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Abstract
Environmental enrichment (EE) is an environmental paradigm encompassing sensory, cognitive, and physical stimulation at 
a heightened level. Previous studies have reported the beneficial effects of EE in the brain, particularly in the hippocampus. 
EE improves cognitive function as well as ameliorates depressive and anxiety-like behaviors, making it a potentially effec-
tive neuroprotective strategy against neurodegenerative diseases such as Alzheimer’s disease (AD). Here, we summarize 
the current evidence for EE as a neuroprotective strategy as well as the potential molecular pathways that can explain the 
effects of EE from a biochemical perspective using animal models. The effectiveness of EE in enhancing brain activity 
against neurodegeneration is explored with a view to differences present in early and late life EE exposure, with its potential 
application in human being discussed. We discuss EE as one of the non pharmacological approaches in preventing or delay-
ing the onset of AD for future research.
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Introduction

With the increase in life expectancy due to advances in tech-
nology, the elderly population is projected to double to 1.5 
billion in the year 2050 [1]. As such, the issue of neurode-
generative diseases and dementia is a ticking time bomb 
which could implode as time progresses. Alzheimer’s dis-
ease (AD) is the most common cause of dementia amongst 
this slew of neurodegenerative diseases. It was previously 
acknowledged as the top ten causes of death in the USA 
[2], and its mortality and morbidity rate in the elderly has 
only risen substantially since then [3]. Neurodegeneration in 
AD is caused by the abnormal processing and polymeriza-
tion of normally soluble proteins [4]. The general consensus 
regarding the pathogenesis of AD involves the progressive 
extracellular aggregation of amyloid-beta (Aβ) plaques as 
well as intracellular aggregation of neurofibrillary tangles 
(NFTs) composed of hyperphosphorylated tau proteins in 
the cortex and hippocampus [5]. More specifically, amyloid 

pathogenesis initially begins with dysfunctional cleavage of 
the amyloid precursor protein (APP), producing insoluble 
Aβ fibrils. Consequently, these Aβ fibrils then polymerise 
into insoluble amyloid fibrils that eventually aggregates into 
plaques. This polymerisation further causes the activation 
of kinases, resulting in hyperphosphorylation of tau pro-
teins, and the eventual aggregation of insoluble NFTs. The 
progressive deposition of Aβ plaques and NFTs is followed 
by microglia recruitment surrounding the plaques, pro-
moting the activation of microglia and local inflammatory 
response, leading to neurotoxicity [4]. Age, although not a 
direct cause, is the main risk factor associated with AD. The 
prevalence of AD increases significantly with age. An esti-
mated 3% of adults aged 65–74, 17% of adults aged 75–84 
and 32% adults aged 85 or older suffer from the disease [6]. 
Other potential risk factors such as chronic stress, genetic 
mutations and poor social relationships may also contribute 
to the pathogenesis of AD by facilitating Aβ deposition in 
the hippocampus [7, 8].

AD is a progressive disease where early symptoms of 
memory deterioration later develop into imparied social 
behavior and motor movements in patients. Patients suffer-
ing from AD typically progress slowly through four stages: 
the preclinical, early, middle, and late stages, each with var-
ying clinical symptoms. During the pre-clinical stage, the 
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individual experiences mild memory loss and early struc-
tural changes to the hippocampus, with no functional impair-
ment of their daily activities [9]. Patients in the early stages 
experience progressive loss of concentration and memory 
and start to display depressive-like behaviors [10]. Should 
the disease progress to the moderate stage, this results in 
worsened memory and concentration, with difficulty in per-
forming daily actions. Finally, patients suffering from late-
stage AD will lose the ability to recognize individuals while 
also gradually losing control of their motor functions [5]. 
Currently, there are no known methods to prevent progres-
sion of Alzheimer’s, with the only clinical treatment avail-
able being drugs to alleviate the symptoms [11]. However, 
patients taking these drugs may experience side effects, such 
as gastrointestinal, fatigue, and potential abnormalities in 
breathing [12]. Hence, there is a need to develop a non-phar-
macological approach to prevent or delay the onset of AD.

The environmental enrichment paradigm was first 
explored by Donald Hebb, who demonstrated that socially 
enriched rats performed better in problem solving tests com-
pared to their counterparts in standard housing [13]. Fol-
lowing this, Rosenzweig further established the concept of 
EE, whereby he classified EE as the combination of social 
stimulation along with the presence of various inanimate 
objects [14]. In the modern laboratory setting, EE is defined 
as the improvement of animal care quality in captive animals 
via the provision of appropriate stimuli needed to enhance 
physiological and psychological well-being [15]. For lab 
rodents, an enriched environment typically consists of larger 
cages and the presence of interactable objects as well as the 
rodents being housed together to stimulate social interac-
tions [16]. Previously, studies have found that housing lab 
animals in EE had beneficial effects on their brain struc-
ture and behaviors. The main findings regarding the effects 
of EE on the brain can be summarized as improved spatial 
learning and memory consolidation [17, 18, 19], reduction 
of behaviors associated with depression and anxiety [20, 
21, 22, 23], and reduction in age-related memory impair-
ment [24, 25]. Initial studies investigating the effects of EE 
in preclinical models of neurodegenerative diseases were 
conducted in the early 2000s, particularly in Huntington’s 
disease and AD. In this regard, van Dellen et al., Hockly 
et al., and Spires et al. were some of the first to investi-
gate the effects of EE on Huntington’s disease [26, 27, 28]. 
This led to several studies investigating the effects of EE 
on preclinical AD models, with varying degrees of success 
[29, 30]. Regardless, these initial studies were essential as 
they laid the foundation for EE as a potential therapy to 
combat neurodegenerative diseases. Throughout the past 
decade, many reviews have highlighted the effectiveness of 
EE against AD pathogenesis [31, 32, 33, 34, 35, 36]. Most 
notably, it has been shown that EE reversed Aβ pathology as 
well as reduced senile plaque aggregation in transgenic AD 

mice [37, 38]. Despite this, there is a lack of understanding 
regarding the molecular mechanisms associated with these 
changes in the brain. As such, this review serves not only to 
give an update to pre-existing literature but also to compile 
potential molecular pathways associated with EE and how it 
could influence the pathogenesis of AD as well as improve 
structures of the brain affected by it.

Environmental Enrichment 
as a Neuroprotective Strategy 
in the Hippocampus

Studies regarding AD have mainly focused on the entorhinal 
cortex (EC) and hippocampus due to the disease’s effect 
on memory formation, spatial navigation, and motor behav-
ior [39]. Furthermore, the neuronal dysfunction of the EC-
hippocampal network has also been previously implicated 
during the early stages of AD [40].

Traditionally, morphological and structural changes in 
the hippocampus, such as progressive loss of hippocampal 
volume, were observed in patients suffering from AD [41, 
42]. The reduction of neurogenesis throughout the progres-
sive stages has also been recorded [43, 44]. In this regard, 
several animal studies have previously highlighted the ben-
eficial impacts of EE on hippocampal structures. It has been 
reported that hippocampal neurogenesis was promoted fol-
lowing exposure to EE [45]. EE primarily caused an increase 
in the proliferation of progenitor cells whilst also promoting 
cell survival in the hippocampus [46, 47, 48]. Similarly, this 
could also be observed in transgenic rodent models of AD, 
as EE restored impaired adult hippocampal neurogenesis 
after deposition of Aβ plaques [49, 50, 51]. The extent of 
neurogenesis varies between these studies, presumably due 
to differences in parameters such as the age of the rodents, 
duration of EE exposure, and differences in EE protocols 
used.

Additionally, both CA1 and dentate gyrus (DG) volumes 
in the hippocampus were also significantly increased after 
long-term exposure to EE, resulting in improved cognitive 
performance [52]. The increase in hippocampal volume 
could be attributed to the cumulative effects of EE, such 
as increased cell proliferation and dendritic arborization, 
as well as enhanced vascularity and dendritic complex-
ity [53]. The effects of EE on hippocampal activity have 
also been of interest in recent years. Hippocampal activity 
is directly tied to the long-term potentiation (LTP) gener-
ated between hippocampal excitatory neurons, which are 
involved in the process of learning and the formation of 
memory [54]. In addition, synaptic dysfunction of the hip-
pocampus is also implicated during the early stages of AD, 
leading to the progressive impairment of memories [55]. In 
recent AD studies using different transgenic rodent models, 
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electrophysiological recordings of hippocampal LTP showed 
a marked decline in magnitude, suggesting reduced synaptic 
plasticity of the hippocampus [56, 57, 58]. Synapse loss and 
dysfunction had also been heavily correlated with cognitive 
decline associated with AD subjects [59, 60].

The effects of EE on synaptic plasticity in the hippocam-
pus have been frequently discussed in multiple rodent 
models. Hippocampal LTP was found to be enhanced fol-
lowing exposure to short-term EE [61, 62]. Whole-brain 
deep sequencing analysis post-EE exposure revealed 
upregulation of genes associated with synaptic plasticity, 
such as brain-derived neurotrophic factor (BDNF) and the 
N-methyl D-Aspartate receptor subtype 2B (GRIN2B) genes 
[52]. In seizure-prone models of rodents, EE preserved hip-
pocampal LTP in CA1 neurons, while preventing loss of 
synaptic density and dendrite branching [63]. A recent study 
also investigated the effects of EE on hippocampal plasticity 
in permanent middle cerebral artery occlusion models of 
mice. After 28 days of exposure to EE, protein expression 
for synaptic proteins (such as growth-associated protein 43 
(GAP-43), synaptophysin, and postsynaptic density protein 
95 (PSD-95)) were found to be significantly increased com-
pared to the mice housed in standard housing conditions, 
leading to the formation of higher amounts of hippocam-
pal synapses [64]. Moreover, these effects could also be 
observed in transgenic AD rodents. A prime example can 
be found in the use of EE to enhance synaptic plasticity 
in transgenic AD mice expressing mutations in the amy-
loid precursor proteins (APP) and presenilin 1 (PS1) genes 
(APPswe/PS1ΔE9). Furthermore, 4 weeks of EE prevented 
synaptic impairment induced by Aβ Oligomer deposition 
[65], indicating the potential of EE as both a neuroprotection 
and treatment strategy. A summary of the effects of EE on 
the hippocampus is tabulated in Tables 1 and 2.

Besides influencing the structure and neuronal activity 
of the hippocampus, EE also functions as a neuroprotective 
and treatment strategy by preventing and/or reducing the 
accumulation of Aβ plaques during the progressive stages of 
AD. Early exposure to EE can attenuate amyloid pathology 
as evidenced by decreased Aβ deposition in the cortex and 
hippocampus of transgenic mice with overproduction of Aβ 
peptides and accelerated amyloid deposition (FAD-linked 
APPswe/PS1ΔE9) [37]. Additional studies also reported sig-
nificantly reduced Aβ levels in the hippocampus and cortex 
post-EE exposure, before the onset of amyloid deposition 
[66, 67]. In tandem, tau phosphorylation was also signifi-
cantly decreased, resulting in reduced formation of NFT 
and neurophil threads [68]. The preventive effects of EE on 
amyloid deposition could be attributed to increased amyloid 
clearance, as EE induced expression of Aβ degrading mol-
ecules, altered Aβ transporters levels as well as activated 
microglial clearance [69, 70]. Interestingly, an earlier study 
highlighted an increase in Aβ deposition and levels resulting 

from early exposure to EE [71, 72]. Furthermore, some stud-
ies have even recorded no changes in Aβ deposition, though 
they noted an improvement in cognitive functions [73, 74]. 
Presumably, the differences in results could be due to vari-
ances in parameters, such as the model of transgenic rodents 
used, housing conditions for EE, and sex of rodents.

Although the neuroprotective property of EE is appar-
ent during early intervention, its effectiveness in mid-life 
and aged models of AD has only recently gained attention. 
EE exposure during mid and late-life phases has yielded 
conflicting results in recent studies. Initially, a study con-
ducted by Stuart et al. only observed an increase in CA1 
synaptic density after long-term EE exposure to 6 months 
old mice, with no noticeable changes to Aβ plaque load in 
the hippocampus and neocortex [75]. Additionally, long-
term stimulation of EE did not affect Aβ oligomer levels 
but was found to have a profound effect on hippocampal 
senile plaque concentration in mid-life mice (8–12 months) 
[38]. In contrast, Fulopova et al. described regional changes 
in amyloid deposition, with Aβ plaque formation in the 
somatosensory and primary motor cortex being signifi-
cantly reduced while observing no changes in the prefrontal 
cortex of mid-life APP/PS1 mice [76]. Similarly, in aged 
APPsw transgenic mice (20–22 months), 4 months of EE 
exposure did not alter Aβ deposition but instead improved 
cognition in these mice [74]. On the other hand, Mainardi 
et al. observed a decrease in hippocampal Aβ oligomer lev-
els in 17-month-old mice, attributing this to the increased 
synthesis of the Aβ-degrading enzyme neprilysin caused by 
EE [77]. Although the efficacy of EE during the early stages 
has been well documented, these findings suggest that more 
studies need to be conducted to determine its effectiveness 
during mid-late life.

Potential Molecular Mechanisms Associated 
with EE in the brain

Despite existing evidence supporting the effectiveness of EE 
as a non-pharmacological approach in delaying the onset of 
AD, the underlying mechanisms behind how it achieves this 
has yet to be well understood. EE stimulates growth and pro-
liferation pathways which delay the progression of AD. As 
such, this subtopic will discuss the molecular mechanisms 
associated with counteracting the effects of AD.

A major point of interest in EE is in its effect on hip-
pocampal neurogenesis. As previously mentioned, EE serves 
as a neuroprotective strategy by promoting neurogenesis, as 
indicated by increased cell proliferation and cell survival in 
the hippocampus [46, 47, 48]. A plethora of studies indicate 
that EE promotes the expression of neurotrophins, such as 
brain-derived neurotrophic factor (BDNF) [78, 79, 80, 81]. 
and nerve growth factors (NGF) in the hippocampus [82, 
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ww83]. BDNF is a neurotrophin that induces the differen-
tiation and survival of neurons [84]. BDNF also activates 
downstream pathways associated with regulating excita-
tory and inhibitory synaptic transmission in the adult brain. 
These actions are primarily exerted via BDNF activation of 
multiple downstream pathways upon binding with its recep-
tor, tyrosine receptor kinase B (TrkB) [85].

Phosphoinositide‑3 Kinase/Protein Kinase B 
Pathway

The initial increase in BDNF levels induced by EE could be 
due to upregulated expression of tissue plasminogen acti-
vator (tPA), which converts plasminogen into plasmin and 
consequently increases conversion of proBDNF (inactive) 

Fig. 1   Environmental enrichment (EE) causes upregulation and 
activation of tissue plasminogen activator which converts plasmi-
nogen into plasmin. The increase in plasmin facilitates the conver-
sion of inactive proBDNF to active mature BDNF. EE also upregu-
lates expression of tyrosine kinase b (TrkB) in conjunction with the 
increase in mature BDNF. Binding of mature BDNF to TrkB causes 
activation of the multiple pathways, mainly the phosphoinositide-3 
kinase/protein kinase B (PI3k-Akt) and the mitogen-activated protein 
kinases/extracellular signal-regulated kinase (MAPK/ERK) pathways. 
Activation of the PI3k-Akt leads to multiple downstream effects. 
Phosphorylated-Akt (p-Akt) inactivates FOXO3a protein, leading to 
cell survival. Besides that, p-Akt also phosphorylates glycogen syn-

thase kinase 3 beta (GSK-3β) at serine 9 (ser 9), inactivating it. This 
causes the inhibition of BACE1 expression, which reduces expres-
sion of amyloid beta plaques and decreases tau hyperphosphorylation. 
Furthermore, inhibition of the GSK-3β pathway also promotes neuro-
genesis and synaptic plasticity. p-Akt also causes activation of NF-κB 
protein complex and CREB protein, leading to increased neurogen-
esis and enhanced synaptic plasticity. BDNF binding also causes the 
activation of the MAPK/ERK/MSK pathway, which also regulates 
neurogenesis and synaptic plasticity via the phosphorylation and 
activation of the CREB pathway. This pathway could also potentially 
promote cell proliferation via regulation of ELK-1 and c-Myc genes
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into mature BDNF [86, 87]. The mature form of BDNF 
then preferentially binds to TrkB instead of neurotrophin 
receptor p75 (p75NTR). Concomitantly, the expression of 
TrkB receptors is also increased in response to EE [22, 87, 
88]. The binding of mature BDNF to TrkB subsequently 
causes activation of multiple pathways (Fig. 1). One of them 
is through the activation of the phosphoinositide-3 kinase/
protein kinase B (PI3k-Akt) pathway as evidenced by the 
increased phosphorylation of Akt after different periods of 
EE exposure [46, 87, 89].

Nuclear Factor‑Kappa B Pathway

Although the nuclear factor-kappa B (NF-κB) pathway has 
previously been extensively involved in the development and 
progression of cancer, recent reviews have highlighted the 
potential of the NF-κB pathway as a therapeutic target for 
AD [90, 91]. The NF-κB belongs to a family of transcription 
factors typically associated with the regulation of inflam-
mation. In AD, the NF-κB is essential for the modulation 
of beta-secretase 1 encoded by the BACE1 gene. BACE1 
initiates the production of Aβ with gamma-secretase, which 
cleaves a portion of the amyloid precursor proteins (APP), 
resulting in the accumulation of Aβ plaques between hip-
pocampal neurons [92]. Overactivation of the NF-κB path-
way leads to increased promoter activity of APP and BACE1 
genes, resulting in elevated Aβ accumulation [93, 94]. More-
over, NF-κB codes for various target genes relevant to the 
formation of long-term memory and hippocampal plasticity 
[95], indicating that dysregulation of this pathway could lead 
to impairments in hippocampal function. P-Akt regulates 
the transcriptional activity of NFκB by inducing the phos-
phorylation and consequent degradation of inhibitor of κB 
(IkK), thereby activating it [96].

Studies regarding the NF-κB pathway yielded conflict-
ing results. For example, EE-dependent activation of NFκB 
promoted the expression of hippocampal genes essential for 
learning plasticity and learning (e.g., BDNF and CamK2D) 
in old age rats, resulting in improved adult neurogenesis and 
healthier synaptic densities [97]. In addition, early-life EE 
exposure in an accelerated aging model of mice (SAMP8 
mice) causes downregulation of inflammatory genes asso-
ciated with NFκB (IL-6, Cxcl10) while also upregulating 
antioxidant genes (Hmox1, Aox1, Cox2) [98]. In contrast, 
exposure of mid-life 5xFAD mice (mice expressing human 
APP and PSEN1 transgenes with five AD-linked mutations) 
to 3 months of EE caused an upregulation of microRNA-
146a, resulting in down-regulation of NF-κB and inhibi-
tion of astrocytic inflammation [99]. Reduced expression of 
NF-κB was also seen in EE-exposed diabetic streptozotocin 
rats, consequently leading to decreased hippocampal neu-
ronal loss and astroglial inflammation whilst also increasing 
synaptic density [100]. Additionally, EE also influences the 

expression of the BACE1 gene. Though not in AD models, 
EE reduced BACE1 expression in both young and aged mice 
following chronic variable stress [101]. As such, the NF-κB 
is a challenging pathway to focus on since it regulates the 
transcription of both Aβ related genes and genes related to 
hippocampal function. Although EE regulates this pathway 
bidirectionally, its corresponding effects are different. On 
one hand, upregulation of NF-κB is essential for preserving 
and improving hippocampal structure. On the other hand, 
increasing NF-κB signaling could also lead to increased 
BACE1 expression, leading to increased Aβ deposition [93]. 
Inversely, downregulation of NF-κB could lead to a reduc-
tion in BACE1 expression [102]; however, it could also have 
profound effects on other genes involved in cell survival, cell 
proliferation, and cell differentiation. The NF-κB pathway is 
activated during aging and contributes to the pathogenesis 
of age-related diseases. Hence, EE could potentially aid in 
the modulation of this pathway by preventing over-activation 
during the aging process.

Glycogen Synthase Kinase 3 Beta Pathway

Another pathway that could potentially be influenced by 
EE is the glycogen synthase kinase 3 beta (GSK-3β) path-
way. Dysregulation of GSK-3β is indeed associated with 
increased deposition of Aβ plaques in the hippocampus. 
Furthermore, the overactivation of GSK-3β promotes hyper-
phosphorylation of toxic tau protein and consequently the 
formation of NFT [103]. GSK-3β overexpression also causes 
morphological alterations in hippocampal granule neurons 
like that of AD patients [51]. In contrast, inhibition of 
GSK-3β has been shown to attenuate cell death associated 
with the early introduction of neurotoxic Aβ peptides, and 
ameliorate behavioral changes induced by AD [104, 105]. 
The phosphorylated state of Akt (p-Akt) inhibits GSK-3β 
activity by phosphorylation at the Ser9 site [106], poten-
tially causing reduced tau hyperphosphorylation and revers-
ing synaptic abnormalities through inhibition of BACE1 
[51, 107]. Indeed, this may be one of the pathways associ-
ated with the decreased levels of Aβ after exposure to EE 
[77]. Furthermore, inhibition of GSK-3β can enhance adult 
neurogenesis. Previous studies have demonstrated that the 
inhibition of this kinase led to increased neural stem cell 
proliferation as well as increased neuronal differentiation in 
both in vivo and in vitro models [108, 109]. Similarly, EE 
restored proliferation of neural precursor cells in GSK-3β 
knock-in mice [110] However, its effects were only notice-
able in males, but not in their female counterparts.

Overactivation of GSK-3β was also rescued by EE 
exposure. Specifically, EE reversed morphological altera-
tions induced by GSK-3β overactivation in adult neurons, 
resulting in improved synaptic plasticity [51]. However, 
the upstream signaling cascades involved in this particular 
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process remain poorly understood. Realistically, a combi-
nation of different pathways could lead to such attenuation 
as both the PI3k-Akt and NF-κB signaling cascades are 
involved in regulating GSK-3β activity [107, 111].

Cyclic‑AMP Response Element‑Binding Pathway 
and Forkhead Box O3 Transcription Factor

The activation of the PI3k-Akt pathway also promotes adult 
neurogenesis via the involvement of different downstream 
signaling cascades. These pathways have mainly been asso-
ciated with cell proliferation, cell survival, and cell differ-
entiation. In addition to the NFκB and GSK-3β pathways, 
the cyclic-AMP response element-binding (CREB) protein 
has been shown to play an essential role in hippocampal 
function as it mediates the expression of genes involved 
in cell proliferation and survival [112, 113]. Activation 
of CREB via phosphorylation of PI3k-Akt has previously 
been shown to trigger the proliferation of adult hippocam-
pal progenitor cells [114]. Furthermore, activation of CREB 
led to enhanced hippocampal synaptic plasticity as well as 
heightened neuronal excitability [115, 116, 117]. The major-
ity of the studies conducted have indicated that EE increased 
expression and/or phosphorylation of CREB in some capac-
ity [87, 116, 118]. However, one study failed to replicate 
this effect [119]. This could be due to a lack of physical 
enrichment, as the later study lacked the novelties needed to 
stimulate physical activity. Indeed, physical activity has been 
shown to elicit activation of CREB in the hippocampus [120, 
121]. Besides that, PI3k-Akt can enhance cell survival via 
the involvement of the Forkhead box O3 transcription factor 
(FOXO3a). FOXO3a is primarily involved in the process of 
apoptosis via upregulation of genes essential for cell death, 
such as Bim and p53 [122]. Phosphorylation of FOXO3a 
by Akt causes its localization in the cytosol as an inactive 
complex bound [123]. Inactivation of FOXO3a prevents 
apoptosis of cells, leading to increased cell survival.

Mitogen‑Activated Protein Kinases/Extracellular 
Signal‑Regulated Kinase Pathway and Other 
Potential Factors

Alternatively, binding of BDNF to TrkB could also activate 
the Mitogen-activated protein kinases/extracellular signal-
regulated kinase (MAPK/ERK) pathway, which is essential 
in cell proliferation, differentiation, migration, and apop-
tosis [124]. Similar to the PI3k/Akt pathway, MAPK/ERK 
promotes cell proliferation through activation of CREB 
[125]. Activation of CREB through the MAPK/ERK path-
way is mediated by pp90 ribosomal S6 kinase (RSK), mito-
gen- and stress-activated protein kinase (MSK)1/2. MAPK/
ERK could also influence cell proliferation via other down-
stream transcription factors, such as ELK-1 and c-Myc [126, 

127]. Previous studies have reported how EE influences the 
MAPK/ERK pathway. Bengoetxea et al. reported that ani-
mals reared in EE reversed neuronal and vascular deficien-
cies induced by the effects of vandetanib, a Trk inhibitor 
[89]. The group attributed this recovery to the activation 
of PI3k-Akt and MAPK pathways caused by EE-mediated 
BDNF-TrkB binding. Furthermore, another group noted that 
MSK1 is an essential component for EE-induced effects. 
More specifically, they noted that EE had diminished spino-
genesis and SGZ progenitor proliferation in MSK1 knockout 
mice compared to their wild-type counterparts [128]. In con-
trast, other studies have recorded no changes in hippocampal 
ERK levels after exposure to EE [87, 129].

Wingless‑Type MMTV Integration Site Family/
β‑Catenin Signaling Pathway

Interestingly, one of the least discussed pathways regard-
ing AD is the wingless-type MMTV integration site family 
(Wnt)/β-catenin pathway. This pathway was first recog-
nized for its involvement in carcinogenesis [130]. However, 
a growing amount of evidence has supported its involve-
ment in the pathology of AD [131, 132]. The Wnt/β-catenin 
pathway is responsible for a number of essential biological 
processes, such as cell survival and cell proliferation, as well 
as synaptic plasticity [133]. Inhibition of the Wnt signaling 
cascade is often studied to prevent proliferation and migra-
tion in cancer cells [134, 135, 136]. Moreover, inhibition of 
the Wnt causes synthesis of Aβ oligomers and aggregation 
of Aβ plaques [137, 138]. Restoration of this dysregulated 
pathway could ameliorate symptoms and delay the progress 
of AD. Although limited, recent studies have focused on 
how EE affects the Wnt signaling cascade. Surprisingly, EE 
induced activation of Wnt/β-Catenin in rodents with vascular 
dementia, effectively restoring spatial learning and memory 
[17]. Moreover, exposure of middle-aged and aged rats to 
exercise and enrichment induced hippocampal activation of 
the canonical Wnt pathway [139, 140], potentially improv-
ing hippocampal plasticity and neuronal densities. Although 
these are promising effects, more studies are needed to deter-
mine how EE with and/or without the presence of exercise 
could affect the Wnt signaling cascade.

Nerve Growth Factor (NGF), pro-NGF, and the c-Jun 
N-terminal Kinase (JNK) Signaling Pathways

Although EE primarily produces their neuroprotective 
effects through BDNF, the signaling pathways induced by 
other neurotrophins should also be considered. Another 
promising area of interest is the basal forebrain due to its 
involvement in AD. The basal forebrain provides a major 
source of cholinergic innvervations to the hippocampus and 
cortical areas [141]. The loss of these cholinergic neurons 
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could impair hippocampal processing information and 
potentially contribute to AD-related psychiatric symptoms 
[142]. Furthermore, a recent study also demonstrated that 
the neurodegeneration of basal forebrain precedes even 
that of the entorhinal cortex during the pathogenesis of AD 
[143]. Nerve growth factor (NGF) is essential for the func-
tioning of the basal forebrain as it contributes to the forma-
tion of dendritic trees and modulates the activity of cholin-
ergic systems projecting to the hippocampus [144]. During 
the pre-clinical and early stages of AD, NGF metabolism is 
dysregulated [145], leading to higher amounts of proNGF 
(precursor) which results in loss of cortical synapses and 
atrophy of cholinergic neurons in the basal forebrain. As 
such, current-day studies have focused on the biodelivery 
of NGF to degenerated cell bodies in the basal forebrain as 
a treatment method [146, 147, 148], in an attempt to resus-
citate cholinergic signaling in the cortex and hippocampus 
[149].

The effects of EE on NGF are similar to its effects on 
BDNF expression, where multiple studies have noted an 
increase in NGF in response to both short and long-term 

exposure of EE [82, 150, 151, 152, 153]. Presumably, this 
increase in NGF levels could be attributed to the upregula-
tion of plasmin, as plasmin functions to convert proNGF to 
mature NGF (mNGF). NGF’s mechanism of action is also 
similar to that of BDNF. However, one key difference is that 
NGF initially binds to tyrosine kinase A instead of tyrosine 
kinase B. This leads to the activation of the PI3k-Akt and 
MAPK-ERK pathways and consequently improves cell sur-
vival, neurogenesis and synaptic plasticity. However, what 
is more interesting and has been less discussed upon is how 
EE could potentially lead to decreased levels of its precur-
sor protein, proNGF. Unlike BDNF, both proNGF and NGF 
are biologically active [154]. Although proNGF could bind 
to both TrkA and p75NTR, proNGF has a weaker binding 
affinity to TrkA compared to p75NTR [155]. Under normal 
physiological conditions, proNGF is neurotrophic as it could 
activate TrkA downstream pathways [156]. However, that 
is not the case in AD patients. As previously mentioned, 
the conversion of proNGF to mNGF is dysregulated during 
AD, leading to decreased mNGF production and increased 
mNGF clearance [157, 158]. Furthermore, it has also been 

Fig. 2   EE promotes the conversion of proNGF to mature NGF 
(mNGF) through increased plasmin levels. mNGF then binds to 
tyrosine kinase A (TrkA), which subsequently activates the PI3k-Akt 
and MAPK/ERK pathway and promotes neurogenesis, cell survival, 
cell proliferation and increased synaptic plasticity in the basal fore-
brain. As a result of this conversion, EE also indirectly decreases the 

activation of the JNK pathway signaling pathway by indirectly reduc-
ing proNGF levels (↓) and directly reducing p75NTR levels (↓) in the 
brain. This results in lower JNK phosphorylation, consequently lead-
ing to decreased tau hyperphosphorylation, decreased APP phospho-
rylation and decreased cell death in the basal forebrain
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shown that in AD patients, TrkA receptor levels are reduced, 
with no changes in p75NTR levels being observed [159, 160]. 
As a result, the increased concentrations of proNGF pref-
erentially bind to p75NTR instead of TrkA, inducing neuro-
degeneration in the basal forebrain via the activation of the 
apoptotic c-Jun N-terminal kinase (JNK) pathway (Fig. 2).

The JNK pathway has previously been shown to be 
implicated in the pathogenesis of AD [161, 162]. This is 
evidenced by early post-mortem and AD models showing 
increased JNK concentrations and activity [163, 164]. One 
of the potential activation signals of the JNK pathway occurs 
via binding of proNGF to p75NTR. However, in-vitro models 
have also reported instances of Aβ oligomers activating the 
JNK pathway [165, 166, 167], resulting in cell apoptosis and 
abnormal dendritic spine morphology.

Under AD pathological conditions, the increased concen-
trations of proNGF as well as Aβ oligomers bind to p75NTR, 
causing the phosphorylation of JNK3, the primary JNK 
isoform localized in neurons [168]. Activation of the JNK 
signaling pathway leads to contributes to several phenotypes 
of AD, and these include (i) increased hyperphosphorylation 
of tau proteins at serine 422, contributing to increased for-
mation of NFT [169], (ii) increased Aβ peptide and plaque 
levels as JNK functions as a major kinase for APP phospho-
rylation at threonine 688 [170], and (iii) increased cell death 
due to activation of proapoptic proteins (BMF, BIM) [171, 
172], inhibition of anti-apoptotic proteins (Bcl2 and Bcl2 
homologs) [173, 174], and phosphorylation of c-Jun which 
mediates cell cycle progression and apoptosis [175, 176].

Although there is a lack of studies regarding the effects of 
EE on proNGF, conversion of proNGF to NGF could poten-
tially reduce Aβ production, tau hyperphosphorylation, and 
cell death via downregulation of the JNK pathway. Inhibition 
of the JNK pathway has previously shown to be effective in 
delaying the progression of AD hallmarks [177, 178, 179], 
as well as prevent neuronal cell death induced by JNK pro-
apoptotic signaling [180]. Recently, Cho and Kang reported 
a significant decrease in both proNGF and p75NTR levels in 
a Parkinson’s Disease mice model following 4 weeks of EE, 
leading to neuroprotective effects on dopaminergic neurons 
[181]. However, the effects of EE on proNGF and p75NTR in 
AD models have yet to be investigated and should become a 
topic of interest in future EE studies.

Fibroblast growth factors (FGF)

Several reviews have been written regarding the mechanism 
of action of fibroblast growth factors [182] as well as their 
involvement in AD [183, 184]. Treatment of AD with dif-
ferent members of FGF have been shown to induce neuro-
protective properties in different preclinical models of AD, 
especially in FGF2. For example, FGF2 has been shown to 
be a viable treatment method in preclinical models of AD. 

Chen et al. demonstrated that both low and high molecular 
weight FGF2 were able to induce neuroprotective effects on 
astrocytes against Aβ-induced cytotoxicity [185]. Addition-
ally, another study has shown that FGF2 gene transfer is 
able to restore hippocampal function in a transgenic model 
of AD mouse, whilst also enhancing Aβ phagocytosis and 
reducing Aβ production in primary cultured microglia and 
neurons after FGF2 infection [186]. Furthermore, Katsuori 
et al. also noted similar results, where FGF2 treatment of 
APP23 transgenic mice restored spatial memory function, 
reduced Aβ levels and tau pathologies, and increased astro-
cytic survival in the dentate gyrus compared to control mice 
[187]. However, the effects of EE on FGF expression in 
AD models have been relatively neglected compared to its 
effects on other neurotrophins. Although not in AD models, 
both short- and long-term EE has previously been shown 
to upregulate hippocampal expression of FGF2 in different 
models of rodent [48, 188, 189]. Furthermore, EE could 
also promote adult hippocampal neurogenesis through acti-
vation of fibroblast growth factor receptors and fibroblast 
growth receptor substrates [48]. We hypothesize that EE 
could ameliorate hallmarks of AD by improving FGF levels 
in the brain. However, more studies have to be conducted in 
order to better understand the effects of EE on FGF levels 
in AD models.

Other potential factors which could contribute to the 
effects of EE include increased expression of neurotro-
phin-3 and insulin-like growth factor-1 [87], improvements 
of N-methyl-D-aspartate receptor histone acetylation [190], 
and changes in metabotropic glutamate receptor mGluRs 
[191, 192], consequently leading to downstream activation 
of other undiscussed pathways.

As such, the effects of EE are not confined to a single 
pathway but rather the activation of multiple downstream 
pathways working in tandem to produce these effects. To 
summarize, EE not only delays the progression of AD by 
affecting its pathogenesis, but also counteracts the neurode-
generation of AD by activating cell regenerative pathways 
(Fig. 3). As current studies are far and few in between, fur-
ther investigations in this field hold the promise of more 
discoveries to be made.

Behavioral Effects of EE and Its Potential 
Application in Humans

Alongside the progressive decay in cognitive and motor 
functions, patients with AD also experience gradual altera-
tions in their behavioral patterns. Most notably, they tend 
to experience behavioral and psychological abnormali-
ties such as psychosis (in the form of hallucinations and 
delusions), aggressive-like behavior, and depression and 
anxiety [193]. Normal individuals who experience healthy 
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aging are at no greater risk of developing depression com-
pared to younger adults [194]. In contrast, patients with 
AD are more likely to display depressive symptoms com-
pared to their healthy counterparts [195]. It is suggested 
that the stage of AD may influence the risk of developing 
depression, however results remain inconclusive.

Fortunately, the effects of EE on social behavior have been 
well documented throughout the past decade. Previous stud-
ies have suggested the use of EE in ameliorating anxiety and 
depressive-like behaviors. Implementation of EE during the 
early life phase has demonstrated anxiolytic and antidepres-
sant effects on depressed rodents [23, 196]. Moreover, the 
effects of EE have also been demonstrated in middle and 
late-life rats [197, 198], implying its effectiveness throughout 
different stages of life. Additionally, rats exposed to EE dis-
played reduced anxiety-like behaviors, as seen by increased 
exploratory behavior during the elevated plus maze and open 
field tests [23, 199]. This was also seen in a triple transgenic 
mouse model of AD [200], indicating that EE can also ame-
liorate AD-induced behavioral alterations.

Although how EE exhibits these antidepressant and anxio-
lytic properties remains relatively unknown, it is postulated 
that it could be a result of EE-induced hippocampal neuro-
genesis [201]. Furthermore, the antidepressant properties of 
EE could also be a result of the upregulation of neurotrophic 
factors, such as BDNF and vascular endothelial growth fac-
tors, which are responsible in regulating neurogenesis and 

angiogenesis [20, 202]. Nevertheless, the possibility that 
EE could also exert these effects via different areas of the 
brain should not be dismissed. For example, it has been sug-
gested that the anxiolytic effects of EE is associated with 
down-regulation of amygdalar corticotropin-releasing factor 
receptor 1 expression [203]. In contrast, another study has 
claimed that the anxiolytic effects of EE could be modulated 
by serotonin neurons located in the dorsal raphe nucleus 
[204].

Recently, an increasing amount of evidence has hinted 
that EE can improve memory and delay age-related cogni-
tive dysfunctions [205, 206]. Early exposure of EE to AD 
transgenic rodents was previously found to delay the onset 
of memory deficits as well as improve neuropathological 
hallmarks [207, 208, 209]. Moreover, late-life EE was also 
found to be an effective strategy in improving learning and 
preserving memory in aged AD transgenic rodents [97, 
210]. As the process of learning and memory retention 
is a primary function of the hippocampus, the increase in 
hippocampal neurogenesis and improvements in synaptic 
plasticity could be a key benefit of EE [50, 206]. Fur-
thermore, epigenetic alterations induced by EE, such as 
modifications to histone acetylation and DNA-methylation, 
are postulated to lead to a relaxed chromatin structure, 
improving the expression of genes and proteins essential 
for learning and memory [97, 208, 211].

Fig. 3   Simple summary of the effects of EE in AD. EE causes an 
increase in mature NGF and BDNF levels, leading to activation of 
the MAPK/ERK and PI3k-Akt pathways. Consequently, activation 
of these pathways leads to increased cell proliferation, increased syn-
aptic plasticity, neurogenesis and increased cell survival in the brain. 
Activation of the PI3k-Akt pathway could also inhibit tau hyperphos-

phorylation and reduce Aβ expression levels in the brain. EE also 
indirectly downregulates the JNK pathway as it facilitates the conver-
sion of proNGF to mature NGF. Downregulation of the JNK pathway 
mainly leads to reduced cell death in the brain, but could also reduce 
tau hyperphosphorylation and decrease Aβ expression levels
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While clinical studies are lacking at present, looking at 
each aspect of EE separately provides us a greater insight 
into their potential application when it comes to humans. 
Fundamentally, EE can be broken down into the presence of 
physical activity, social interaction, and cognitive stimula-
tion [212]. The effects of exercise in the treatment of behav-
ioral disorders is the most well-researched aspect of EE. 
Based on several meta-analyses and reviews, exposure to 
physical activities can be an effective method of treatment 
for depression in adults, rivaling the effects of antidepres-
sant drug therapy [213, 214]. Moreover, treatment of late-
life depression in elderly individuals with aerobic exercise 
seems to also improve depressive-like symptoms [215, 216], 
with the added benefit of avoiding the side effects of anti-
depressant medications. Likewise, patients with diagnosed 
AD who are under long-term exercise regimes had improved 
cognitive functions [217], likely due to improved vascular 
blood flow, hippocampal volume, and increased neurogen-
esis [218, 219]. In addition, recent meta-analyses have also 
indicated that EE could also benefit memory preservation in 
older individuals. A meta-analysis comprising of 28 stud-
ies (2156 participants) conducted by Zhidong and his team 
found that physical exercise could improve working memory 
in older individuals [220]. Aghjayan et al. also conducted a 
meta-analysis investigating the effects of physical activities 
in older adults and found that aerobic exercises positively 
affect episodic memory as well [221]. Similarly, the same 
effects can also be observed in elderly patients with AD, 
with Jia et al. reporting that physical activities contribute to 
their improvement in cognitive functions [222].

Subsequently, the presence and quality of social interac-
tions are also essential for maintaining a healthy state of mind. 
Accumulating evidence has suggested that social interactions 
play a key component in delaying or preventing the onset of 
dementia [223, 224], while the lack thereof has often been 
associated with a higher risk of dementia in elderly individu-
als [225, 226]. The presence of social interactions presum-
ably counteracts cognitive deterioration experienced during 
aging. For example, socially active older individuals were 
found to have a significantly lower rate of global cognitive 
decline compared to their infrequently active counterparts 
[227]. Similar results were also observed in subsequent stud-
ies, with decreased cognitive decline being associated with 
higher social activity [228, 229]. Furthermore, the quality of 
social interactions should also be taken into account. Daily 
social interactions, especially more pleasant social interac-
tions, have been shown to improve cognitive function in 
elderly individuals [230]. A 10-year study has also demon-
strated that individuals with poor quality of relationships 
had nearly double the risk of developing depression [231]. 
A further cross-sectional study in Switzerland also reported 
similar findings, with higher quality and frequency of social 

relationships being associated with lowered risk of developing 
clinical depression [232].

Cognitive stimulation refers to the involvement of activi-
ties generally aimed at enhancing cognitive and social capa-
bilities. In humans, this typically involves activities that aim 
to stimulate thinking and memory and can come in the form 
of discussions, word games, puzzles, and general activities 
[233]. Interestingly, cognitive stimulation therapy (CST) 
has already been implemented as an alternative treatment 
method to improve the quality of life of patients with mild-
moderate AD. Previous reviews have highlighted the ben-
eficial effects of cognitive stimulation on neuropsychiatric 
symptoms, including depression, apathy, and anxiety [234]. 
Furthermore, a randomized controlled trial initiated by Car-
bone et al. also demonstrated CST as an effective strategy 
in combating cognitive and emotional deterioration in older 
patients with mild-moderate dementia [235]. In spite of this, 
some studies argue that despite the increase in cognitive 
functions, there were no observable changes in relation to 
mood and behavior [233, 236, 237]. Moreover, Orrell et al. 
also noted no significant improvements in the cognitive 
functions of patients with mild to moderate dementia even 
after 25 weeks of cognitive stimulation [238].

Implementation of EE in human models will be quite a 
challenging task. A procedurally uniform EE is hard to intro-
duce for humans due to each individual’s wants and needs, 
and likely requires a personalized approach if this model 
is to succeed. Thus far, there has been only one successful 
implementation of EE in human test subjects. The GAIA 
project is a pilot study conducted in 2012 to investigate 
the effects of cognitive stimulation, physical activity, and 
socialization on patients diagnosed with AD. Specifically, 
the participants were involved in 1 h of mild aerobic physical 
exercise, 1 h of cognitive stimulation, and 30 min of social 
group discussion 5 days a week for 3 months. The group 
discovered a significant improvement in apathy, anxiety, 
depression, and quality of life in the active treatment group 
post-treatment [239]. Although promising, a larger sample 
size is required to draw more conclusive results. Further-
more, long-term implementation of such a program may be 
hard to upkeep over time due to high costs in terms of human 
resources and health facilities.

Discussion and Limitations of Current 
Studies

The results from current studies regarding the preventive 
and remedial effects of EE on AD seems promising. As 
previously discussed, EE not only beneficially improves 
brain structure and function but also ameliorates behavio-
ral deficits experienced by AD models of rodents. Albeit 
few, there are several studies reporting contradictory 
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results under similar EE conditions. Presumably, these 
inconsistencies are not caused by the differences in EE 
protocols, but rather due to other experimental variables 
unrelated to the EE paradigm. Previously, EE has been 
shown to demonstrate gender-specific effects even under 
the same EE protocol. For instance, SD male rats exposed 
to 8 weeks of EE showed increased exploratory behavior 
towards juvenile rats, whereas no differences were found 
in females [240]. Furthermore, another report has noted 
that EE had an anxiolytic effect on male mice but had the 
opposite effects in female mice based on results from the 
elevated T-maze test [241]. A recent study also found EE 
to differentially activate neural circuits in FVB/N mice, 
promoting social interactions in female mice but aggres-
sive behaviors in male mice [242]. Additionally, many 
studies have also noted the sex-dependent effects of EE in 
their respective investigations [243, 244].

The duration of EE exposure is also another factor of 
consideration. For instance, chronic continuous exposure 
to EE was found to have reduced structural changes in 
the hippocampus of rats compared to short and periodical 
exposure [245]. Furthermore, a study conducted by Ngue-
meni et al. noted that rats subjected to moderate exposure 
to EE (4 h, 8 h) had significantly increased neurogene-
sis compared to rats exposed to chronic EE (24 h, 48 h) 
[246]. Another study conducted by Singhal et al. observed 
that long-term EE is anxiogenic in transgenic C57BL/6 
mice and affects locomotion adversely. In contrast, mice 
exposed to short-term EE displayed anxiolytic behaviors 
instead [247].

Additionally, experimenting with different models of 
AD may yield varying results depending on the genetic 
backgrounds of the model animals. Using the Tg2576 
mice model as an example, no neuronal loss was observed 
despite having significant deposition of amyloid plaques 
[248]. In contrast, mice expressing multiple PS1 and APP 
mutations exhibit a significant neuronal loss in addition 
to the enhanced deposition of amyloid plaques [249]. One 
prominent example is when comparing the results con-
ducted by Levi et al. and Rodriguez et al. Exposure of EE 
to a triple AD transgene model of mice for 6 months led 
to a beneficial effect on hippocampal neurogenesis [49]. 
In contrast, the opposite effects can be observed in trans-
genic apolipoprotein E (APOE) 4 mice under similar EE 
conditions, whereby EE not only reduced hippocampal 
neurogenesis but also induced cell apoptosis in APOE4 
mice [250].

As discussed previously, the effects of EE are also highly 
age-dependent. Looking specifically at comparative stud-
ies, the effects of EE were found to be age-specific. Har-
burger et al. demonstrated that continuous exposure to EE 
for 6 weeks significantly improved spatial memory in aged 
males (21 months), but had no effect on young (3 months) 

and middle aged (15 months) C57BL/6 mice [251]. On 
the other hand, 3 months continuous exposure to EE was 
found to improve spatial memory in young Wistar male rats 
(21 days), but did not affect the spatial memory of their aged 
counterparts (7 months) [252]. In terms of AD model of 
rodents, early exposure to EE could function as a neuropro-
tective strategy against the progression of AD, while expo-
sure of EE during mid and late-life models of AD have vary-
ing degrees of effectiveness. Presumably, this could be due 
to the progressive decline in neuroplasticity following aging, 
leading to decreased cognitive flexibility and alterations in 
structural plasticity [253]. Early exposure to EE plays a key 
part in demonstrating its effects. Deposition of Aβ starts 
between the age of 40–50 and precedes the onset of AD 
symptoms by over 20 years [254]. Presumably, the neuronal 
damage induced by Aβ deposition during the preclinical/
early stages has yet to be significant and could be rescued 
by the counteracting effects of EE. On the other hand, the 
effectiveness of EE during the mid and late stages of AD 
could be diminished, due in part to the extensive neurotox-
icity caused by the culmination of Aβ levels in the brain. 
Furthermore, exposure to EE could lead to the downstream 
effects of multiple molecular cascades. How EE interacts 
and simultaneously affects multiple downstream pathways 
still remains relatively unknown and could likely cause vari-
ances in results.

Although EE impacts the brain beneficially, the differ-
ences in the degree of effectiveness complicates the process 
of pinpointing the importance of the different EE aspects. To 
better understand this, it is first important to establish how 
different elements of EE contribute to certain effects. By far, 
the most unique aspect of EE is the presence of novel objects 
to promote cognitive stimulation. This typically comes in 
the form of toys, shelters, hideouts, mazes, and provision of 
objects of different materials, sizes, and shapes. Object rear-
rangement was also encouraged to further promote cognitive 
stimulation in rats. However, the number of objects and fre-
quency of object rearrangement may vary according to the 
experimental protocol used. The effects of cognitive stimu-
lation on the hippocampus remain relatively unclear. The 
establishment of EE in most studies have included both run-
ning wheels and novel objects in their experimental design. 
However, to fully understand the effects of cognitive stimu-
lation through introduction of novel objects, some studies 
have excluded the running wheel to prevent physical enrich-
ment induced by it. Animals exposed to novel toys have pre-
viously been shown to improve learning and memory only 
if the animals actively manipulated the object [255]. Simi-
larly, animals living in an enriched with only the presence 
of toys had increased learning flexibility in the Morris maze 
test, owing to the increase in adult neurogenesis as a result 
of the novel environment [45]. In contrast, another study 
demonstrated that EE, in the absence of running wheels, 
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failed to induce hippocampal neurogenesis and improve 
cognitive performance, even in the presence of a complex 
environment [256]. Furthermore, cognitive stimulation of 
adult female mice significantly affected synaptophysin levels 
in the neocortex and hippocampus compared to the control 
group [257], which could contribute to synaptogenesis in 
hippocampal neurons [258, 259]. However, the increase in 
synaptophysin did not subsequently lead to an improvement 
in spatial working memory based on the water radial arm 
maze test conducted [257]. Synaptogenesis, angiogenesis, 
cell proliferation and cell survival were also improved in 
response to being housed in a complex environment [150, 
260]. Interestingly, the beneficial effects of EE also scale 
with the degree of enrichment, with the increased number of 
enrichment items corresponding to increased benefits in ste-
reotypic behavior, behavioral measures of anxiety, growth, 
and stress physiology [261]. Hence, we postulate that the 
complexity of the cage environment and cognitive stimu-
lation could affect memory consolidation and potentially 
improve synaptic plasticity. However, cognitive stimulation 
did not seem to contribute to hippocampal neurogenesis 
based on pre-existing literature.

Physical enrichment, on the other hand, has been suggested 
to be the most important aspect of EE based on rodent studies. 
The inclusion of a running wheel is often an important factor 
in a typically enriched cage. Furthermore, certain toys, such 
as ladders and stairs could also stimulate anaerobic physical 
activity in rodents to a certain extent. Previous studies have 
already discussed the neuroprotective properties of physical 
exercise on the hippocampus, and these include increased 
neurogenesis, size and volume [262], enhanced neuroplasti-
city [218], and promote the expression of neurotrophic factors 
[263, 264]. Furthermore, several studies argue that the sole 
presence of novel toys without the presence of running wheel 
is insufficient in promoting beneficial effects to the hippocam-
pus. Mustroph et al. demonstrated that hippocampal neuro-
genesis were similar between male mice exposed to physical 
enrichment compared to mice exposed to EE. Furthermore, 
the group also noted that EE did not improve spatial learning 
based on the Morris water maze test [256]. Another study also 
noted the importance of physical enrichment in EE, whereby 
they concluded that physical exercise is the critical factor 
in promoting adult hippocampal neurogenesis through the 
release of neurotrophin factors [265]. However, it should still 
be noted that the presence of both physical exercise and pres-
ence of a novel environment could lead to an additive effect 
when promoting hippocampal neurogenesis. As reported, 
the group noted a 30% increase new neurons as compared to 
either stimulus alone [266].

The last key element being enriched in EE is the promo-
tion of social interactions. In EE, multiple number of rodents 
are caged at a time, however the number of rodents per cage 
differs based on the protocol. The importance of the social 

component has led to several discussions throughout the last 
few decades. The presence of social interactions has previ-
ously been shown to induce hippocampal neurogenesis and 
improve synaptic plasticity. Lu et al. demonstrated that rats 
reared in group housing for 4—8 weeks had increased new-
born neurons in the dentate gyrus and increased LTP in the 
CA1 region compared to their socially isolated counterparts 
[267]. Subsequently, the effects induced by social isolation 
could be reversed through subsequent group rearing. Similarly, 
the presence of social interactions was also found to improve 
hippocampal cell proliferation and neurogenesis, but is unable 
to affect learning capabilities by itself [268]. Perhaps what is 
considered essential in the EE paradigm is the presence of 
social interactions rather than the degree of social enrichment 
(i.e., number of animals housed per cage). For example, the 
effects of EE on LTP were only notable in the presence of a 
social environment, on the other hand, EE in socially isolated 
rats did not induce LTP in the hippocampus [269]. Moreo-
ver, one of the earliest studies conducted by Rosenzweig et al. 
suggested that social interactions alone cannot account for the 
cerebral effects of EE [14], with subsequent studies agreeing 
to this notion [191, 207, 270]. Interestingly enough, it was 
shown that increased group housing (n = 12 per cage), in the 
absence of physical or cognitive stimulation, could also fur-
ther enhance adult hippocampal neurogenesis in adult female 
mice compared to the control group (n = 6 per cage) [271]. The 
presence of a social environment has been shown to improve 
neurogenesis and synaptic plasticity in the hippocampus. 
However, more studies have to be conducted to evaluate the 
effectiveness of social enrichment, rather than the presence of 
social interactions, in the EE paradigm.

Taken altogether, our understanding of current literature 
points to physical enrichment as the primary instigator of the 
effects of EE. Even so, the presence of both cognitive stimu-
lation and social interactions are important to facilitate and 
to potentially further amplify these effects. However, addi-
tional studies need to be conducted to determine whether 
enrichment of the cognitive and social aspects of EE could 
improve hippocampal conditions. One potential approach is 
to study the effects of individual toys (ladders, stairs, plastic 
objects, hideouts) on brain structures which could further 
lead to a study investigating the combinational effects of 
different toys on the brain.

Despite the numerous findings of EE, comparison of 
effects between different studies is indeed limited. This is 
particularly due to the fact that the degree of enrichment for 
the physical, social and cognitive aspects of EE are vastly 
distinct between each study. For example, the amount of 
running wheels between certain EE protocols are differ-
ent, with some studies having zero [45, 61, 272], one [46, 
50, 250], or two or more running wheels [48, 270] in their 
study. Additionally, the amount of animals housed per group 
could also vary with some having up to 40 per group housing 
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[273]. Potentially, this could create instances of overcrowd-
ing, whereby it could induce detrimental effects to the ani-
mals instead [274, 275]. Furthermore, the degree of cage of 
enrichment, i.e., cage size as well as the number of novel 
objects and the frequency of repositioning said toys also 
varies between studies, with the increased number of enrich-
ment items corresponding to increased benefits [261].

Hence, in order to effectively study the effects of EE, a 
standardized protocol has to first be established. At this cur-
rent state, it is difficult to establish a comparison of results 
between different EE studies due to the variance in EE pro-
tocols. The establishment of a standardized protocol not only 
allows the reproducibility of results to be more consistent 
but also allows subsequent studies to identify which vari-
ables are essential when investigating the effects of EE.

Conclusion and Future Directions

Based on pre-existing studies, environmental enrichment pre-
sents itself as an effective neuroprotective strategy in the pre-
vention of Alzheimer’s disease via the modulation of multiple 
pathways. However, how these individual pathways interact 
with each other during and after exposure to environmental 
enrichment remains relatively unknown. Future studies regard-
ing how environmental enrichment affects multiple pathways 
would be essential to further understand the molecular mecha-
nisms behind it.

Although this review has primarily focused on the effects 
of EE on the hippocampus. It should not be dismissed that 
EE also exhibits its effects via other areas of the brain. The 
amygdala, prefrontal cortex, and entorhinal cortex could 
potentially be key structures due to their susceptibility to 
neurodegeneration.

Implementation of EE in human models will also present 
itself as a rather challenging task. Although its effectiveness 
has been shown in animal models, the clinical application of 
EE in humans has yet to be widely demonstrated. Hence, it 
is essential to establish a better understanding of the mecha-
nisms of environmental enrichment before it can be a viable 
non-pharmacological alternative for the prevention and 
potential treatment of AD in human patients.
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