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Abstract

With the identification of activating mutations in BRAF across a wide variety of malignancies, 

substantial effort was placed in designing safe and effective therapeutic strategies to target BRAF. 

These efforts have led to the development and regulatory approval of three BRAF inhibitors as 

well as five combinations of a BRAF inhibitor plus an additional agent(s) to manage cancer such 

as melanoma, non-small cell lung cancer, anaplastic thyroid cancer, and colorectal cancer. To 

date, each regimen is effective only in patients with tumors harboring BRAFV600 mutations and 

the duration of benefit is often short-lived. Further limitations preventing optimal management 

of BRAF mutant malignancies are that treatments of non-V600 BRAF mutations have been less 

profound and combination therapy is likely necessary to overcome resistance mechanisms, but 

multi-drug regimens are often too toxic. With the emergence of a deeper understanding of how 

BRAF mutations signal through the RAS/mitogen activated protein kinase (MAPK) pathway, 

newer RAF inhibitors are being developed that may be more effective and potentially safer and 

more rational combination therapies are being tested in the clinic. In this review, we identify 

the mechanics of RAF signaling through the RAS/MAPK pathway, present existing data on 

single-agent and combination RAF targeting efforts, describe emerging combinations, summarize 

the toxicity of the various agents in clinical testing, and speculate as to where the field may be 

headed.

Introduction/Background

In 2002, the first report of oncogenic mutations in the BRAF gene detailed that point 

mutations at the V600 position (initially incorrectly described as being at the V599 

position) were common in melanoma but also present in other cancers such as colorectal 

cancer (CRC) and non-small cell lung cancer (NSCLC) (1). These mutations constitutively 

activated the mutant protein and, as a result, the RAS/mitogen activated protein kinase 

(MAPK) pathway. Soon after, mutations at other codons in BRAF were identified in 
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many types of malignancies (Figure 1) and shown to variably activate the kinase and, as 

a result, the RAS/MAPK pathway (2). These discoveries were made in an era when the 

first small molecule inhibitors targeting oncogenic mutations were being tested, leading to 

great excitement that effective therapies would be developed for patients with solid tumor 

malignancies harboring BRAF mutations.

Indeed, over the course of the subsequent decade, the clinical development of the first 

potent and specific inhibitor of oncogenic BRAFV600 mutations, vemurafenib, successfully 

led to approval by the FDA in 2011 to treat patients with advanced, BRAFV600 mutant 

melanoma (3–5). Over the next ten years, two additional BRAF inhibitors, dabrafenib 

and encorafenib, have also been approved to treat melanoma, as have each of these 

BRAF inhibitors in combination with MEK inhibitors for this same indication, and the 

combination of dabrafenib and trametinib in the adjuvant setting for patients with Stage III, 

resected, BRAFV600 mutant melanoma (6–10). Moving beyond melanoma, dabrafenib and 

trametinib have been approved to treat advanced, BRAFV600 NSCLC and locally advanced 

or metastatic anaplastic thyroid cancer, and encorafenib has been approved in combination 

with the anti-epidermal growth factor receptor (EGFR) monoclonal antibody, cetuximab, to 

treat advanced, BRAFV600 mutant CRC (Table 1) (11–13).

Despite this great progress, there remain great unmet needs for patients whose tumors harbor 

BRAF mutations with respect to BRAF inhibition. First and foremost, therapeutic resistance 

to BRAF inhibition (or existing combinations with RAF inhibitors) is nearly universal. The 

development of improved treatment strategies, including novel agents and combinations 

of agents, is critical to optimize the management of patients with tumors harboring these 

mutations. In this review, we describe the mechanics of RAF biology and signaling, the 

clinical significance of these mechanics as it pertains to the development of effective RAF 

inhibitors, the major existing clinical data, and ongoing and/or future strategies investigating 

combinatorial regimens.

Mechanics

BRAF is a member of the RAF family of serine/threonine kinases (the others are ARAF 

and CRAF) that are components of the RTK-RAS–RAF–MEK–ERK growth factor signaling 

pathway (RAS/MAPK signaling) (14). RAF proteins share similar domain organization, 

with the catalytic domain in the C terminus and regulatory elements in the N-terminus. 

Inactive RAF proteins exist as monomers in the cytosol. Activation of RAF is complex: 

it includes recruitment to the membrane, homo and heterodimerization of RAF family 

members and several phosphorylation and dephosphorylation events (15) (Figure 2).

RAS/MAPK signaling mediates signals from cell surface receptors to the nucleus 

to promote cell proliferation and survival. Ligand binding results in activation and 

phosphorylation of Receptor Tyrosine Kinases (RTKs, e.g. EGFR) creating docking sites 

that promote the recruitment to RTK (and consequently to the membrane and in close 

proximity to RAS) of a multiprotein complex including among other proteins, SHP2, 

GAB1, GRB2 and SOS (16,17). Interaction of the guanine nucleotide exchange factor 

(GEF) SOS with RAS results in guanine exchange, GTP loading, and RAS activation 
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(i.e. transition to the RAS-ON state) (18). Activated RAS recruits RAFs to the membrane 

by binding their RAS-Binding Domain. Recruitment of RAF to the membrane results in 

activation by oligomerization and by phosphorylation at activating sites by kinases residing 

in the membrane, presumably members of the PAK family. Once activated, RAF kinases 

phosphorylate and activate MEK (MEK1/2), which in turn phosphorylate and activate 

ERK (ERK1/2). Activated ERK phosphorylates a large number of substrates. A subset 

of ERK targets drive transcription of genes that drive proliferative and survival signals 

(such as myc, cyclin D1, AP-1, members of the Fos and ETV families etc). Importantly, 

homeostatic mechanisms are in place to ensure regulation of the pathway in normal cells: 

ERK activation also promotes negative feedback suppression of the pathway, by multiple 

mechanisms: upregulation of members of the DUSP and Sprouty families of phosphatases 

that dephosphorylate upstream components of the pathway, including ERK1/2, suppression 

of expression and activity of RTKs, as well as direct phosphorylation of EGFR, BRAF, 

CRAF and other proteins by ERK1/2 (19). Relief of negative feedback upon treatment 

with inhibitors of components of RAS/ERK signaling is a major cause of adaptive drug 

resistance, as it results in RTK upregulation, RAS activation and RAF dimerization 

promoting recovery of ERK activity (20–23).

Recurrent mutations in BRAF are found in about 6% of human cancers (Figure 1) and most 

commonly result in a substitution of Valine to Glutamic Acid in the activation segment 

(BRAFV600E). Small molecule inhibitors developed against BRAFV600E (vemurafenib, 

dabrafenib and encorafenib) showed unique biochemical properties. Early studies on 

these inhibitors found them to be potent inhibitors of RAS/MAPK in tumors expressing 

BRAFV600E, but they did not inhibit and instead activated RAS/MAPK signaling in 

tumors or normal cells with wild-type BRAF (24–26). Further investigation revealed that, 

in contrast to wild-type RAFs that signal as obligatory dimers (27), BRAFV600 proteins 

are able to signal as catalytically active monomers, and the biochemical basis of the 

selective inhibition of BRAFV600E over wild-type BRAF by these RAF inhibitors is 

their selectivity towards monomeric over dimeric RAF (24,25,28,29). Structurally, these 

first-generation clinical RAF inhibitors are Type I ½ (αC-helix OUT, DFG-IN, or CODI). 

The OUT position of the αC-helix of BRAF is not sterically allowed for both promoters 

in the BRAF dimer resulting in negative allostery for inhibitor binding to the second 

RAF protomer and providing a structural explanation for their selectivity for monomeric 

RAF (30). The preference of these inhibitors for binding and inhibiting monomeric RAF 

is the basis of their increased therapeutic index, but it also predicts that any mechanism 

that promotes RAF dimerization will confer resistance. An additional property of these 

inhibitors is a biochemical phenomenon confined so far to RAF inhibitors, the so called 

“paradoxical activation” of BRAF and downstream signaling promoted by these inhibitors in 

cells expressing wild-type BRAF. While all kinase inhibitors inhibit their target in all cells, 

RAF inhibitors paradoxically activate RAF and RAS/MAPK signaling in a RAS-dependent 

manner in cells expressing wild-type BRAF as a result of recruitment of inactive RAF to 

active RAS upon binding of inhibitor and subsequent failure of the compound to bind both 

protomers within the RAF dimer (negative allostery) (30,31).

Thus, RAF dimerization is a major biochemical determinant of tumor response to RAF 

inhibitors: it is a consequence of relief of negative feedback and wild-type RAS activation 
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in the context of adaptive resistance to RAF inhibitors and it promotes acquired resistance 

to RAF inhibitors via various mechanisms (RTK upregulation (32,33), acquisition of RAS 

mutations (34), generation of splice variants that constitutively dimerize (25) or BRAF 

overexpression (35,36)).

RAF dimerization also limits response of tumors harboring BRAF mutation other than V600 

(30,37). Such BRAF alterations include point mutations in the activation segment or the so 

called glycine-rich loop of BRAF, as well as BRAF fusions containing the catalytic domain 

of wild-type BRAF fused to various partners. In contrast to BRAFV600 mutants (Class I) 

that signal as hyperactive monomers, almost all non-V600 BRAF mutants promote RAF 

activation by dimerization (Class II/III), and they are therefore predicted to be resistant to 

current clinical RAF inhibitors (30,31,37,38).

The success of RAF inhibitors in a portion of melanomas expressing a potent ERK 

activator (BRAFV600E) in a cellular context of low RTK activity and absence of other 

ERK activators has been a fortunate exception to the rule. In the majority of tumors 

carrying BRAF alterations, mutated BRAF co-exists with other ERK activators (active 

and/or overexpressed RTKs, RAS mutations, NF1 loss and others) (39). Consequently, in 

the development of next generation RAF inhibitors and the design of improved therapeutic 

strategies, targeting of the mutated BRAF oncoprotein should be considered in the context 

of pharmacologic approaches aimed at potently and durably suppressing the pathway (ERK 

activity) in the tumor, while minimizing toxicities in normal tissue. For such strategy, the 

totality of RAF activity (including RAF monomers and all different RAF dimers) in the 

tumors should be potently inhibited for effective ERK and tumor growth suppression.

Next generation of compounds targeting RAF

On the heels of the clinical success of RAF monomer-selective inhibitors (vemurafenib, 

dabrafenib and encorafenib), a number of RAF inhibitors with different structural and 

biochemical properties have been under intense preclinical and clinical development (Table 

2). An obvious clinical challenge that needs to be addressed is inhibition of RAF dimers 

in three contexts: a) to prevent or overcome adaptive or acquired resistance in the 

BRAFV600E/K setting, b) to target tumors harboring non-V600 BRAF alterations and c) 

to target dimeric wild-type BRAF in tumors expressing upstream mutations (e.g. mutant 

RAS, NF1 loss, etc). In terms of biochemical properties, RAF inhibitors in development 

can be classified in three groups: RAF monomer-selective that do not induce paradoxical 

activation (“paradox breakers”), equipotent for RAF monomers and dimers, and RAF-dimer 

selective inhibitors (Table 2). Structurally, paradox breakers (PBs) are CODI, similarly to 

first generation RAF-monomer selective inhibitors, and RAF dimerization is also predicted 

to limit their activity. However, in contrast to other CODI inhibitors that also promote 

recruitment of inactive RAF to RAS, RAF dimerization, and paradoxical activation, PB 

compounds do not, presumably due to the OUT position of the R506 residue within the 

αC-helix (30). The therapeutic consequence of this distinction might be important as PB 

may be able to “break” RAF dimers at clinically achievable concentrations. Further, dimers 

formed by different RAF family members have been reported to vary in their affinity (40), 

suggesting that such compounds may confer increased therapeutic index by selectively 
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disrupting RAF dimers that drive tumor growth while spearing RAF dimers that sustain 

ERK activity in normal tissue.

Equipotent and RAF dimer-selective inhibitors stabilize the αC-helix of RAF in the IN 

position (αC-helix IN, DFG-OUT – CIDO or Type II) and potently bind and inhibit 

RAF dimers. A number of RAF inhibitors of this class are in preclinical and clinical 

development and have shown activity in BRAF and RAS-mutant tumors, either as single 

agents (30,37,41–45) or in combination with MEK inhibitors (46–49). Interestingly, ARAF 

is not inhibited by one of these inhibitors (LXH254) (50) and activating mutations in ARAF 
have been reported to confer clinical resistance to Belvarafenib (51), another RAF inhibitor 

of this class. It is currently unclear whether sparing ARAF is a general property of this class 

of RAF inhibitors, as well as whether it is another mechanism of resistance or rather confers 

clinical benefit by increasing therapeutic index when treating tumors driven predominantly 

by BRAF and CRAF.

Proteolysis Targeted Chimeras (PROTACs) have gained traction recently as an approach to 

both inhibit and cause proteasome-mediated degradation of a target of interest. Typically, 

these are bifunctional small molecules, in which a small molecule inhibitor of the target 

of interest is linked to a chemical moiety that binds an E3 ligase. BRAF-directed 

PROTACs have been developed and showed preclinical efficacy similar or superior to 

parent RAF inhibitors in targeting BRAF(V600E) signaling (52,53). As the PROTAC 

technology requires formation of ternary complexes that may differ across RAF isoforms, 

it would perhaps enable selective degradation of specific RAF isoforms. Such properties of 

compounds could be clinically important, as there are reports suggesting a role of CRAF 

selectively driving growth of RAS-mutant tumors (54,55), or, as aforementioned, of a role of 

ARAF in escaping inhibition by RAF-dimer inhibitors belvarafenib (51) and LXH254 (50).

Clinical Implications

Treatment with RAF inhibitors ushered in a new era of testing targeted therapies in patients 

whose tumors express the target of interest. Unlike earlier MEK inhibitor trials that showed 

limited activity when tested in a genomically-unselected population (56), RAF inhibitors 

were evaluated in patients whose cancers harbored BRAFV600 mutations. Unexpectedly, 

the clinical experience with RAF inhibitors revealed that patient response to treatment can 

vary both by genomic alteration and tissue context as activity differed considerably across 

cancers.

Melanoma

RAF inhibitors were first tested in melanoma with dramatic responses. Single agent RAF 

inhibitors lead to response in about 50% of patients with BRAFV600E/K melanoma and 

improve survival over standard chemotherapy (3,5,57). Based on the identification of RAS/

MAPK pathway alterations at resistance to RAF inhibitors (25,34,58,59) and preclinical 

studies showing rebound of RAS/MAPK signaling causing rapid adaptive resistance 

(20,60,61), combination RAF plus MEK inhibitors were tested. This combination led to 

a higher response rate than for RAF inhibitor monotherapy and improved progression-free 

and overall survival (6,8,62). Combination treatment also led to a lower rate of secondary 
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cutaneous cancers and has supplanted monotherapy as the preferred targeted therapy for 

BRAFV600 mutant melanoma (9,63).

Other cancers

In the phase 1 trial of vemurafenib, there was also a CRC expansion cohort, where more 

limited activity (5% response rate, 2.1 month median progression-free survival) was seen 

compared to melanoma (64). Preclinical studies indicated that feedback release of upstream 

receptors, predominantly EGFR, with RAF inhibition lead to reactivation of the pathway 

and generation of drug-resistant RAF dimers in CRC (21,65). In vivo treatment of CRC 

xenografts with combination RAF and EGFR inhibition results in improved efficacy. These 

data led to clinical trials of combination therapy for BRAFV600E CRC described below.

The effect of vemurafenib in multiple BRAFV600E mutant cancers was tested with a novel 

basket trial design (66). Among anaplastic thyroid cancers included in this VE-BASKET 

trial, responses were seen in 2 of 7 patients (66). Concurrent preclinical work suggested 

reactivation of HER2/HER3 signaling with RAF inhibition through feedback induction of 

ligand signaling attenuated the effect of RAF inhibitors on signaling and growth of thyroid 

cell lines (67). A phase 2 trial of dabrafenib and trametinib showed a higher response 

rate of 69% in anaplastic thyroid cancer (11), and the phase 2 ROAR (Rare Oncology 

Agnostic Research) basket trial of dabrafenib plus trametinib reported 56% response rate in 

this population(68). In contrast, the histiocytosis disorder Erdheim Chester disease (ECD) 

appeared particularly sensitive to RAF inhibitor monotherapy with high response rate 

and durable regression (66,69). Many of the patients with ECD required treatment dose 

reductions and still achieved profound responses involving all sites of disease. In NSCLC, 

the response rate for vemurafenib was about 40% (66). In a phase 2 trial of dabrafenib and 

trametinib in 57 BRAFV600E NSCLC patients, response was seen in 36 patients (63%) 

(70). For gliomas, anecdotal responses to vemurafenib have been reported (71), and the 

interim analysis of the ROAR trial indicated a 33% response rate in high-grade gliomas and 

69% response rate in low-grade gliomas to dabrafenib plus trametinib (72). Finally, about 

50% of patients with biliary tract cancer had a response to dabrafenib plus trametinib in the 

ROAR study (73).

Together, these clinical data suggest varied thresholds for response to RAF inhibition. While 

many tumors may exhibit RAS/MAPK pathway activation and depend on this pathway 

for growth, the threshold to pharmacologically inhibit the pathway varies by histology so 

that some tumors (e.g., ECD) may be “simpler” and completely and durably regress with 

RAF inhibitor while others (e.g., anaplastic thyroid cancer or CRC) may exhibit complex 

signaling where RAF inhibition is limited by reactivation of multiple signaling loops that 

attenuate drug effect. Pharmacodynamic studies in the vemurafenib dose escalation study 

indicated that profound target inhibition is required for response (4), and the clinical data 

indicate that the threshold to achieve this degree of pathway inhibition varies across cancer 

types and that the signaling milieu of mutant BRAF varies in different tissue backgrounds. 

Thus, BRAF inhibitor trials revealed that the presence and nature of ERK-driven negative 

feedback events varies in different cancers and largely underlies the variability in clinical 

response.
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Combination Therapy for Colorectal Cancer

Combination therapy is needed for clinically meaningful pathway inhibition in BRAFV600E 
CRC. Combined RAF and MEK inhibition results in modest activity with responses in 

about 10–20% of patients (74,75). Adding an EGFR antibody (cetuximab or panitumumab) 

to vemurafenib or dabrafenib also led to modest activity with responses in about 10–

20% of patients (66,76,77). Higher response and ERK inhibition in pharmacodynamic 

studies suggested that the triplet regimen of dabrafenib, trametinib, and panitumumab may 

support better pathway inhibition and improved activity, but still lower pathway suppression 

compared to single agent RAF inhibition in melanoma (median 60% pERK modulation in 

CRC with dabrafenib + trametinib + panitumumab versus median 84% pERK modulation in 

melanoma with dabrafenib) (77). The doublet of encorafenib plus cetuximab was tested in 

phase 1 and 2 studies with a response rate of 22% (78,79); encorafenib was hypothesized to 

have higher activity in CRC because of its slow dissociation from RAF allowing better target 

inhibition.

Based on these data, the BEACON phase 3 trial tested the investigational therapies of 

encorafenib and cetuximab and of encorafenib, binimetinib, and cetuximab compared 

to standard cetuximab-containing treatment. Both investigational targeted therapies were 

associated with improved overall and progression-free survival compared to standard 

therapy with overlapping survival curves; the triplet regimen had a response rate of 26% 

and the doublet regimen had a response rate of 20% (13,80). These data led to the FDA 

approval of BRAF targeted therapy with the doublet of encorafenib plus cetuximab for CRC 

and the first positive predictive marker with an approved matched therapy in CRC.

Response rate and duration of response for encorafenib and cetuximab remain below 

that of RAF inhibitor monotherapy in melanoma (Figure 3). These data suggest better 

pathway inhibition in melanoma, and current studies are examining the potential to more 

broadly block receptor reactivation with SHP2 or SOS2 inhibitors to improve activity 

in CRC. Preclinical data suggest that SHP2 inhibitors could block receptor-mediated 

feedback activation in a subset of BRAFV600E mutant CRC, particularly those with EGFR 

or MET activation, but not in CRC where FGFR primarily driver pathway reactivation 

(33). The limited benefit of adding a MEK inhibitor to encorafenib and cetuximab raises 

the possibility that incomplete pathway inhibition may be due to release of downstream 

regulators of ERK activation. Preclinical studies suggest that triplet therapy with RAF, 

EGFR, and ERK inhibitors may exhibit increased activity and better suppress outgrowth 

of resistance clones compared to combinations with RAF, EGFR, and MEK inhibitors 

(81). Expression and regulation of ERK phosphatases varies across tissue types and may 

contribute to differential activity of RAF inhibitor therapy in different cancers (82–84).

Ongoing Trials of First-Generation RAF Inhibitors for BRAFV600 Mutant Tumors

Ongoing trials in several cancer types aim to identify the best targeted therapy 

or combinations that overcome adaptive resistance. Trials include phase 2 trials of 

encorafenib and binimetinib in BRAF V600 mutant NSCLC (NCT03915951), BRAF 

V600E mutant pancreatic cancers (NCT04390243), BRAF V600 mutant hairy cell 

leukemia (NCT04324112), and BRAF V600 mutant high-grade gliomas (NCT03973918). 
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Combination trials are evaluating the safety and activity of adding SHP2 inhibition to RAF 

inhibition (NCT04294160, NCT04800822).

RAS/MAPK pathway combinations

Preclinical models, in vitro and in vivo, have demonstrated synergy with blockade of 

CDK4/6 and MAPK inhibition in melanoma (85–87). To date, however, there has been 

limited data with CDK4/6 plus MAPK inhibition due to excessive toxicity seen with these 

combinations. For example, the combination of encorafenib, binimetinib, and the CDK4/6 

inhibitor ribociclib was associated with lower response rates than the doublet of encorafenib 

and binimetinib in the Phase 1 trial, at least in part because the maximum tolerated dose of 

encorafenib was lower with ribociclib (due to concerns over drug-drug interactions) (88). In 

trials of MEK and CDK4/6 inhibitors, the toxicity of dual inhibition has been challenging 

to overcome, even in the face of increased activity in patients with NRAS mutant melanoma 

with the combination of binimetinib and ribociclib (89,90). Whether there is a path forward 

for these combinations remains to be seen, but it is possible that alternative approaches to 

dose escalation that maximize exposure of the MEK and CDK4/6 inhibitors, likely through 

intermittent dosing schedules, will be a more effective approach (91,92).

Non-RAS/MAPK pathway combinations

With the nearly simultaneous development of BRAF targeted therapy and immune 

checkpoint inhibitor therapy in melanoma, it seemed logical that combining these two 

modalities would be tested in the clinic. The first of these combinations was that 

of vemurafenib with the anti-cytotoxic T lymphocyte associated antigen 4 (CTLA-4) 

monoclonal antibody ipilimumab in patients with BRAF mutant, advanced melanoma. 

In this trial, the combination was deemed too toxic due to the development of severe 

hepatic toxicity in the majority of treated patients (93). However, the preponderance of 

data supported combined BRAF targeted therapy with inhibition of either the programmed 

death receptor 1 (PD-1) or its ligand, PD-L1. In particular, MAPK inhibition increases 

melanocytic antigen expression, T-cell infiltration, and PD-L1 expression in preclinical 

and clinical analyses (94–96). In the early clinical trials of PD-1/PD-L1 inhibition with 

BRAF targeted therapy in melanoma, the response rates were promising and the tolerability 

suitable for further evaluation (97–100). In larger, randomized cohorts, combination 

BRAF targeted therapy with BRAF/MEK inhibition with either PD-1 or PD-L1 inhibition 

was consistently associated with improved progression free survival compared to dual 

BRAF/MEK inhibition, but only statistically significantly so in one of the three randomized 

cohorts reported (101–103). Thus, only one of these regimens, the combination of 

vemurafenib, cobimetinib, and atezolizumab has been approved by regulatory authorities 

for the treatment of unresectable or metastatic, BRAFV600 mutant melanoma, although the 

optimal use of triplet therapy in this patient population is unknown given the effectiveness 

of other immunotherapy combinations such as ipilimumab and nivolumab(104). In other 

BRAF mutant cancers, studies of these combinations are also underway. Specifically, the 

early results of the combination of dabrafenib, trametinib, and spartalizumab look promising 

in BRAF mutant, metastatic CRC, although it is unclear if these results will be replicated in 

larger and multi-institutional datasets (105).
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Numerous other combinations with single-agent BRAF or combined BRAF-MEK inhibition 

have been/are being evaluated in BRAF mutant malignancies. These include targeting 

specific pathways, such as the PI3K pathway (106), as well as targeting more ethereal 

cellular processes such as apoptosis (107) (NCT01989585), the molecular chaperone heat 

shock protein 90 (HSP90) (108,109) (NCT02721459), and autophagy (110). None of these 

regimens has yet to demonstrate groundbreaking results, however, there are randomized 

studies completing or being planned that hopefully will shed greater light on these 

approaches (NCT01989585, NCT04527549).

Intermittent schedules

Preclinical studies suggest that intermittent dosing of RAF inhibitor therapy may provide a 

means to take advantage of the drug dependence of resistant clones and delay the emergence 

of resistance. RAF inhibitor-resistant cell lines, including those with BRAFV600E 

amplification or the BRAF splice variant, grow better in vitro in the presence of drug 

(111,112). Preclinical modeling with xenograft tumors suggests that a discontinuous dosing 

strategy (using a schedule of 4 weeks on/2 weeks off treatment in these experiments) 

substantially delays the emergence of drug resistance (111). Based on these data, a phase 

2 clinical trial compared progression-free survival in patients with BRAFV600E metastatic 

melanoma treated with eight weeks of dabrafenib and trametinib who were then randomized, 

if they had no progression, to continue with continuous dosing versus to begin intermittent 

dosing on a schedule of 3 weeks off/5 weeks on (113). The study found a significantly 

shorter median progression-free survival with the intermittent schedule (5.5 months versus 

9 months for intermittent versus continuous dosing). These data indicate the difficulty to 

clinically translate innovative drug schedules and that intermittent dosing may not forestall 

clinical resistance. However, it is possible that the treatment lead-in or the schedule of long 

periods of treatment and breaks may have limited the efficacy of the intermittent dosing 

strategy.

Non-V600 BRAF Mutants and Novel RAF inhibitors

As described above, oncogenic non-V600 BRAF mutants signal as dimers. Tumors 

harboring these mutants thus are insensitive to current, monomer-selective RAF inhibitors. 

Preclinical data and case reports suggest some activity for dabrafenib or the dabrafenib/

trametinib combination in non-V600 BRAF mutant tumors (48,114). This activity may be 

due to the higher potency of dabrafenib compared to other BRAF inhibitors and the potential 

to hit RAF dimers to some degree at clinical achievable doses.

One clinical approach for non-V600 BRAF mutant tumors is to target downstream of BRAF 

with MEK or ERK inhibitors. The ERK inhibitor ulixertinib (BVD-523) was tested in 

several molecularly defined cohorts in a phase 1 dose escalation and expansion (115), and 

14 partial responses were observed in 101 patients who received at least the recommended 

phase 2 dose. Among 27 patients with non-V600 BRAF alterations, five experienced a 

response, all of whom had tumors harboring class II BRAF mutants (23). The NCI-MATCH 

study included a subprotocol where non-V600 BRAF mutant tumors were treated with 

trametinib (116). Thirty-two patients with non-V600 BRAF mutant tumors (1 fusion, 

12 class II, 19 class III) received trametinib. Only one patient (3%) achieved a partial 
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response, and this subprotocol did not meet its primary response endpoint. Notably, patients 

with a gastrointestinal primary made up 25% of study patients, primarily consisting of 

patients with CRC; five patients in this study had tumors with concurrent RAS mutations 

(1 HRAS, 2 KRAS, 2 NRAS); and the class III BRAF D594 mutants were the most 

common alteration (11 cases). In a phase 2 trial, trametinib was evaluated in melanoma with 

non-V600 BRAF mutants (117). While a small study enrolling nine patients, three patients 

achieved a partial response. In a recent meta-analysis, 411 patients with a non-V600 BRAF 

mutation and treated with RAS/MAPK pathway inhibition (including BRAF, MEK, ERK 

inhibitors as well as combined therapies) were analyzed. Responses were seen in 119 of 

these 411 patients (29%) and factors associated with better response included patients with 

tumors harboring a mutation with a higher predicted pERK activation (using the Class II 

versus Class III designation (38)) and patients with melanoma tumor type, whereas poorer 

outcomes with associated with patients enrolled to prospective study and patients treated 

with single-agent RAF inhibitor (118). These trial data also suggest varying thresholds 

for inhibition with likely lower activity in class III BRAF mutants, which have persistent 

upstream activation, and certain cancer types (i.e, gastrointestinal or prostate primary).

New RAF inhibitors (Table 1), described above, have the potential to inhibit RAF mutant 

dimers directly. An ongoing phase 1 trial is evaluating the safety and efficacy of the BRAF 

PB PLX8394 across cancer types. In this trial, different formulations have been tested to 

enhance drug dose. As of the last report (119), over 75 patients have been treated. Responses 

have been reported for some patients with BRAFV600E or non-V600 BRAF alterations, 

including a complete response reported in a patient with BRAF-fusion melanoma and partial 

responses in patients with other cancers (gliomas [n=3], ovarian [n=2], and papillary thyroid, 

small bowel, colorectal, and anaplastic thyroid [all n=1]).

The RAF inhibitors lifirafenib (BGB-283, equipotent) and belvarafenib (RAF dimer-

selective) have completed phase 1 trials, enrolling patients with BRAF or RAS mutant 

tumors (51,120–122). Responses to lifirafenib were seen primarily in patients with 

BRAFV600 mutant tumors (8/47), including melanoma, papillary thyroid cancer, and low 

grade serous ovarian cancer patients; a patient with a non-V600 BRAF NSCLC had an 

unconfirmed partial response. Seventy-two patients were included in the dose escalation of 

belvarafenib and partial responses were seen in NRAS-mutant melanoma, BRAF-mutant 

melanoma, KRAS-mutant sarcoma, and BRAF-mutant GIST. At the phase 2 dose of 

belvarafenib, among 63 patients, responses were seen in patients with NRAS Q61 mutant 

melanoma (2/9), BRAF V600E mutant melanoma (2/6), BRAF V600E mutant CRC (2/7), 

as well as in one patient with bladder cancer harboring a KRAS G12D mutation (51). 

Current clinical trial efforts are exploring combining belvarafenib with the MEK inhibitor 

cobimetinib. The initial data with this combination shows 7 responders in the 32 patients 

treated in dose escalation. Five of the responders had NRAS Q61 mutant melanoma, one had 

BRAF V600E mutant melanoma, and the last had KRAS G12D mutant CRC(122).

Toxicities of BRAF Targeted Therapies

Toxicity has always been a central issue with targeting the MAPK pathway because of the 

biological importance of this pathway across cell types and the need for profound pathway 
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inhibition within the tumor (4). Treatment of BRAFV600E melanoma with MEK inhibitors 

and RAF inhibitors leads to tumor regression by inhibiting ERK, but MEK inhibitors, which 

have a narrow therapeutic index, are associated with a response rate of about 20% (123) 

compared to a response rate of about 50% for RAF inhibitors. This difference highlights 

how toxicity directly limits the pathway inhibition that can be achieved and consequently 

treatment response.

While RAF inhibitors have a broad therapeutic index due to differing effects in BRAF 

mutant tumor and BRAF wild-type tissues, patients still need to be monitored closely for 

safety and some combinations have been difficult to administer because of toxicity. The 

toxicities of RAF inhibitors can be divided into those that are on-target and thus shared 

across molecules, and those that are off-target which tend to be molecule specific. Each of 

the first-generation RAF inhibitors cause “on-target” toxicity through paradoxical activation 

of the MAPK pathway in non-mutant, MAPK signaling-dependent cells. The most common 

shared toxicities across first generation RAF inhibitors include hyperkeratosis, palmoplantar 

erythrodysaesthesia syndrome (aka hand-foot syndrome), rash, arthralgias, and cutaneous 

malignancies (typically keratoacanthoma and/or squamous cell carcinoma). Predictably, 

each of these adverse effects are reduced with the addition of a MEK inhibitor, which reduce 

RAS/MAPK signaling related to upstream monomeric as well as dimeric RAF activity. 

Other common toxicities include nausea, vomiting, fatigue, and diarrhea; each of which is 

likely more non-specific and not reduced with the combination with a MEK inhibitor.

Other classes of RAF inhibitors have been less extensively studied in the clinic than first-

generation RAF inhibitors, but safety data is emerging with these agents. For example, 

the PB PLX8394 has been tested in an ongoing Phase 1/2 trial with preliminary data in 

74 patients demonstrating that the agent, which needs to be given in combination with 

cobicistat to enhance oral absorption of the drug, causes no significant dermatologic toxicity 

and no secondary cutaneous malignancies; the most common adverse events seen were 

elevated transaminases, elevated bilirubin, nausea, vomiting, diarrhea, and fatigue (124). 

Several equipotent monomer/dimer RAF inhibitors have reported phase 1 data. The most 

common treatment related adverse events for LY3009120 were fatigue, nausea, reduced 

appetite, and rash, including maculopapular and acneiform. Most common emergent adverse 

events with lifirafenib were fatigue and dermatitis acneiform rash; thrombocytopenia was 

the most common dose-limiting toxicity. For belvarafenib, the most common treatment-

emergent adverse events were rash, dermatitis acneiform, and pyrexia and the dose-limited 

toxicities were skin adverse effects. Finally, LXH254 is tolerated as a single agent and in 

combination with the ERK inhibitor LTT462, with most common toxicities being rash and 

fatigue. Of note, there have been reports of an acute neuropathy from LXH254 and its use 

in combination with LTT462 in a small number of patients (4%)(125). This is not a typical 

toxicity for inhibitors of this pathway and thus the rate and severity of this toxicity should be 

closely studied.

Future Directions

It took less than a decade from the discovery of oncogenic BRAF to FDA-approval of a 

class 1 BRAF inhibitor for the treatment of melanoma. Since, BRAFV600 targeted therapy 

Poulikakos et al. Page 11

Clin Cancer Res. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has been optimized in melanoma, anaplastic thyroid cancer, and NSCLC to involve dual 

pathway inhibition targeting BRAF and MEK. In CRC, dual BRAF and EGFR targeting has 

demonstrated significant benefit and become a standard regimen. Still, therapeutic resistance 

remains the dominant limiting factor for optimal BRAF targeting, and the development of 

more effective strategies to inhibit BRAF targeting is the most critical unmet need in the 

field. Fortunately, newer agents are making it into the clinic and combinatorial strategies 

are emerging. It is anticipated that novel approaches to drug development may be required 

to build multi-drug regimens to optimize MAPK inhibition while targeting other critical 

signaling pathways (e.g. PI3K) and cellular processes (e.g. apoptosis, autophagy, etc.); 

these efforts are just beginning. Additionally, in an era that has seen a paradigm shift 

from cytotoxic therapy to immunotherapy, there also have been important efforts to better 

characterize the impact of ERK inhibition on the tumor-immune microenvironment and 

determine the value of combining MAPK inhibition with anti-PD-1/PD-L1 therapy. The 

initial results show promise, but it is clear that the optimal use of these regimens and 

biomarker approaches to select patients most likely to benefit have not yet been determined. 

Finally, it is critical to note that the recent success in the development of highly effective 

approaches to target BRAF mutant malignancies has been a partnership between bench 

researchers, pharmaceutical companies, and academically focused clinical and translational 

investigators. For the field to move into the next phase, this partnership will need to continue 

to strengthen so that patients with BRAF mutant cancers will live better and longer lives.
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Figure 1: Frequency of BRAF alterations across cancers.
Graph showing portion of V600 BRAF and oncogenic non-V600 BRAF alterations across 

cancers. CRC: colorectal cancer. ECD: Erdheim Chester Disease. NSCLC: non-small cell 

lung cancer. PANC: pancreatic cancer.
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Figure 2: Combinatorial pharmacologic strategies tailored to BRAF alteration and RAS/MAPK 
signaling context.
Therapeutic strategies aimed at inhibiting the totality of RAS/MAPK signaling output 

would require a) a direct “pathway” inhibitor (e.g. MEK, ERK or CDK4/6 inhibitor), 

b) a BRAF alteration inhibitor (e.g. RAF monomer, RAF dimer, equipotent or Paradox 

Breaker inhibitor) and c) an “adaptive response” inhibitor (e.g. SHP2, SOS, RTK, or a 

RAF dimer inhibitor). A. Physiologic (“normal”) RAS/MAPK signaling. B. For tumors 

expressing Class I (BRAFV600E/K) and low RTK activity (e.g. a portion of melanomas), 

RAF monomer-selective inhibitors in combination with MEK inhibitors are effective. C. 
Acquired resistance to RAF monomer inhibitors is most commonly the result of RAF 

dimerization (expression of dimeric splice variant shown here, as an example), indicating 

tumor sensitivity to RAF dimer (or equipotent) inhibitors or Paradox Breakers in this 

context. D. For tumors expressing Class I (BRAFV600E/K) and high RTK activity (e.g. a 

portion of Colorectal Cancers), RAF monomer-selective inhibitors should be combined with 

“adaptive response” inhibitors (e.g. EGFR, or RAF dimer inhibitors), in addition to pathway 

inhibitors. E. Effective targeting of tumors expressing class II/III BRAF altered proteins that 

are either bound to RAS, or form RAS-independent dimers (F), would require an inhibitor 

targeting RAF (e.g. RAF dimer (or equipotent) inhibitor, or a Paradox Breaker), a pathway 

inhibitor (e.g. MEKi, ERKi) and an adaptive response inhibitor (e.g. SHP2i, SOSi, RTKi). 

Achieving both potent RAS/MAPK inhibition in the tumor and acceptable therapeutic index 

requires understanding and optimizing the biochemical properties of each inhibitor and their 

combination.

Image by Christos Adamopoulos.
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Figure 3: Response to RAF inhibitors across cancers.
Graph showing response to RAF inhibitor monotherapy or RAF inhibitor combination 

(RAF and MEK inhibitors or, for colorectal cancer, RAF and EGFR inhibitors). Disease 

types without reported combination trial data are indicated in orange. Size of data points 

corresponds to number of trial patients used to estimate response: smallest points (1–50 

patients), middle sized points (51–100 patients), large points (>200 patients). Graphed 

response rate for ECD corresponds to PET response. CRC: colorectal cancer. ECD: Erdheim 

Chester Disease. NSCLC: non-small cell lung cancer. PANC: pancreatic cancer. NA: not 

accessed.
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Table 1.

Categories of RAF Inhibitors and clinical compounds.

αC-OUT/DFG-IN (CODI) αC-IN/DFG-OUT (CIDO)

RAF monomer-
selective

RAF monomer 
selective / Paradox 
Breakers

Equipotent for RAF dimers and 
monomers

RAF dimer-selective

Vemurafenib
(Roche/Genentech)

PLX8394
(Fore Biotherapeutics)

LY 3009120
(Eli Lilly)

Belvarafenib (GDC-5573, HM95573 or 
RO7223619) (Roche/Genentech)

Dabrafenib
(Novartis)

PLX7904 AZ628
(Astrazeneca)

LXH254
(Novartis)

Encorafenib
(Pfizer)

*Lifirafenib (BGB-283)
(Beigene)

Regorafenib
(Bayer)

Sorafenib
(Bayer/Onyx)

*KIN-2787 (Kinnate)

*DAY101 (formerly TAK-580, MLN2480) (Day One Pharmaceuticals)

*BGB-3245 (Beigene)

*BDTX-BRAF (Black Diamond Therapeutics)

*
No structural information available. Classification inferred from in vitro activity data.
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Table 2.

FDA Approved Indications for RAF Inhibitor Therapies.

FDA Indication Treatment Year of Approval

Unresectable or metastatic melanoma with BRAF V600E mutation Vemurafenib
Dabrafenib

2011
2013

Unresectable or metastatic melanoma with BRAF V600E/K mutation Dabrafenib + Trametinib
Vemurafenib + Cobimetinib
Encorafenib + Binimetinib

2014
2015
2018

Erdheim-Chester disease with BRAF V600 mutations Vemurafenib 2017

Metastatic non-small cell lung cancer with BRAF V600E mutation Dabrafenib + Trametinib 2017

Adjuvant treatment for resected melanoma with BRAF V600E/K mutation with lymph 
node involvement

Dabrafenib + Trametinib 2018

Locally advanced or metastatic anaplastic thyroid cancer with BRAF V600E mutation and 
no satisfactory locoregional treatment options

Dabrafenib + Trametinib 2018

Metastatic colorectal cancer with BRAF V600E mutation after prior therapy Encorafenib + Cetuximab 2020
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