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ABSTRACT
Fear and anxiety are largely seen as separate entities, a distinction that inspires and shapes basic and clinical
research. Evidence for this distinction has a rich translational base and comes from physiological, behavioral, and
neurobiological studies. However, there is a high degree of inconsistency and a number of fundamental limitations
that lead us to question the validity of the distinction. We consider a range of studies examining specifically whether
and how the distinction may manifest at the neural, physiological, and behavioral levels, and we highlight a number of
inconsistencies that call the distinction into question. We go on to critically examine assumptions in approaches to
the fear-anxiety distinction and consider the implications that these assumptions may have in weighing evidence for
and against the distinction. Acknowledging the contention over whether emotion research in animals is easily
translatable to subjective experience in humans, we conclude that although the distinction between fear and anxiety
has proved useful and informative, there are a number of reasons for recognizing that it is an oversimplification and
that future progress may be guided, but should not be limited, by it.

https://doi.org/10.1016/j.bpsgos.2021.09.006
Are fear and anxiety distinct phenomena? Clinical differentiation
between disorders involving fear (phobic disorders), anxiety
(generalized anxiety disorder [GAD]), or a combination (panic dis-
order, social anxiety) (1) reflects a prevailing view that they are
indeeddistinct.Moreover, factoranalysesofso-called internalizing
disorders,most notably anxiety andmood disorders, suggest that
they can be divided into those characterized by fear and those
characterizedbyanxious-misery (2,3),which themselvesappear to
be associated with different patterns of physiological reactivity (4)
and distinct underlying neurobiology (5). Furthermore, it shapes
research, insofar as Research Domain Criteria framework uses
constructs of acute threat and potential threat, corresponding to
fear and anxiety, respectively (6).

Widespread acceptance of the distinction carries implica-
tions for research, diagnosis, and treatment, but its validity has
been contested based on isolated findings inconsistent with a
distinction. We review the field more to clarify how well this
distinction is supported overall. We consider evidence from
clinical and nonclinical studies of neurocircuitry, psychophys-
iology, and behavior. We focus on studies and paradigms
explicitly focusing on the distinction and, as such, do not seek
to provide a comprehensive account of the literature more
generally. We refer to studies of fear and anxiety in rats but
acknowledge that this application of the terms is contentious
(7), and we consider this contention later.

NEUROBIOLOGICAL EVIDENCE FOR THE FEAR-
ANXIETY DISTINCTION

Psychiatric approaches have been informed by findings from
rodent models, which have inspired therapies (8) and elucidated
causal factors and mechanisms [e.g., biological preparedness
(9,10)] (Table 1). Our understanding of fear and anxiety is heavily
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influenced by paradigms, such as fear conditioning, that are
feasible in animal research. In rodent models of fear, a typical
approach is to pair a stimulus (conditioned stimulus) with an
aversive event (unconditioned stimulus, e.g., a foot shock). Ani-
mals develop a conditioned response—fear—to presentation of
the conditioned stimulus. In comparable rodent models of anxi-
ety, the aversive stimulus can be presented either unpredictably
or in a context that predicts that it is more likely to occur but not
precisely when (5). The difference is that fear is related to the
presence, or imminent presence, of the aversive stimulus, while
anxiety is considered the more protracted state produced by a
sustained expectation that the aversive event is likely to occur.
Using this distinction, studies in rodents suggest that fear and
anxiety are mediated by separate brain areas (5,11,12). Specif-
ically, phasic (fear) responses are blocked by lesions or phar-
macological blockade of the central nucleus of the amygdala,
whereas sustained (anxiety) responses are blocked by interfer-
ence with the bed nucleus of the stria terminalis (BNST) (5).

The translatability of this approach is a major advantage
because it allows us to develop convincingly similar paradigms
for humans, where neuroimaging has drawn on the same model:
that fear arises from the imminence of an unpleasant event,
while anxiety comes from being in a context when an un-
pleasant event will occur but with uncertain timing and perhaps
not imminently. Findings have been consistent with the animal
work, showing amygdala activation in immediate threat condi-
tions and BNST activation in a threatening context (13–16). This
apparently clear distinction supports models in which the
amygdala (specifically the central nucleus; central nucleus of the
amygdala) is singularly responsible for generating fear re-
sponses, and the BNST for anxious responses (5), with corre-
sponding implications for potential pharmacological treatments.
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Table 1. Summary of Studies Providing Evidence For or Against the Neurobiological Distinction Between Fear and Anxiety

Study
Evidence For/Against

Fear-Anxiety Distinction Human/Animal Comments

Davis et al. (5) For Animal (rodent) –

Herrmann et al. (13) For Human –

Somerville et al. (14) For Human –

Alvarez et al. (15) For Human –

McMenamin et al. (16) For Human –

Buff et al. (17) For Human GAD vs. HC subject study

Brinkmann et al. (18) For Human PTSD vs. HC subject study

Clauss et al. (19) For Human Examining participants across the social
anxiety spectrum

Boehme et al. (20) Against Human Did not explicitly examine fear vs. anxiety—
instead, found no BNST activation
difference between SAD and control
subjects in anxious anticipation

Choi et al. (22) Against Human Did not explicitly examine fear vs. anxiety—
found BNST activation in response to
immediate threat stimuli

Grupe et al. (24) Against Human BNST phasic activation to brief threat

Mobbs et al. (25) Against Human Showed decrease in forebrain activation in
circa strike vs. postencounter but did not
explicitly examine BNST

Andreatta et al. (26) Against Human Sustained amygdala activation in uncertain
threat context

Lieberman et al. (27) Against Human Amygdala activation during unpredictable
threat condition in NPU task

Chavanne and Robinson (28) Against Human Meta-analysis showing significant overlap
between anxiety inductions and phobic
disorders

Naaz et al. (29) Against Human Both amygdala and BNST show heightened
response to explicit and ambiguous threat

Hur et al. (30) Against Human Amygdala and BNST show indistinguishable
responses to temporally uncertain and
certain threat anticipation

Siminski et al. (31) Against Human Both BNST and CM show activation in
response to predictable and unpredictable
threat

BNST, bed nucleus of the stria terminalis; CM, centromedial amygdala; GAD, generalized anxiety disorder; HC, healthy control; NPU, no-shock,
predictable-shock, unpredictable-shock; PTSD, posttraumatic stress disorder; SAD, social anxiety disorder.

1This meta-analysis, however, was constrained to full-brain ana-
lyses and may have excluded studies examining smaller re-
gions such as the BNST.
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Additional support has emerged from clinical studies in
which patients with fear/anxiety disorders demonstrate altered
BNST and amygdala responses to threat. For example, pa-
tients with posttraumatic stress disorder (PTSD) and GAD,
compared with healthy control subjects, demonstrate
increased amygdala activity at the onset of threat anticipation
and sustained BNST activation afterward (17,18). In addition,
social anxiety is associated with lower BNST-amygdala con-
nectivity during unpredictable threat cues (19) as well as
amygdala hyperactivation during the initial stages of an
anxiety-provoking event (20). Notably, though, BNST activity is
unaffected by social anxiety (20), contradicting a direct map-
ping from an amygdala-BNST dissociation to the fear-anxiety
distinction. Apart from concerns, discussed below, over how
well clinical states of fear/anxiety are modeled by acute stress
inductions in healthy participants, support at the neural level
for the distinction has been questioned (21). Several human
studies show BNST activation in response to immediate threat
stimuli (22–25), while others report amygdala activation in
342 Biological Psychiatry: Global Open Science October 2022; 2:341–
response to uncertain threat anticipation (25–27), and a recent
meta-analysis did not support the amygdala-BNST dissocia-
tion (28)1. Indeed, the robustness of the distinction in rodents
has also recently been questioned (21).

Additional evidence that both amygdala and BNST are
responsive to both predictable and unpredictable threats
(28–31), as well as the fact that one well-powered (n = 99)
study elicited no regional activation differences (30), further
calls into question this overall claim for a neural distinction
between fear and anxiety.
PHYSIOLOGY

Cardiac, respiratory, and other physiological changes have
long been recognized as markers for emotional states—both
349 www.sobp.org/GOS

http://www.sobp.org/GOS


Are Fear and Anxiety Distinct?
Biological
Psychiatry:
GOS
as causes and consequences, with growing research into the
subjective experiences of these phenomena and how they may
be modified therapeutically (32,33) (Table 2). However, use of
these markers to identify specific emotional states [e.g., (34)] is
greatly limited, even in differentiating basic emotions, let alone
closely related states such as fear and anxiety. Here, we focus
on research examining whether patterns of physiological
response differ across disorders characterized by fear from
those characterized by anxiety.

One experimental approach to examining physiological
reactivity to manipulations of fear and/or anxiety is the no-
shock, predictable-shock, unpredictable-shock (NPU) task,
which has been applied in anxiety disorders (35). Participants’
physiological responses are measured in three different con-
ditions: 1) no aversive stimulus, 2) predictable aversive stim-
ulus (fear), and 3) unpredictable aversive stimulus (anxiety).
Using eyeblink response to startle probes (such as short blasts
of white noise) presented during each phase (35), it is possible
to measure the fear-potentiated startle (i.e., eyeblink magni-
tude in condition 2) and the anxiety-potentiated startle (eye-
blink in condition 3).

When applied in differing clinical groups, this task enables
us indirectly to examine anxiety-specific and fear-specific
reactivity. A clear prediction would be that disorders charac-
terized predominantly by fear (e.g., phobias; PTSD) should be
distinct from those characterized by anxiety (e.g., GAD). While
some distinctions do indeed emerge, the patterns are not
straightforward. For example, patients with PTSD and GAD
show similar fear-potentiated startle, but those with PTSD
show elevated anxiety-potentiated startle compared with both
patients with GAD and control subjects (36). Patients with
panic disorder also show elevated anxiety-potentiated startle
(37), while social anxiety is associated with elevated fear-
potentiated startle (38). Overall, therefore, although these
studies present intriguing findings, they do not support any
simple idea that disorders can be divided, on the basis of
physiological responses, into those characterized by anxious-
misery and those characterized by fear. GAD, a disorder of
Table 2. Summary of Studies Providing Evidence For or Agains

Study
Evidence For/Against

Fear-Anxiety Distinction H

Lang et al. (4) For H

Grillon et al. (36) For H

Grillon et al. (37) For H

Grillon et al. (38) For H

McTeague and Lang (40) For H

GAD, generalized anxiety disorder; PTSD, posttraumatic stress disorder
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anxiety as opposed to fear, does not show anxiety-potentiated
startle in either study [although it is near significance in (38)].
Panic disorder, which has been categorized as a disorder of
fear (2,3), shows increased anxiety-potentiated but not fear-
potentiated startle.

Lang et al. (4) comprehensively studied physiological fear
responses across anxiety disorders. Participants were asked
to imagine various threatening scenarios to induce feelings
of fear. Building on their previous work demonstrating dif-
ferential physiological response profiles (39,40), they divided
participants into quintiles representing a continuum from
physiological hyperreactivity to hyporeactivity in terms of a
composite of heart rate and startle reflex. Most patients in
the hyporeactor quintile were those with principal anxious-
misery disorders, and most patients in the hyperreactivity
quintile were diagnosed with circumscribed fear disorders.
Overall, therefore, and in contrast to the NPU paradigm,
these imagery-based studies do demonstrate different
physiological reactivity across fear and anxiety disorders.
However, the picture remains very complex. While Lang et al.
(4) show elevated fear-based responses in disorders pre-
dominantly characterized by fear, there was no formal
comparison of differences between fear and anxiety, and,
moreover, comparable work using anxiety probes is not
associated with elevated responses in patients with anxiety
conditions (37,38). It may be, as Lang et al. suggest, that at
the physiological level, fear and anxiety dissociate not ac-
cording to their responses to fear- and anxiety-inducing
manipulations, respectively, but rather in terms of relative
hypo-(anxiety) and hyper-(fear) reactivity. However, this
observation was based on those small subsets of patients
who showed a predominance of fear or anxiety while the
majority of patients occupied a middle ground, showing
mixtures of fear and anxiety and intermediate levels of
reactivity. Even for the extremes, 20% of patients within the
first and fifth quintiles showed different patterns of fear/
anxiety symptoms from the prevailing ones. Therefore, one
cannot conclude that patients with fear disorders can be
t the Physiological Distinction Between Fear and Anxiety

uman/Animal Comments

uman Difference in physiological reactivity across
fear and anxiety disorders (although on a
spectrum)

uman Difference in physiological reactivity in GAD
and PTSD in predictable/unpredictable-
threat conditions compared with healthy
control subjects

uman Patients with panic disorder show greater
anxiety-potentiated startle but not fear-
potentiated startle compared with control
subjects

uman History of panic attacks associated with
hypersensitivity to unpredictable threat
(anxiety); SAD associated with
hypersensitivity to predictable threat (fear)

uman Difference in physiological reactivity across
anxiety disorders (although spectrum)

; SAD, social anxiety disorder.

pen Science October 2022; 2:341–349 www.sobp.org/GOS 343

http://www.sobp.org/GOS


Are Fear and Anxiety Distinct?
Biological
Psychiatry:
GOS
clearly differentiated from those with anxiety disorders based
on their physiological responses.
BEHAVIOR

Observable behaviors offer clues to underlying emotional states
and have formed a key component of rodent research (41)
(Table 3). The Mouse Defence Test Battery (MDTB) examines
behavioral responses to threat, identifying five different defensive
responses: defensive threat and attack, flight, freezing, and risk
assessment (42), with these behaviors depending on the context,
proximity, and ambiguity of the threat. In unambiguous threat,
animals preferentially flee. However, if this is impossible, they
freeze or (at sufficiently close proximity) use defensive threat or
attack. Risk assessment behavior is observed when the threat is
ambiguous or unlocalized, perhaps reflecting information gath-
ering by the threatened animal (42,43). Risk assessment behav-
iors were thus proposed to model anxiety, whereas other
defensive behaviors, particularly flight, may model fear (42). This
distinction was supported by selective modulation by different
pharmacological agents—benzodiazepines and serotonin recep-
tor ligands led to reductions in risk assessment behaviors,
whereas known panicogenic agents (yohimbine) selectively
increased flight activity, and chronic administration of panicolytic
drugs (alprazolam, imipramine, fluoxetine) reduced flight (42,44).
These findings suggest that in rodent models, fear and anxiety
may be characterized by different observable behaviors that
demonstrate distinct responses to pharmacological interventions.

Attempts have been made to translate the findings from the
MDTB into human behavioral studies. One method involves
the use of mental imagery, in which participants are asked to
imagine various threat scenarios and indicate from a list of
possibilities how they would respond. The scenarios are
designed to vary on the same dimensions as the MDTB—
Table 3. Summary of Studies Providing Evidence For or Agains

Study
Evidence For/Against

Fear-Anxiety Distinction Hu

Blanchard et al. (42) For An

Blanchard et al. (44) For An

Blanchard et al. (45) For Hu

Perkins et al. (46) For Hu

Perkins and Corr (48) For Hu

Mesquita et al. (49) For Hu

Perkins et al. (51) For Hu

Perkins et al. (52) Against Hu

Lippold et al. (53) For Hu

Perkins et al. (54) For Hu

SAD, social anxiety disorder.

344 Biological Psychiatry: Global Open Science October 2022; 2:341–
namely, the magnitude, ambiguity, and distance of the threat,
as well as the option for escape and ability to hide (45). Initial
studies demonstrated that ambiguous situations clearly led to
more risk assessment behavior in both men and women (45),
which, as described above, has been hypothesized as a core
behavioral feature of anxiety (43). Other responses to the
threatening scenarios indicated differences in behavioral re-
sponses between men and women, with women tending to
assess the scenarios as more dangerous and endorse fewer
defensive attack responses (45). These findings have been
replicated (46,47) and linked to measures of state and trait
anxiety (48). Interestingly, responses of males with social
anxiety disorder in this task were much closer to those of fe-
males with social anxiety disorder than those of males in the
control group were to those of females in the control group—
indicating that social anxiety disorder involves heightened
levels of defense responses (43,49).

These studies demonstrate the role of ambiguity in
dictating the behavioral reaction to threatening situations,
with risk assessment behavior being preferred in ambigu-
ously threatening situations and other defensive behaviors
taking the fore in explicitly threatening situations (42,45). It
highlights that a comprehensive conceptualization of fear
and anxiety should relate not just to the contexts and stimuli
but to the information available to the agent and, critically, to
their ability to process it and to compute levels of uncertainty
to guide decision making (50).

The Joystick Operated Runway Task (JORT)—a simplified
equivalent of MDTB—aims to disentangle fear and anxiety
behaviors in humans (51). Participants (represented by a green
dot) either use a joystick to move away from a threatening
agent (a red dot) presented on a virtual runway or must oscil-
late between two threatening agents (two red dots with the
participant’s green dot located in between). The pressure
t the Behavioral Distinction Between Fear and Anxiety

man/Animal Comments

imal (rodent) Different observable behaviors depending on
proximity of predator, sensitive to
pharmacological agents

imal (rodent) –

man Imagery study

man –

man –

man Patients with SAD report different behavioral
responses to threat scenarios

man Lorazepam reduced defensive behavior during
anxiety-related approach but not departure
from threat (fear); citalopram did not affect
either

man Lorazepam has a dose-dependent effect on
threat avoidance behavior, not always in line
with rodent research

man Lorazepam has dose-dependent effect on risk
assessment but no effect on fear

man BNC210 reduces flight intensity but not risk-
assessment intensity
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placed on the joystick in the former condition is assumed to be
an index of fear—the equivalent of a mouse’s flight velocity
away from a predator—whereas the oscillations between the
two threatening agents in the latter condition are used as an
index of anxiety—the equivalent to rodent approach-
withdrawal oscillations when presented with a predator in an
inescapable situation (44,51). The JORT has been used to
examine the effects of pharmacological agents on human
behavioral responses, with complex results. For example, an
initial study found a main effect of lorazepam on anxiety but
not on fear (51), while a follow-up study found no main effect of
lorazepam on anxiety, but a main effect on fear (52). Subse-
quently, the same group found an effect of lorazepam on
anxiety but at a lower dose (0.5 mg), while the previously
effective dose (1 mg) did not differ from placebo (52). More-
over, there was conflicting evidence for the influence of per-
sonality traits on fear/anxiety behaviors, as measured by the
JORT (53,54), making it, overall, difficult to draw any conclu-
sions with respect to the fear-anxiety distinction.

Notwithstanding the inconsistencies, theories that frame the
fear-anxiety spectrum as a range of ways in which the agent
attempts to avoid, mitigate, or escape an aversive situation are
conceptually important. One framework that shows promise in
addressing the distinction categorizes responses according to
whether they occur at the pre-encounter, postencounter, or
circa-strike stages of confrontation with predatory danger. This
predatory imminence theory (55,56) offers operationally
defined constructs that can more formally be related to the
antecedent or precipitating events and to the ensuing behav-
ioral responses.

TREATMENT

Despite the ambiguities above, modeling fear and anxiety as
separate experiences has proven useful in exploring potential
treatments. Cued fear paradigms have clearly been useful in
developing treatments for psychiatric disorders characterized
by fear disorders (57) and have helped formulate mechanistic
understandings of treatments effects. For example, consider-
ations of how to counteract fear renewal can form the basis for
optimizing the use of pharmacological intervention (57). Fear
conditioning models may apply best where there is a clear
conditioning event, however, such as in PTSD or some cases
of social phobia.

Translational models are also integral in pharmacological
treatment development. For example, citalopram has an effect
on anxiety-potentiated but not on fear-potentiated startle in
healthy control subjects using the NPU task (58), enabling
informed speculation on the mechanisms of action of cit-
alopram and related pharmacological agents.

MODELING FEAR AND ANXIETY: UNDERLYING
ASSUMPTIONS AND LIMITATIONS

In summary, while neurobiological, physiological, and behav-
ioral evidence has been invoked to support the distinctions
between fear and anxiety, the data are inconsistent and
sometimes contradictory. We now consider more deeply the
assumptions underlying the varying approaches and highlight
certain practical and conceptual limitations. We consider these
both in relation to the particular experimental designs and
Biological Psychiatry: Global O
more broadly in terms of the difficulties of translating emotion
research from rodents to humans.

Limitations of Tasks and Measures

Rodent work distinguishing fear-like and anxiety-like re-
sponses has driven much of the human research, but how well
do the commonly used tasks translate across species? Here,
we identify a number of challenges relating to how well tasks
map across rodents and humans (face validity) and how similar
the underlying constructs are in their application across spe-
cies (construct validity). While the predictive validity, or how
well the task is able to make predictions about future out-
comes, such as response to treatment (59,60), may prove
useful in establishing the success of these models, we focus
primarily on the two former criteria.

In neuroimaging experiments, because of the setting and
technical demands, some lack of face validity is almost always
inevitable. For example, rodent studies examining anxiety-like
responses have used relatively long time periods in their
experimental design—e.g., BNST lesions do not affect condi-
tioned fear responses unless they are of a very long duration
(.8 minutes) (61). Yet studies in humans tend to use much
shorter timescales (of the order of 30 seconds). Even virtual
reality contextual fear conditioning paradigms, where it is
plausible to have participants in the sustained fear condition
for longer, may involve less than a minute of exposure (14,26).
Some human studies have defined phasic and sustained fear
as different time periods in the same anticipatory anxiety
condition. These studies define phasic fear as the neural
response on initial exposure (i.e., the first second) to the
stimulus indicating that aversive experience will occur unpre-
dictably. Sustained fear is then defined as the neural response
over the entire course of viewing this stimulus (13,17,18,62).
The stimulus presentation in this design appears to be treated
as akin to a conditioned stimulus, although this is clearly dis-
similar to fear conditioning paradigms. Such experimental
nuances reflect creative attempts to surmount some of the
restrictions imposed by the functional magnetic resonance
imaging technique. However, inevitably, changes in task
structure render them less comparable to animal work.

Task adaptations in physiological and behavioral studies
impose comparable limitations. For example, imagery tasks
(4,45), although they may arguably tap into similar underlying
processes, should be mapped to animal work with caution.
Such studies (45) rely on participants’ imagining how they
would respond in a given situation (63) and are thus prone to
biases that vary across individuals. Perhaps this could account
for why males and females exhibit differing responses, with
many males opting to predict that they would engage in fight
behaviors. In addition, imagery studies lack the emotional
immediacy that one envisages would be core to tasks used in
rodent models to induce fear and anxiety.

While the JORT, as a human version of the rodent MDTB,
has relatively high face validity (albeit the JORT uses virtual
avatars), it is doubtful whether the underlying constructs are
recapitulated. The MDTB indexes anxiety in terms of move-
ment of a rodent toward and away from a predator (42). The
JORT translates this by asking a participant to move their
avatar (a green dot) between two hostile avatars (two red dots
pen Science October 2022; 2:341–349 www.sobp.org/GOS 345
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preceding and proceeding the participant’s avatar) and uses
the oscillations between the two as an index of anxiety (48).
While the movement is perhaps comparable in these para-
digms, the motivation cannot be—the participants are explic-
itly instructed to do this, it is not a naturalistic, information-
seeking behavior and, consequently, the degree to which it
translates the animal task is questionable.

We must also acknowledge the constraints of our mea-
surement devices. Limitations in spatial and temporal resolu-
tion of functional magnetic resonance imaging are well known.
It is difficult to localize activation definitively to the BNST and,
although this can be mitigated [e.g., 64,65)], we must remain
cautious about claims of BNST localization for standard
magnetic resonance field strength. Furthermore, conceptual
limitations should be borne in mind. Statements about such
fear-anxiety dissociations require evidence from direct com-
parisons between brain activations associated with tasks
eliciting anxiety and those eliciting fear, i.e., between tasks
entailing sustained levels of anticipation and those entailing
brief, phasic manipulations. Such a direct comparison is
crucial (66,67) and allows us to avoid what has been referred to
as the imager’s fallacy (66), wherein separately analyzed pat-
terns of response (e.g., fear compared with neutral and anxiety
compared with neutral conditions) are taken to support a fear
versus anxiety dissociation in the absence of the necessary
direct comparison. Given the inherent timescale differences in
phasic versus sustained task manipulations, such a direct
comparison is difficult to interpret, calling into question how
useful functional magnetic resonance imaging alone is in
supporting a true double dissociation. Solutions have been
proposed (68), but we face a profound problem because a
direct comparison of phasic (fear) and context (anxiety) effects
is far from straightforward [though see (14)]. This ultimately
limits support for assertions of a fear-anxiety distinction based
on observations, say, that central nucleus of the amygdala is
involved in the phasic fear response but the BNST is not.

Whether examining emotional responses to tasks at the
neural, physiological, or behavioral levels, our assumption is
that comparable responses across rodents and humans sup-
port the comparability of the tasks. This is perhaps most
tenuous in terms of overt behavior. For example, in comparing
JORT and MDTB, we may observe superficially similar be-
haviors, but it is difficult, as we have discussed, to be confident
that these reflect similar underlying patterns of fear or anxiety.
While, for example, in rodent behavioral tests of anxiety,
certain behaviors are thought to map onto particular emotions,
such as risk assessment behaviors mapping onto anxiety, we
must be mindful that these behaviors are underpinned by
complex information processing and decision making (69). As
such, two agents may occupy different states (e.g., risk
assessment and defensive attack) because of differences in
the ways in which they have processed and used the uncer-
tainty of the situation rather than, necessarily, because of
differing patterns of fear and anxiety. We consider this limita-
tion in translatability below.
How Well Do Emotional Responses Translate?

Leaving aside the frequently inevitable discrepancies in task
design across species, a more fundamental question relates to
346 Biological Psychiatry: Global Open Science October 2022; 2:341–
the degree to which the chosen task can elicit, reliably and
specifically, the targeted emotion. Even with near-identical
tasks, we must consider whether a particular task or context
will have comparable effects in rodents and humans. In this
respect, it is noteworthy that physiological studies examining
fear and anxiety manipulations in healthy control subjects
produce no discernible differences (37,38), suggesting that
seemingly distinct task manipulations inspired by rodent work
do not necessarily produce distinct emotional responses when
applied in humans. A recent meta-analysis (28) comparing
neural responses in an unpredictable-threat condition with
responses found in patients with anxiety disorder suggests
that a task assumed to induce anxiety in healthy control sub-
jects actually produces neural activation patterns that more
convincingly overlap with those found in phobic (i.e., fear)
disorders (28). This raises the possibility that the commonly
used anxiety manipulation actually produces feelings more
akin to fear.

This central concern about the translatability of emotional
experiences across species has been carefully explored in
relation to fear (70,71), with the suggestion that the term, as
commonly used to imply a psychological state, is problematic
when applied to animals (although it remains reasonable to
refer to fear as a physiological construct or intervening variable
that conveniently links threat to an array of defensive behav-
iors). While it is possible and useful to identify neural circuitry
involved in detecting and reacting to threat, this circuitry will
only partially overlap with that giving rise to the conscious
experience that we typically refer to as fear. As such, for animal
work at least, a term such as fear conditioning should be
replaced, one possible replacement being threat conditioning
(70).

This argument for caution in translating such subjective
experiences from animals to humans also raises questions
about the value of work examining the fear-anxiety distinction
in animals. However, such work can be helpful if it can be
shown that clear distinctions emerge (in neurocircuitry, physi-
ology, and behavior) when rodents are exposed to particular
experimental manipulations, and that these manipulations can
be related to fear and anxiety, and dissociations therein, in
humans. While the distinctions, as we have shown, are by no
means clear, the fundamental translational value of the work is
by no means undermined if we restrict terms such as fear and
anxiety for use solely in humans. However, the concerns are
important and motivate an emphasis on human research in
analyzing the distinction. We return to this in our concluding
section.
Challenges in Applying Experimental Insights to the
Clinic

A further concern relates to how well a laboratory experience
translates to real clinical symptoms. This is, of course, appli-
cable to all experimental models but is perhaps especially
salient in the fear/anxiety literature, given the use of artificial
laboratory conditions and manipulations applied in rodents as
models for complex emotions and responses in humans. For
example, distinguishing fear and anxiety in rodents relies on
dissociating predictable and unpredictable threat. Generally,
the threat is definite in both conditions—the predictability is the
349 www.sobp.org/GOS
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only manipulation. Contrast this with a clinical situation such
as GAD, in which there is continuous worry but no specific
threat (69,72), or other typical clinical experiences in which the
threat—a feared situation or experience—may be entirely un-
certain as well as unpredictable. Moreover, in real life, a person
can engage in strenuous avoidance behaviors that may
promise to keep the threat at bay entirely. Of course, all models
are simplifications and nevertheless remain useful, but their
optimal use depends on understanding, and bearing in mind
throughout, precisely what our task seeks to model, and,
importantly, what it leaves out (73). Acknowledging this may be
crucial, furthermore, in helping to understand findings that do
not easily accord with expectations, such as those of (28)
showing overlap between specific phobias and anxiety-
induction experiments.

Ultimately, the convenience and simplicity of the fear-
anxiety distinction in basic work should not obscure the fact
that many anxiety disorders will involve both acute experi-
ences of fear and more diffuse experiences of anxiety. For
example, specific phobia, a primary fear disorder, will also
involve experiences of anxiety concerning potentially
encountering the feared stimulus. The distinction between the
two emotions remains useful, but we should avoid treating
models of a single emotion as sufficient models of a psychi-
atric disorder, especially when differentiating between fear and
anxiety, as we should not expect them to occur entirely inde-
pendently of one another.
CONCLUSIONS AND FUTURE DIRECTIONS

It is difficult to escape the conclusion that the current
distinction between fear and anxiety is an unreliable one.
While it has been useful in guiding research and clinical work,
the inconsistencies suggest that there is a need to reexamine
the distinction and consider the importance of other aspects
of the experience of anxiety, such as uncertainty and avoid-
ance. Through a more comprehensive program of research
taking into account the relevant but neglected aspects of the
experiences, it may be possible to provide firmer foundations
for enhancing our understanding of whether, and how well,
these measures translate across species. In doing so, we
may be in a better position to exploit technical advances
such as a capacity to use high-field neuroimaging to eluci-
date functional roles of the subdivisions of BNST (12,74).
Such technological advances are inherently limited by the
validity of the models that underpin them, and while the fear-
anxiety distinction has provided a powerful framework in their
use so far, it seems that further progress will be hampered by
an over-reliance on what is clearly an oversimplification. This
is inevitable: models lay the foundations for basic under-
standing but must be tested, expanded, and where neces-
sary, rejected and replaced. It seems inevitable that future
research, particularly given the concerns about translational
limitations described above (73), will require human studies
that more directly address the rich subjective experience of
these states. While work in rodents has inspired experimental
manipulations (namely, certain vs. uncertain threat) to
engender the different states, the actual conscious experi-
ences, which are the sine qua non for the use of such terms,
have been neglected. Given the current sophistication of
Biological Psychiatry: Global O
neuroimaging techniques and the development of technology
that allows us to present highly realistic and emotive expe-
riences (75) with a high degree of experimental control over
relatively sustained periods, a key part of developing our
understanding of this question will surely lie in human studies
involving extensive subjective assessments to complement
the standard measures.
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