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identified using the scaled subprofile model/princi-
pal component analysis method, and cross-valida-
tions were conducted in both independent cohorts. 
A survival analysis was further conducted to calcu-
late the predictive effect of conversion risk by using 
ARGMPs. The results showed that ARGMPs were 
characterized by hypometabolism with increasing 
age primarily in the bilateral medial superior fron-
tal gyrus, anterior cingulate and paracingulate gyri, 
caudate nucleus, and left supplementary motor area 
and hypermetabolism in part of the left inferior cer-
ebellum. The expression network scores of ARGMPs 
were significantly associated with chronological 
age (R = 0.808, p < 0.001), which was validated in 
both the ADNI and Xuanwu cohorts. Individuals 
with higher network scores exhibited a better pre-
dictive effect (HR: 0.30, 95% CI: 0.1340 ~ 0.6904, 
p = 0.0068). These findings indicate that ARGMPs 

Abstract Exploring individual hallmarks of brain 
ageing is important. Here, we propose the age-
related glucose metabolism pattern (ARGMP) as a 
potential index to characterize brain ageing in cog-
nitively normal (CN) elderly people. We collected 
18F-fluorodeoxyglucose (18F-FDG) PET brain images 
from two independent cohorts: the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI, N = 127) and 
the Xuanwu Hospital of Capital Medical University, 
Beijing, China (N = 84). During follow-up (mean 
80.60  months), 23 participants in the ADNI cohort 
converted to cognitive impairment. ARGMPs were 
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derived from CN participants may represent a novel 
index for characterizing brain ageing and predicting 
high conversion risk into cognitive impairment.

Keywords Pattern · Brain ageing · Positron 
emission tomography · Glucose metabolism

Introduction

Ageing is a complex process occurring in both nor-
mal ageing and pathological conditions. Exploring 
hallmarks of brain ageing in cognitively normal (CN) 
elderly people is important for understanding the nor-
mal ageing process [1, 2]. Currently, existing indices 
used to characterize individual brain ageing focus on 
the cellular and molecular levels, such as mitochon-
drial dysfunction, accumulation of oxidatively dam-
aged molecules, aberrant neuronal network activity, 
and dysregulated energy metabolism [3–5]. However, 
the complexity of measurement methods limits the 
wide application of these indices in clinical practice. 
In addition, the myriad of indices introduced by pre-
vious studies cannot be universally used in all condi-
tions due to different mechanisms and their variable 
patterns. For instance, these indices may be influ-
enced by both healthy brain ageing and pathological 
disruptions, e.g. amyloid-β (Aβ) and tau pathologies 
in Alzheimer’s disease (AD) [3]. Therefore, an alter-
native in vivo index is needed.

Glucose metabolism alterations in the brain may 
represent an alternative index of brain ageing. Age-
ing appears to deteriorate the systemic control of 
glucose utilization, which, in turn, may increase the 
risk of reducing glucose uptake in brain regions [6]. 
Studies have reported that brain glucose metabolism 
abnormalities occur with ageing and reflect cognitive 
decline with high sensitivity [7, 8]. Thus, mapping 
age-related regional glucose metabolism changes 
may represent a promising avenue for understand-
ing the neurobiological foundation of normal brain 
ageing. 18F-fluorodeoxyglucose (18F-FDG) positron 
emission tomography (PET) is a well-established 
technique to visualize and quantify the resting-state 
cerebral glucose metabolic rate in vivo and has been 
used to elucidate the normal ageing process of human 
brains [9–11]. Using 18F-FDG PET, previous studies 
have shown that normal brain ageing is associated 
with specific patterns of regional cerebral glucose 

metabolism, such as the anterior cingulate/medial 
prefrontal cortex [1, 7, 12]. Therefore, it is possible to 
estimate brain ageing by generating a glucose metab-
olism pattern using 18F-FDG PET.

Currently, data-driven methods are usually applied 
to estimate brain ageing using chronological age as 
the training label [13–15]. In particular, the scaled 
subprofile model/principal component analysis 
(SSM/PCA) method is frequently used to character-
ize brain glucose metabolism. SSM/PCA is a multi-
variate statistical method that drives a covariance pat-
tern of voxel-based differences in brain metabolism 
[16]. This feature extraction method can enhance 
the identification of significant patterns in multivari-
ate imaging data and mirror the underlying relation-
ships between brain regions that are not captured by 
univariate techniques [17, 18]. Additionally, it ena-
bles the assessment of network-level alterations [19]. 
Therefore, this method is an optimal tool to evaluate 
abnormalities in functional brain organization in neu-
rodegenerative disorders. Currently, the SSM/PCA 
method has been widely used to investigate brain 
metabolic patterns in several disorders, such as AD, 
Parkinson’s disease (PD), and multiple system atro-
phy (MSA) [20–23]. Thus, we hypothesized that the 
SSM/PCA method could also be used to assess age-
related glucose metabolism patterns (ARGMPs) in 
CN older adults.

In the present study, we extracted ARGMPs from 
18F-FDG PET images and generated the ARGMP 
expression score in each participant as a potential 
index to characterize brain ageing. The primary pur-
poses of this study were (1) to validate the robustness 
of ARGMPs in both Western and Chinese cohorts; 
(2) to assess whether ARGMPs in normal ageing 
are independent from the AD pathological process; 
and (3) to investigate whether individuals with high 
ARGMPs have a high risk of developing cognitive 
impairment during follow-up.

Materials and methods

Overall study procedures

A total of 211 CN elderly people were collected from 
two independent cohorts: the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort (Cohort A, 
N = 127) from the ADNI database (http:// adni. loni. 

http://adni.loni.usc.edu/
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usc. edu/) and the Xuanwu cohort (Cohort B, N = 84) 
from the Department of Neurology, Xuanwu Hospi-
tal of Capital Medical University, Beijing, China. All 
participants underwent 18F-FDG PET scans. Using 
the SSM/PCA algorithm, ARGMPs were identified 
based on the combined cohort. Then, network expres-
sion scores were used to quantify ARGMPs, and the 
association of individual network scores with chrono-
logical age in the combined cohort was assessed. To 
validate the robustness of the ARGMPs, metabolic 
brain network analysis was conducted in the ADNI 
and Xuanwu cohorts. We separately assessed the 
correlation between individual network scores and 
chronological age in both independent cohorts. In 
addition, according to brain Aβ and the standardized 
network score, the entire ADNI cohort was divided 
into four stages (stage 0, Aβ-Network score-; stage 1, 
Aβ-Network score + ; stage 2, Aβ + Network score-; 
and stage 3, Aβ + Network score +), and the conver-
sion rate of CN participants to cognitive impairment 
in each stage was calculated. Survival analysis was 
further conducted to compare the predictive effect of 
conversion risk among different stages. The proce-
dures of this study are shown in Fig. 1.

Participants

For all CN participants of the two cohorts, clinical 
(sex, age, education, and Mini-Mental State Examina-
tion (MMSE)) and neuroimaging (18F-FDG PET and 
T1-MRI image) data were collected. Each participant 
in the ADNI cohort underwent 18F-florbetapir (AV45) 
PET scans at baseline. Participants in the ADNI 
cohort completed the Montreal Cognitive Assessment 
(MoCA), and those in the Xuanwu cohort completed 
the MoCA-Basic Version (MoCA-B). In addition, the 
clinical severity was also evaluated using the Clini-
cal Dementia Rating Sum of Boxes (CDR-SB) for 
participants in the ADNI cohort. The combination of 
the two cohorts was defined as the combined cohort. 
The inclusion criteria for CN participants were as fol-
lows: (1) no cognitive complaints; (2) no history of 
stroke, hypertension, central nervous system diseases, 
or mental illness; and (3) an MMSE score above or 
equal to 27.

Specifically, according to whether the cerebral-
to-cerebellar AV45 standardized uptake value ratio 
(SUVR) was below 1.18 [24], CN participants in the 
ADNI cohort were classified into Aβ-negative CN 

Fig. 1  Whole procedure of the present study. (A) Clinical 
and neuroimaging date collected from two cohorts: the ADNI 
cohort and the Xuanwu cohort. (B) The image preprocess-
ing procedure. (C) Extracting ARGMPs using the SSM/PCA 

method. (D) Cross-validations of ARGMPs in both the ADNI 
cohort and the Xuanwu cohort. (E) Assessing the predictive 
effect of ARGMPs

http://adni.loni.usc.edu/
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(CN-, N = 96) and Aβ-positive CN (CN + , N = 31) 
groups. Two experienced neuroradiologists at Xuanwu 
Hospital, who were blinded to the classification, also 
visually evaluated the amyloid-PET images. The 
detailed selection process for participants in the ADNI 
cohort is shown in Supplementary Fig. S1. However, 
due to the lack of 18F-florbetapir (AV45) PET scans, 
the CN participants from the Xuanwu cohort were not 
divided into CN- and CN + subgroups.

Participants with CDR-SB scores ≥ 1 at the follow-
up visit were considered as the transformers. Two expe-
rienced neurologists (CS and YH) evaluated the clini-
cal diagnosis of conversion to cognitive impairment. 
In our study, during the follow-up (follow-up range: 
6 ~ 168 months, mean follow-up period: 80.60 months), 
23 participants in the ADNI cohort developed cognitive 
impairment (conversion rate: 18.11%).

This study was approved by the Institutional 
Review Board of the ADNI and the Research Eth-
ics Committee of Xuanwu Hospital, Beijing, China 
(ClinicalTrials.gov Identifier: NCT03370744). All 
participants voluntarily participated in this study and 
provided written informed consent.

Image acquisition protocol

In the ADNI cohort, all participants were invited to 
undergo optional 18F-FDG PET and 18F-AV45 PET 
scans in three-dimensional acquisition mode. The pro-
cess of data acquisition in the ADNI cohort is described 
in detail in the imaging protocol column of the ADNI 
database (http:// adni. loni. usc. edu/). In the Xuanwu 
cohort, PET and T1-MRI data were simultaneously 
obtained on an integrated 3.0  T time-of-flight (TOF) 
PET/MR scanner (SIGNA PET/MR, GE Healthcare, 
Milwaukee, Wisconsin, USA) for each participant. 
For FDG-PET, each participant was instructed to fast 
for at least 6 h and was required to have a confirmed 
serum glucose level below 8 mmol/L. The images were 
acquired approximately 40  min after an intravenous 
injection of 3.7 MBq/kg of 18F-FDG, and the data were 
recorded by using a TOF ordered subset expectation 
maximization algorithm with the following parameters: 
scan duration = 35  min, eight iterations, 32 subsets 
matrix = 192 × 192, field of view (FOV) = 350 × 350, 
and half-width height = 3. Three-dimensional 
T1-weighted magnetization-prepared rapid gradient 
echo scans were performed with the following param-
eters: spoiled gradient-recalled echo (SPGR) sequence, 

FOV = 256 × 256  mm2, matrix = 256 × 256, slice thick-
ness = 1  mm, gap = 0, slice number = 192, repetition 
time (TR) = 6.9  ms, echo time (TE) = 2.98  ms, inver-
sion time (TI) = 450  ms, flip angle = 12°, and voxel 
size = 1 × 1 × 1  mm3.

Image preprocessing

All PET images and T1-MRI images were preproc-
essed using statistical parametric mapping software 
(SPM12;  https:// www. fil. ion. ucl. ac. uk/ spm/ softw are/ 
spm12/) in MATLAB (Version R2014a; MathWorks, 
Natick, MA, USA). We first used the realigning method 
to ensure that all frames in the dynamic PET scans were 
motion-corrected to the first frame, processed the output 
single average functional image, and reduced system or 
head motion errors. Then, the average functional image was 
normalized to the standard Montreal Neurological Institute 
(MNI) brain space using the deformation field from the 
MRI image to the MNI space. Finally, normalized func-
tional images were smoothed to reduce noise and improve 
image quality using an isotropic Gaussian smoothing kernel 
with a Gaussian filter of 8 mm full-width at half-maximum.

SSM/PCA

To explore the effect of ageing on glucose metabo-
lism in the brains of CN participants, metabolic 
brain network analysis was conducted on their FDG 
PET images to identify ARGMPs using the SSM/
PCA voxel-based spatial covariance mapping algo-
rithm. The SSM/PCA method was implemented 
using ScAnVp (Scan Analysis and Visualization 
Processor) software, version 7.0w (available at 
http:// www. feins teinn euros cience. org at the Centre 
for Neuroscience, the Feinstein Institute for Medical 
Research, Manhasset, NY). FDG PET images were 
first multiplied using a binary mask (determined 
by the standardized automated anatomical label-
ling (AAL) template) to eliminate artefacts associ-
ated with noise and areas unrelated to brain activity, 
including the ventricle and white matter, from sub-
sequent analysis. Then, the SSM/PCA method was 
used to derive the group invariant subprofile (GIS) 
and the participant score of each principal compo-
nent (PC) in the spatial covariance model of the 
combined CN group. Specifically, the logarithmi-
cally transformed training set image data matrix is 
double centred to obtain the subject residual profile 

http://adni.loni.usc.edu/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.feinsteinneuroscience.org
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(SPR), which reveals a covariance structure that has 
biological significance for the group. The SPR is 
expressed as follows:

where logD is the row mean of the log values and 
GMP (group mean profile) is the mean row image. 
Next, PCA is applied to the SRP covariance matrix to 
derive orthogonal eigenvectors, associated eigenval-
ues, and participant scores to obtain subject scaling 
factors (SSFs) and GIS using Eq. 2.

We selected the series of PCs with the maximal 
correlation to chronological age in the multiple lin-
ear regression analysis, with the participant scores of 
the first series of PCs (cumulative variance accounted 
for 60%) and age as the independent and depend-
ent variables, respectively. ARGMPs were identified 
based on the linear combination of the regression 
coefficients and GISs of these selected PCs. The sta-
bility of the ARGMPs is based on a bootstrapping 
scheme. The voxels were obtained by bootstrapping 
1000 times on ARGMPs at p < 0.001 with an abso-
lute weight threshold of 1.4 and a cluster threshold of 
100 voxels (800  mm3). They were then mapped to the 
AAL atlas to determine anatomical brain regions that 
exhibited age-related changes in glucose metabolism.

Using the voxel-based topographic profile rat-
ing algorithm, network expression scores were used 
to quantify ARGMPs in all participants. The cor-
relation between network scores and chronologi-
cal age of CN participants in the combined cohort 
was used to assess the accuracy and reliability of 
the ARGMPs. To validate the robustness of the 
ARGMPs, metabolic brain network analysis was 
also conducted in the ADNI and Xuanwu cohorts. In 
addition, to validate the independence of ARGMPs 
in the normal ageing process and AD pathological 
process, the correlation between network scores and 
chronological age was assessed separately in the 
CN- and CN + subgroups of the ADNI cohort.

Staging the transformers in the ADNI cohort

All CN participants in the ADNI cohort underwent 
amyloid-PET scans. The Aβ positivity threshold was 

SRP = logD − logD − GMP

SRP =
∑

n

SSF ∗ GIS

calculated as an SUVR of 1.18. Then, we calculated 
the standardized chronological age and standardized 
network score, with a score of 0 as the threshold. 
According to whether the Aβ was greater than 1.18 
and the standardized chronological age was greater 
than 0, the entire ADNI cohort was divided as fol-
lows: stage 0, Aβ-Age-; stage 1, Aβ-Age + ; stage 
2, Aβ + Age-; and stage 3, Aβ + Age + . Accord-
ing to whether the standardized network score was 
greater than 0, participants in the ADNI cohort were 
also classified into four stages: stage 0, Aβ-Network 
score-; stage 1, Aβ-Network score + ; stage 2, 
Aβ + Network score-; and stage 3, Aβ + Network 
score + . In each stage, the conversion rate was calcu-
lated. The standardized values (z scores) of individual 
chronological age and network score were calculated 
using the following formula:

where  Mage denotes mean chronological age,  SDage 
denotes the standard deviation of the chronological 
age,  MNS denotes the mean network score, and  SDNS 
denotes the standard deviation of the network score.

Statistical analysis

A two-sample t-test was performed to compare differ-
ences in continuous variables, and a Chi-square test 
was conducted to assess categorical variables. A mul-
tiple linear regression model was used, controlling for 
sex and years of education as covariates. Pearson’s 
correlation coefficient was then used to describe the 
correlation between the network scores and chrono-
logical age of the CN individuals in each cohort. To 
validate the independence of ARGMPs from AD-
related pathology, we further evaluated the correla-
tion between the network scores and chronological 
age in the CN- and CN + subgroups. The Gramm 
toolbox (available at https:// github. com/ pierm orel/ 
gramm) in MATLAB was used to plot and visualize 
all of the statistical data presented in this paper.

Survival was estimated using the Kaplan–Meier 
method, and any differences in survival were evaluated 

Zscore =
Age −Mage

SDage

Zscore =
NS −MNS

SDNS

https://github.com/piermorel/gramm
https://github.com/piermorel/gramm
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using a log-rank test in R version 3.6.3. To assess the 
validity of ARGMPs in predicting high conversion risk 
to cognitive impairment, we first compared the survival 
probability between the standardized network score > 0 
(Network score +) group and the standardized network 
score < 0 (Network score-) group. Next, the survival 
probability between the standardized chronological 
age > 0 (Age +) group and standardized chronological 
age < 0 (Age-) group was also compared. Moreover, 
four subgroups, the Aβ-Network score-, Aβ-Network 
score + , Aβ + Network score-, and Aβ + Network 
score + , were compared to evaluate the risk of conver-
sion. Hazard ratios were used to indicate the risk of 
conversion among different groups. The p-value was 
calculated using the log-rank test. P < 0.05 was consid-
ered statistically significant.

Results

Demographic characteristics of participants at 
baseline

There were a total of 211 CN participants (age range 
53.0 ~ 84.8 years) in the present study, including 127 
CN participants (age range 59.8 ~ 84.8  years) from 
the ADNI cohort and 84 CN participants (age range 

53.0 ~ 76.0  years) from the Xuanwu cohort. Table  1 
shows the detailed demographic and clinical details 
of all participants at baseline. Significant differences 
were observed in age (p < 0.001), sex (p < 0. 001), and 
educational years (p < 0.001) between the ADNI and 
Xuanwu CN cohorts, while no significant differences 
in the MMSE (p = 0.933) or MoCA (p = 0.061) were 
observed. In addition, the CN + subgroup was older 
than the CN- subgroup (p < 0.001). The follow-up 
period of the ADNI cohort was 80.60 ± 36.2 months, 
with a total of 23 participants (18.11%) converting to 
cognitive impairment.

Supplementary Table  S1 shows the demographic 
and clinical information for transformers (n = 23) 
and nontransformers (n = 104) in the ADNI cohort 
at baseline. There were significant differences in age 
(p = 0.008) and MMSE scores (p = 0.040) between 
transformers and nontransformers, while no dif-
ferences in sex, education, or MoCA scores were 
observed.

SSM/PCA based on the combined cohort

Network analysis for CN participants in the com-
bined cohort evaluated the first eight PCs, including 
51.5% participant × voxel variance. ARGMPs were 
identified by linear combination with the first six PCs 

Table 1  Demographic and clinical characteristics of CN participants at baseline

Abbreviations: MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; MoCA-B, Montreal Cognitive 
Assessment-Basic Version; CDR-SB, Clinical Dementia Rating Sum of Boxes; CN, cognitively normal; CN-, Aβ negative cogni-
tively normal; CN + , Aβ positive cognitively normal; y, year; F, female; M, male; m, months; a, MoCA used in the ADNI cohort, 
and MoCA-B used in the Xuanwu cohort
*  means p < 0.05 compared to the CN group in the ADNI cohort
**  means p < 0.001 compared to the CN group in the ADNI cohort
# # means p < 0.001 compared to the CN- group in the ADNI cohort

The combined cohort ADNI cohort Xuanwu cohort

Total CN- CN + 

N 211 127 96 31 84
Age (y) 70.5 ± 6.6 73.9 ± 5.4 72.88 ± 5.5 76.88 ± 4.1## 65.3 ± 4.7**
Sex (F/M) 134/77 68/59 47/49 21/10 66/18**
Education (y) 15.1 ± 3.2 16.5 ± 2.6 16.60 ± 2.6 16.00 ± 2.5 13.1 ± 2.9**
MMSE 29.3 ± 0.8 29.3 ± 0.8 29.32 ± 0.8 29.16 ± 1.0 29.3 ± 0.8
CDR-SB / 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 /
MoCA/MoCA-Ba 26.2 ± 2.1 26.0 ± 2.3 26.12 ± 2.3 25.67 ± 2.1 26.6 ± 1.9
Follow-up (m) / 80.60 ± 36.2 84.06 ± 35.9 69.87 ± 34.9 /
Conversion rate / 23 (18.11%) 11 (11.46%) 12 (38.71%) /
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(variance accounted for 22.9%, 9.2%, 6.0%, 3.9%, 
3.2%, and 2.4%, and cumulative variance accounted 
for 49.7%) whose participant scores maximally cor-
related with chronological age. Brain regions that 
exhibited reduced glucose metabolism with ageing 
were primarily distributed in the left supplementary 
motor area (SMA.L), bilateral olfactory cortex (OLF), 
medial superior frontal gyrus (SFGmed), anterior cin-
gulate and paracingulate gyri (ACG), caudate nucleus 
(CAU), and dorsal thalamus (THAdor). Brain regions 
manifesting increased glucose metabolism with age-
ing included the bilateral ventral thalamus (THAven) 
and part of the cerebellum (Cerebellum_Crus II) 
(Fig.  2A, Table  2). There were significant positive 

correlations between network scores and chrono-
logical age for the CN participants in the combined 
cohort (R = 0.808, p < 0.001, Fig. 2B), ADNI cohort 
(R = 0.785, p < 0.001, Fig.  2C), and Xuanwu cohort 
(R = 0.668, p < 0.001, Fig. 2D).

The consistency of ARGMPs between different 
centres

Network analysis for CN participants in the ADNI 
cohort evaluated the first six PCs, including 50.0% 
participant × voxel variance.  ARGMPADNI was iden-
tified by linear combination with PC2, PC3, PC4, 
and PC5 (variance accounted for 9.0%, 4.8%, 4.4%, 

Fig. 2  ARGMPs in CN adults in the combined cohort during 
normal ageing. The red areas indicate a significant increase in 
glucose metabolism with ageing, and the blue areas indicate a 
significant decrease (A). Scatter plot and fit results, with 95% 
confidence limits, between network scores and CN partici-
pant age in the combined cohort (B), ADNI cohort (C), and 

Xuanwu cohort (D); SMA, supplementary motor area; OLF, 
olfactory cortex; SFGmed, medial superior frontal gyrus; 
ACG, anterior cingulate and paracingulate gyri; CAU, caudate 
nucleus; THAdor, dorsal thalamus; THAven, bilateral ventral 
thalamus and part of Cerebellum_Crus II
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and 3.4%, respectively, and cumulative variance 
accounted for 21.6%), whose participant scores 
maximally correlated with chronological age. Brain 
regions that exhibited reduced glucose metabolism 
with ageing were distributed in the SMA.L, bilat-
eral OLF, SFGmed, ACG, CAU, THAdor, and part 
of the vermis (Vermis_3). Brain regions that mani-
fested increased glucose metabolism with ageing 
included the right inferior occipital gyrus (IOG.R), 
THAven, and part of the cerebellum (Cerebellum_
Crus II) (Fig.  3A, Table  3). Significant correlations 
between the network scores on the  ARGMPADNI and 
chronological age of CN participants were observed 
in both the ADNI (R = 0.738, p < 0.001, Fig. 3B) and 
Xuanwu cohorts (R = 0.586, p < 0.001, Fig.  3C). In 
addition, the network scores of the  ARGMPADNI and 
the  ARGMPXuanwu exhibited highly similar topogra-
phies (R = 0.576, p < 0.001, Fig. 3D).

Network analysis for the CN participants in the 
Xuanwu cohort included the evaluation of the first 
nine PCs, including 50.1% participant × voxel vari-
ance.  ARGMPXuanwu was identified by the linear 
combination with PC1, PC2, PC3, PC6, and PC7 

(variance accounted for 23.9%, 6.2%, 4.9%, 2.4%, 
and 2.3%, respectively, and cumulative variance 
accounted for 39.7%), whose participant scores 
maximally correlated with chronological age. Brain 
regions characterized by reduced glucose metabo-
lism with ageing included the left orbital part of 
the middle frontal gyrus (ORBmid.L), SMA.L, 
left medial orbital of the superior frontal gyrus 
(ORBsupmed.L), bilateral SFGmed, ACG, median 
cingulate and paracingulate gyri (DCG), and CAU. 
Brain regions displaying increased glucose metabo-
lism with ageing were distributed in the left para-
central lobule (PCL.L), left temporal pole: superior 
and middle temporal gyrus (TPOsup.L, TPOmid.L), 
and part of the left inferior cerebellum (Fig.  4A, 
Table  4). Significant correlations were observed 
between the  ARGMPXuanwu network scores and the 
chronological age of the CN participants in both the 
Xuanwu (R = 0.734, p < 0.001, Fig.  4B) and ADNI 
cohorts (R = 0.608, p < 0.001, Fig.  4C). The corre-
lation between network scores of the  ARGMPADNI 
and the  ARGMPXuanwu was significantly positive 
(R = 0.737, p < 0.001, Fig. 4D).

Table 2  Brain regions loading by the voxels survived from 1000 bootstrapping on ARGMP at p < 0.001, with absolute weight 
threshold of 1.4 and cluster threshold of 100 voxels (800  mm3)

Brain region AAL number Laterality MNI Coordinates

X Y Z

Decreased Metabolism
Supplementary motor area Frontal 19 L -5.3 4.8 61.4
Olfactory cortex Prefrontal 21 L -8.1 15.1 -11.5
Olfactory cortex Prefrontal 22 R 10.4 15.9 -11.3
Superior frontal gyrus, medial Prefrontal 23 L -4.8 49.2 30.9
Superior frontal gyrus, medial Prefrontal 24 R 9.1 50.8 30.2
Anterior cingulate and paracingulate gyri Prefrontal 31 L -4.0 35.4 14.0
Anterior cingulate and paracingulate gyri Prefrontal 32 R 8.5 37.0 15.8
Caudate nucleus Subcortical 71 L -11.5 11.0 9.2
Caudate nucleus Subcortical 72 R 14.8 12.1 9.4
Dorsal thalamus Subcortical 77 L -10.8 -17.6 8.0
Dorsal thalamus Subcortical 78 R 13.0 -17.6 8.1
Increased Metabolism
Ventral thalamus Subcortical 77 L -10.8 -17.6 8.0
Ventral thalamus Subcortical 78 R 13.0 -17.6 8.1
Cerebellum_Crus II Cerebellum 101 L - - -
Cerebellum_Crus II Cerebellum 103 L - - -
Cerebellum_Crus II Cerebellum 104 R - - -
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The correlation between network scores and 
chronological age in CN subgroups

Network analysis for the CN- and CN + subgroups in 
the ADNI cohort was also performed. For CN- par-
ticipants, there was a significantly positive correlation 

between network scores and chronological age 
(R = 0.753, p < 0.001, Fig. 3E). Meanwhile, a signifi-
cant association between network scores and chrono-
logical age was also observed in CN + participants 
(R = 0.640, p < 0.001, Fig. 3F).

Fig. 3  ARGMPADNI in CN adults in the ADNI cohort during 
normal ageing. The red areas indicate a significant increase 
in glucose metabolism with ageing, and the blue areas indi-
cate a significant decrease (A). Scatter plot and the fit results, 
with 95% confidence limits, between network scores and 
the age of the CN participants in the ADNI (B) and Xuanwu 
cohorts (C). Scatter plot and fit results with 95% confidence 
limits and between network scores on the  ARGMPADNI and 

 ARGMPXuanwu of the CN participants in the ADNI cohort (D). 
Correlations between the network scores and chronological age 
in the CN- (E) and CN + (F) subgroups in the ADNI cohort. 
SMA, supplementary motor area; OLF, olfactory cortex; 
SFGmed, medial superior frontal gyrus; ACG, anterior cingu-
late and paracingulate gyri; CAU, caudate nucleus; THAdor, 
dorsal thalamus; THAven, bilateral ventral thalamus; and part 
of Cerebellum_CrusII
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The predictive effect of ARGMPs on the 
development of cognitive impairment at follow-up

As shown in Fig.  5A, conversion stages (stage 
0 ~ stage 3) were defined by thresholds of the Aβ and 
standardized chronological age. The rates of conver-
sion in the four stages were 7.7%, 15.9%, 22.2%, and 
45.5%, respectively. In Fig. 5B, four stages were clas-
sified by thresholds of the Aβ and standardized net-
work score. The results showed that the rates of con-
version in the four stages were 6.9%, 18.4%, 18.2%, 
and 50%. The conversion rate in stage 1 was lower in 
Aβ-age + individuals (Fig.  5A) than in Aβ-Network 
scores + individuals (Fig.  5B) (15.9% vs. 18.4%), 
while the conversion rate in stage 2 is higher in 
Fig. 5A than in Fig. 5B (22.2% vs. 18.2%). In stage 3, 
participants with Aβ + Network scores + exhibited a 
higher conversion rate than those with Aβ + Age + in 
the prediction models (45.5% vs. 50%).

In the survival analysis, higher network scores 
(standardized network score > 0, green line) indicated 
a better predictive effect for developing a clinical 

diagnosis of cognitive impairment than lower net-
work scores (standardized network score < 0, blue 
line) (HR: 0.30, 95% CI: 0.1340 ~ 0.6904, p = 0.0068, 
Fig.  5C). However, there was no significant differ-
ence between the older group (standardized chrono-
logical age > 0, orange line) and the younger group 
(standardized chronological age < 0, red line) (HR: 
0.50, 95% CI: 0.2193 ~ 1.154, p = 0.1250, Fig.  5C). 
Furthermore, the predictive effect of the conversion 
risk to cognitive impairment in the Aβ + Network 
score + subgroup compared to that in the other three 
subgroups was as follows (Fig. 5D): the Aβ-Network 
score- subgroup (HR: 0.10, 95% CI: 0.0270 ~ 0.3704, 
p < 0.0001), Aβ-Network score + subgroup (HR: 
0.21, 95% CI: 0.0668 ~ 0.6429, p = 0.0002), and 
Aβ + Network score- subgroups (HR: 0.25, 95% CI: 
0.0810 ~ 0.7906, p = 0.035). However, compared with 
the other three subgroups, the predictive effect of the 
conversion risk in the Aβ + Age + subgroup was as 
follows (Fig. 5D): the Aβ-Age- subgroup (HR: 0.14, 
95% CI: 0.0428 ~ 0.4650, p < 0.0001), Aβ-Age + sub-
group (HR: 0.20, 95% CI: 0.0628 ~ 0.6227, 

Table 3  Brain regions loading by the voxels survived from 1000 bootstrapping on  ARGMPADNI at p < 0.001, with absolute weight 
threshold of 1.4 and cluster threshold of 100 voxels (800  mm3)

Brain region AAL number Laterality MNI Coordinates

X Y Z

Decreased Metabolism
Supplementary motor area Frontal 19 L -5.3 4.8 61.4
Olfactory cortex Prefrontal 21 L -8.1 15.1 -11.5
Olfactory cortex Prefrontal 22 R 10.4 15.9 -11.3
Superior frontal gyrus, medial Prefrontal 23 L -4.8 49.2 30.9
Superior frontal gyrus, medial Prefrontal 24 R 9.1 50.8 30.2
Anterior cingulate and paracingulate gyri Prefrontal 31 L -4.0 35.4 14.0
Anterior cingulate and paracingulate gyri Prefrontal 32 R 8.5 37.0 15.8
Caudate nucleus Subcortical 71 L -11.5 11.0 9.2
Caudate nucleus Subcortical 72 R 14.8 12.1 9.4
Dorsal thalamus Subcortical 77 L -10.8 -17.6 8.0
Dorsal thalamus Subcortical 78 R 13.0 -17.6 8.1
Vermis Vermis 110 R - - -
Increased Metabolism
Inferior occipital gyrus Occipital 54 R 38.2 -82 -7.6
Ventral thalamus Subcortical 77 L -10.8 -17.6 8.0
Ventral thalamus Subcortical 78 R 13.0 -17.6 8.1
Cerebellum_Crus II Cerebellum 101 L - - -
Cerebellum_Crus II Cerebellum 103 L - - -
Cerebellum_Crus II Cerebellum 104 R - - -
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p = 0.0002), and Aβ + Age- subgroups (HR: 0.38, 
95% CI: 0.1162 ~ 1.260, p = 0.157).

Discussion

This study proposes ARGMPs as a novel index to 
characterize individual brain ageing. The primary 
findings were that (1) ARGMPs appear to be a sta-
ble and sensitive index for characterizing brain age-
ing; (2) this index is independent of AD pathological 
biomarkers; and (3) ARGMPs display better potential 
for predicting the risk of cognitive impairment than 
chronological age in CN people.

Compared to chronological age, the novel index 
appeared to be more reasonable in assessing normal 
brain ageing. Using the SSM/PCA method, brain age-
ing-specific spatial metabolic profiles were generated 

from linear combinations of several principal compo-
nents [25]. This multivariate analysis method reduces 
the interindividual variations in FDG-PET images 
and provides complementary, clinically relevant 
information that may be superior to univariate meas-
ures [26]. In our study, ARGMPs derived from the 
ADNI and Xuanwu cohorts exhibited similar topog-
raphies, validating the robustness and repeatability of 
our findings. According to the biological definition of 
AD proposed in 2018 [27], individuals with evidence 
of Aβ deposition are categorized into the Alzhei-
mer’s continuum. Thus, to eliminate the latent influ-
ence of AD pathology, we further analysed ARGMPs 
from the CN- and CN + subgroups. Notably, signifi-
cantly positive correlations between network score 
and chronological age were also observed in these 
two subgroups. Our findings validated that the novel 
index was independent of AD pathological biomark-
ers. Moreover, given the potential impact of cognitive 

Fig. 4  ARGMPXuanwu in CN adults in the Xuanwu cohort dur-
ing normal ageing. The red areas indicate a significant increase 
in glucose metabolism associated with advancing age, and the 
blue areas indicate a significant decrease (A). Scatter plot and 
fit results, with 95% confidence limits, between network scores 
and the age of the CN participants in the Xuanwu cohort (B) 
and ADNI cohort (C). Scatter plot and the fit results, with 
95% confidence limits and between network scores in the 

 ARGMPXuanwu and  ARGMPADNI of the CN participants in the 
ADNI cohort (D). SMA, supplementary motor area; SFGmed, 
medial superior frontal gyrus; ACG, anterior cingulate and 
paracingulate gyri; CAU, caudate nucleus; DCG, median cin-
gulate and paracingulate gyri; ORBmid, orbital part of the 
middle frontal gyrus; TPO, temporal pole and part of Cerebel-
lum_Crus II
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reserve on age-related brain changes [28–30], other 
risk factors (e.g. educational level, sex) were also 
regressed as covariates in our study, which further 
ensured that the novel index was stable.

The novel index revealed that the overlapping 
brain regions with age-related hypometabolism 
focused on the bilateral SFGmed, ACG, CAU, and 
left SMA based on the three cohorts (the combined 
cohort, the ADNI cohort, and the Xuanwu cohort), 
whereas age-related hypermetabolism was primar-
ily distributed in part of the left Cerebellum_Crus 
II. Thus, age-related regional hypometabolism was 
primarily observed in the frontal lobe and striatum, 
suggesting that these regions may be more sensitive 
to normal brain ageing. The involvement of the pre-
frontal cortex (e.g. SFGmed, ACG) in normal brain 
ageing has been supported by previous studies [7, 
31, 32]. In contrast with AD, the prefrontal cortex is 
regarded as the first structure affected by normal age-
ing. For instance, Moeller [33] provided evidence of 
decreased glucose metabolism in the medial frontal 
region of 130 healthy volunteers aged 21–90  years. 
Age-related differences in working memory load-
related activity have also been observed in the 
SFGmed [32]. The prefrontal cortex has multiple 

physiological functions, especially in working mem-
ory, attention, and mood regulation [31, 34, 35]. The 
decline in glucose metabolism in the prefrontal cor-
tex with increasing age may be attributed to several 
potential mechanisms, such as decreased neuronal 
function [36] and altered synaptic efficiency [7].

Our study also demonstrated decreased glucose 
metabolism in the left SMA with normal brain age-
ing. The SMA, which is a critical component of the 
cortical motor network, plays a major role in plan-
ning and executing rhythmic bilateral movements 
[37]. Growing evidence indicates that age-related 
decline in motor control is due to special brain 
structural and functional changes, such as grey mat-
ter atrophy in the pre- and postcentral gyri [38], 
reduced white matter integrity in the corpus cal-
losum [39], abnormal functional connectivity, or 
hypometabolism within the cortical motor network. 
Current studies have reported decreased cerebral 
glucose metabolism in the left SMA in healthy older 
adults [40] and reduced SMA-primary motor cor-
tex (M1) interactions [41] with ageing. In contrast 
with normal brain ageing, AD pathology initially 
affects the entorhinal cortex, while motor areas are 
generally damaged during the late stage. Therefore, 

Table 4  Brain regions loading by the voxels survived from 1000 bootstrapping on  ARGMPXuanwu at P < 0.001, with absolute weight 
threshold of 1.4 and cluster threshold of 100 voxels (800  mm3)

Brain region AAL number Laterality MNI Coordinates

X Y Z

Decreased Metabolism
Middle frontal gyrus, orbital part Prefrontal 9 L -30.6 50.4 -9.6
Supplementary motor area Frontal 19 L -5.3 4.8 61.4
Superior frontal gyrus, medial Prefrontal 23 L -4.8 49.2 30.9
Superior frontal gyrus, medial Prefrontal 24 R 9.1 50.8 30.2
Superior frontal gyrus, medial orbital Prefrontal 25 L -5.2 54.1 -7.4
Anterior cingulate and paracingulate gyri Prefrontal 31 L -4.0 35.4 14.0
Anterior cingulate and paracingulate gyri Prefrontal 32 R 8.5 37.0 15.8
Median cingulate and paracingulate gyri Frontal 33 L -5.5 -14.9 41.6
Median cingulate and paracingulate gyri Frontal 34 R 8.0 -8.8 39.8
Caudate nucleus Subcortical 71 L -11.5 11.0 9.2
Caudate nucleus Subcortical 72 R 14.8 12.1 9.4
Increased Metabolism
Paracentral lobule Parietal 69 L -7.6 -25.4 70.1
Temporal pole: superior temporal gyrus Temporal 83 L -39.9 15.1 -20.2
Temporal pole: middle temporal gyrus Temporal 87 L -36.3 14.6 -34.1
Cerebellum_Crus II Cerebellum 103 L - - -
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age-related hypometabolism in the SMA may rep-
resent a distinct biomarker for identifying normal 
brain ageing. In our study, the subcortical CAU was 
another region manifesting significant metabolic 
decline with ageing. The CAU, a key component of 
the striatum, is associated with navigational skills 
[42, 43]. Previous work has revealed age-related 
reductions in perfusion in the CAU [44, 45].

Finally, we investigated the ability of ARGMPs 
to predict the conversion risk of CN individuals to 
cognitive impairment. Regional hypometabolism 
in AD patients has been reported in many previous 
studies and may represent a predictor of cognitive 
decline from mild cognitive impairment (MCI) to AD 

dementia [46, 47]. Decreased glucose metabolism is 
considered a biomarker of neurodegeneration, which 
is associated with the clinical progression of AD [48]. 
In this study, participants with evidence of Aβ depo-
sition and high network scores exhibited higher con-
version rates than other three subgroups, indicating 
that the combination of Aβ burden and ARGMPs has 
the potential to identify individuals at risk of develop-
ing cognitive impairment. We also assessed the pre-
diction effect of chronological age. To the best of our 
knowledge, the prevalence of AD and the accumula-
tion of Aβ increase with ageing [49]. We also found 
that older people with Aβ positivity evidence (stage 
3) presented a relatively higher conversion rate than 

Fig. 5  Staging the transformers and survival analysis esti-
mated by the Kaplan–Meier method. According to the thresh-
old of Aβ (1.18) and the standardized chronological age (0), 
CN participants in the ADNI cohort were classified into four 
stages (stage 0 to 3). In each stage, the conversion rate of 
CN participants to cognitive impairment was calculated (A). 
According to the threshold of Aβ (1.18) and the standardized 
network score (0), CN participants in the ADNI cohort were 
also classified into four stages (stage 0 to 3). In each stage, the 
conversion rate of CN participants to cognitive impairment 
was calculated (B). In the survival analysis, we compared dif-
ferent predictive effects of conversion risk between higher net-

work scores (standardized network score > 0, green line) and 
lower network scores (standardized network score > 0, blue 
line) (C) and between the older group (standardized chrono-
logical age > 0, orange line) and the younger group (stand-
ardized chronological age < 0, red line) (C). Furthermore, we 
compared different predictive effects of conversion risk among 
the standardized network score subgroup and the standardized 
chronological age subgroup: the Aβ + Network score + (stage 
3), Aβ-Network score- (stage 0), Aβ-Network score + (stage 1), 
and Aβ + Network score- (stage 2); the Aβ + Age + (stage 3), 
Aβ-Age- (stage 0), Aβ-Age + (stage 1), and Aβ + Age- (stage 2) 
(D)
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those at other stages, consistent with previous studies 
[50]. However, compared to chronological age, indi-
viduals with higher network scores had a higher risk 
of conversion than those with lower network scores.

It should be noted that this study has some limita-
tions. First, age differences existed between the ADNI 
and Xuanwu cohorts, with the average age of the 
participants from Xuanwu Hospital being 8.6  years 
younger than those in the ADNI cohort. Correla-
tions between ARGMP expression network scores 
and chronological age were identified in both cohorts, 
but whether this correlation exists in CN popula-
tions with wider age ranges needs to be validated in 
the future. Second, the underlying mechanism of the 
age-related metabolic pattern in older CN adults was 
not elucidated in the present study. Future studies are 
needed to investigate the development of ARGMPs 
through molecular pathways, such as neurotransmit-
ter and endocrine signalling, etc. Third, the effect of 
other factors, especially biological sex, on the cor-
relation between brain regional glucose metabolism 
dysfunction and chronological ageing was not con-
sidered in this study. Notably, sex is a key risk fac-
tor that contributes to variability in AD manifestation 
[51]. Previous studies have reported that females are 
at greater risk of developing AD, as well as exhibit 
more pathological changes [52–54]. However, the 
effect of biological sex on brain glucose metabolism 
remains unclear. Thus, the impact of sex differences 
on ARGMPs needs to be evaluated in future stud-
ies. Finally, the sample size in this study was rela-
tively small, and only data in the ADNI cohort were 
longitudinal. Future multicentre studies with a larger 
sample size are essential to provide more accurate 
evidence. In addition, the similarities and differences 
between AD-related ageing and chronological ageing 
patterns warrant further study.

Conclusions

This study revealed ARGMP topographies in the spa-
tial covariance brain network and the distribution of 
regional metabolism alterations that occur during nor-
mal brain ageing using 18F-FDG PET images. Cross-
validation between the ADNI and Xuanwu cohorts 
confirmed highly reproducible ARGMPs across dif-
ferent CN populations and imaging instrumenta-
tion/protocols. The expression score of ARGMPs in 

individual participants objectively mirrored normal 
brain ageing, such as chronological age, and better 
predicted the conversion of CN participants to cogni-
tive impairment. This study indicates that the glucose 
metabolism pattern in CN older adults may represent 
an effective biomarker of normal brain ageing and has 
the potential for future application in routine clinical 
practice.
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