder representations from trans-
formers
CASP = critical assessment of protein structure prediction
CAZy = carbohydrate-active enzymes
CID = collision-induced dissociation
CFG = Consortium for Functional Glycomics
ChEBI = chemical entities of biological interest
DL = deep learning
EC = enzyme commission number
ESM-1b = evolutionary scale modeling 1b
FAIR = findable, accessible, interoperable, and reusable
FDR = false discovery rate
Fuc = fucose
Gal = galactose
GalNAc = N-acetylgalactosamine
Glc = glucose
GlcNAc = N-acetylglucosamine
GO = gene ontology
HMM = hidden Markov model
HTTP = hypertext transfer protocol
InChI = IUPAC international chemical identifier
IUPAC= International Union of Pure and Applied Chemistry
MIRAGE = minimum information required about a
glycomics experiment
Man = mannose
MD = molecular dynamics
ML = machine learning
MS = mass spectrometry
NMR = nuclear magnetic resonance spectroscopy
NN = neural network
PDB = Protein Data Bank
RF = random forest
SMILES = simplified molecular input line entry system
SNFG = symbol nomenclature for glycans
SVM = support vector machine
t-SNE = t-distributed stochastic neighbor embedding
UMAP = uniform manifold approximation and projection
WURCS = Web3 unique representation of carbohydrate
structures

REFERENCES
(1) Aoki-Kinoshita, K. F.; Lisacek, F.; Karlsson, N.; Kolarich, D.;

Packer, N. H. GlycoBioinformatics. Beilstein J. Org. Chem. 2021, 17,
2726−2728.
(2)Wilkinson,M. D.; Dumontier, M.; Aalbersberg, Ij. J.; Appleton, G.;

Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L. B.;
Bourne, P. E.; et al. The FAIR Guiding Principles for Scientific Data
Management and Stewardship. Sci. Data 2016, 3, 160018.
(3) Carbon, S.; Douglass, E.; Good, B. M.; Unni, D. R.; Harris, N. L.;

Mungall, C. J.; Basu, S.; Chisholm, R. L.; Dodson, R. J.; Hartline, E.;
et al. The Gene Ontology Resource: Enriching a GOld Mine. Nucleic
Acids Res. 2021, 49, D325−D334.
(4) Qian, N.; Sejnowski, T. J. Predicting the Secondary Structure of

Globular Proteins Using Neural Network Models. J. Mol. Biol. 1988,
202 (4), 865−884.
(5) Fariselli, P.; Olmea, O.; Valencia, A.; Casadio, R. Prediction of

ContactMaps with Neural Networks andCorrelatedMutations. Protein
Eng. Des. Sel. 2001, 14 (11), 835−843.
(6) Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate De Novo

Prediction of Protein Contact Map by Ultra-Deep Learning Model.
PLOS Comput. Biol. 2017, 13 (1), No. e1005324.
(7) Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.;

Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.;
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