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Background. It is still an unmet clinical need to identify potent biomarkers for immunotherapy on patients with lung squamous
cell carcinoma (LUSC). Methods. In this study, we explored the differentially expressed genes (DEGs) that were simultaneously
correlated with four pathways (i.e. CD8+αβT cell proliferation/differentiation/activation pathways and ferroptosis pathway) and
possibly related to the remodeling of tumor microenvironment via the TCGA-LUSC dataset. Besides, four GEO datasets
(GSE157009, GSE157010, GSE19188, and GSE126045) and IMvigor210 dataset were utilized for confirmation and validation.
Results. The co-downregulated DEG DLX2 was selected for further analysis. Function enrichment analysis revealed that low-
expression of DLX2 was closely related to various immune-related pathways like T/B/NK cell mediated immunity, interferon
gamma/alpha response, and various autoimmune disease. DLX2-downregulated group was enriched in more immune-
activating cells and lower tumor immune dysfunction and exclusion (TIDE) score. Via the Cancer Immunome Atlas (TCIA)
database, lower expression of DLX2 was also found to be associated with better IPS score of PD-1/PD-L1 blockade (p < 0:001)
as well as CTLA-4 combined with PD-1/PD-L1 blockade (p < 0:001). Furthermore, patients in DLX2-low group were found to
have significant longer median OS than those in DLX2-high group in IMvigor210 dataset (10.8 vs 7.4 months; hazard ratio
[HR]=0.74, 95% confidence interval [95%CI] 0.57-0.96; p = 0:024). Conclusions. Our study on an integrated bioinformatical
analysis implied that DLX2 could be served as a promising indicator for remodeling tumor microenvironment status and
predicting ICI response of patients with LUSC.

1. Introduction

According to GLOBOCAN 2020, lung cancer is one of the
most frequently diagnosed cancers and the leading cause of
cancer-related deaths worldwide [1]. Lung squamous cell

carcinoma (LUSC) is a common histological subtype of
non-small cell lung cancer (NSCLC), which accounts for
17% [2]. In recent years, immunotherapy by immune check-
point inhibitors (ICIs) have brought about a revolutionary
shift in the treatment strategies of LUSC with significantly
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improved clinical outcome, while limited patients can
achieve durable tumor response and long term survival. All
of the existing biomarkers like programmed cell death-
ligand 1 (PD-L1) have unsatisfying prognostic value, it is still
an unmet clinical need to find novel and effective biomark-
ers for precise immunotherapy [3–7].

The immunotherapy via programmed cell death protein
1 (PD-1)/PD-L1 pathway blockade largely relies on the infil-
tration of efficient T cells into tumor and the activity of effec-
tor T cells in the tumor microenvironment (TME) [8]. αβT
cell is a predominant subtype of T cell which account for
about 95% [9]. During the treatment of immunotherapy,
CD8+ T cells are activated and extinguish tumor cells mainly
through perforin-granzyme-based and Fas-based mecha-
nisms [10]. Ferroptosis is emerged as a form of regulated cell
death featured by the iron-dependent accumulation of lipid
hydroperoxides [11, 12]. Recently, ferroptosis has attracted
certain attention in antitumor research area. A recent find-
ing proposed that tumor ferroptosis promoted by
immunotherapy-activated CD8+ T cell is another mecha-
nism to enhance antitumor efficacy of immunotherapy
[13]. The activity of signal pathways related to CD8+ T cell
and ferroptosis process may better reflect the human
immune status and help us detect promising prognostic
biomarkers.

This study aimed to determine biomarkers associating
with the remodeling of tumor microenvironment and pre-
dicting efficacy of ICIs therapy in patients with LUSC. We
firstly explored targeted genes that are simultaneously corre-
lated with four pathways including CD8+αβT cell prolifera-
tion/differentiation/activation pathways and ferroptosis
pathway using the bioinformatics technology, then focused

on the co-downregulated differentially expressed genes
(DEGs) Distal-Less Homeobox 2 (DLX2), which acted as a
transcriptional activator. Its correlation with immune cells
of TME, clinicopathological factors as well as its value to
predict the efficacy of immunotherapy were evaluated
deeply, aiming to facilitate personalized immunotherapy of
LUSC.

2. Materials and Method

2.1. Data Collection. 491 somatic mutation information
(simple nucleotide variation [SNV]), 501 transcriptome pro-
filing (HTSeq-FPKM of mRNA) and 498 cases with clinical
data of patients with LUSC were achieved from Genomic
Data Commons (GDC) Data Portal of the Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov) and then a
total of 482 LUSC tumor samples with complete SNV,
mRNA, and clinical data were included for the detection of
targeted genes and their characteristics and functions.
Besides, through the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo), we also
selected three cohorts with gene expression and clinical data
of LUSC patients (GSE157009, GSE157010, and GSE19188)
for confirmation and validation [14, 15]. 9 patients with
LUSC receiving the treatment of anti-PD-1 antibody nivolu-
mab was obtained from GSE126045 for clinical validation
[16]. Besides, another IMvigor210 dataset of 348 patients
with urothelial carcinoma receiving the treatment of anti-
PD-L1 antibody atezolizumab was used to expand our vali-
dation cohort and to investigate the prognostic value of
DLX2 on ICI treatment [17]. The detailed information about

TCGA-LUSC

502 Tumor

49 Normal

482 samle with
complete SNV, mRNA

and clinical data four
pathways

CD8+ 𝛼𝛽T cell
proliferation

CD8+ 𝛼𝛽T cell
diferentiation

CD8+ 𝛼𝛽T cell
activation

Ferroptosis

GSVA
score

Co-down regulated gene: DLX2

GEO datasets validation
GSE157009
GSE157010
GSE19188

Tumour Immune Microenvironment
Functional Enrichment Analoysis

Clinicopathological
Characteristics

age
gender
stage
TNM

GSEA GSVA

GOBP/KEGG/Hallmark

Prediction of Response to ICIs

ESTIMATEScore
TMB, MATH

IPS and ICIs
via TCIA

Efcacy
comparation on

GSE126045
and IMvigor210

Figure 1: Study design and overview workflow.
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the six datasets included in this analysis were summarized in
Supplementary table 1.

2.2. Estimate of CD8+ T Cell Related Pathway Score and
Ferroptosis Score.We employed three pathways from Molec-
ular Signatures Database (MSigDB) to evaluate the relative
activity of CD8+αβT cell differentiation and proliferation,
and activation (Supplementary table 2). Besides, 60
ferroptosis-related genes were retrieved to estimate the
ferroptosis score [11, 12, 18, 19]. “GSVA” package [20] was
used to calculate scores for 482 patients of TCGA-LUSC
dataset in each four pathways. In each pathway, patients
were divided into high-score (higher than median score) or
low-score (lower than or equal to median score) group by
comparing to the median score (cut-off value).

2.3. Identification of Target DEGs. In each pathway, DEGs
were identified by comparing the expression of every mRNA
between high-score and low-score group through wilcoxon

rank-sum test with the following criteria: (i). jlog2 fold
changeðFCÞj > 1, (ii). false discovery rate ðFDRÞ < 0:25, (iii)
p < 0:05. FC was defined as the ratio of median gene expres-
sion between high and low score group. The upregulated and
downregulated DEGs were shown through heat map using
“pheatmap” package and volcano plot using “ggplot2” pack-
age. Then intersection of upregulated DEGs or downregu-
lated DEGs in the four pathways were performed to screen
targeted DEGs. Next, TCGA and other validation datasets
were divided into high-expression and low-expression
groups for further analysis according the median value of
targeted DEG in each dataset. The correlation between
DEGs expression and scores of four pathways were evalu-
ated by spearman method and presented in circos plot.

2.4. Somatic Mutation Data Analysis. The somatic mutation
information of TCGA-LUSC samples was used in genomic
analysis, which was processed by VarScan to remove germ-
line mutation and loss of heterozygosity (LOH). We used
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Figure 2: Identification of DEGs in four pathways. (a) Venn plot showing 482 samples were derived with completed SNV, mRNA, and
clinical data. (b) Venn plot showing co-downregulated DEGs. (c) Venn plot showing co-upregulated DEGs. (d) Heat map visualizing the
identification of DEGs in the four pathways. (e–h) Volcano plots of four pathways: CD8+αβT cell proliferation pathway (e), CD8+αβT
cell differentiation pathway (f), CD8+αβT cell activation pathway (g), and ferroptosis pathway (h). (i–m) The comparison of DEGs
expression in tumor samples and normal paracancerous samples: DLX2 (i), ERAS (j), SELENOV (k), UPK1A (l), and ACTL6B (m).
(DEG, differentially expressed genes; SNV, simple nucleotide variation).
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“maftools” package [21] to present top 30 genes with the
highest incidence of mutation by oncoplot.

2.5. Clinicopathological Characteristics Analysis. The correla-
tion of targeted DEGs with clinicopathological characteris-
tics: samples (tumor vs normal paracancerous tissue), age
(≤65 vs >65 years), gender (male vs. female), TNM stage
were evaluated by Wilcoxon rank sum test or Kruskal-
Wallis test, the results were shown by boxplot via “ggpubr”
package. The p value of pairwise comparison after Kruskal-
Wallis test was adjusted by method of “holm”. The survival
analysis was performed by log-rank test and Kaplan-Meier
plot using the “survival” and “survminer” packages.

2.6. Function Enrichment Analysis. Gene Ontology biological
process (GOBP), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Hallmark database were used to
evaluate relative activity of pathways among LUSC patients
via two methods: Gene Set Enrichment Analysis (GSEA)
and gene set variation analysis (GSVA). GSEA was per-
formed using GSEA software, GSVA score was calculated
by “GSVA” package, and wilcoxon rank-sum test was used
to compare the scores between high and low targeted gene
expression groups. The results were shown in balloonplot
by “ggplot2” and “ggpubr” package.

2.7. Tumor-Infiltrating Immune Cells Analysis. QuanTIseq
and single sample GSEA (ssGSEA) were utilized to estimate
the abundance profile of tumor-infiltrating immune cells
(TICs) in LUSC cases through “immunedeconv” [22] and
“GSVA” package, respectively. Wilcoxon rank-sum test
and Spearman correlation test were used to explore the rela-
tionship between targeted DEGs and immune cells in differ-
ential analysis and correlation analysis, respectively. Results

of differential analysis were shown in boxplot while correla-
tion analysis was in balloonplot, which were both via
“ggpubr” package.

2.8. Efficacy Prediction of Immunotherapy. ImmuneScore
(defined as proportion of immune ingredient), StromalScore
(defined as proportion of stromal ingredient), and ESTIMA-
TEScore (a symbol of tumor purity, defined as sum of
ImmuneScore and StromalScore) of each LUSC sample were
calculated using “estimate” package [23]. The higher score
indicated higher ratio of immune/stromal component in
the TME. We used mRNA expression level of CD274 to rep-
resent the expression of PD-L1. Besides, via the Cancer
Immunome Atlas (TCIA) (https://tcia.at) [24], the associa-
tion between the expression of targeted DEGs and immuno-
phenoscore (IPS) was explored to predicting its value on
predicting the efficacy of immunotherapy (i.e. PD-1/PD-L1
blockade and/or cytotoxic T-lymphocyte-associated antigen
4 [CTLA-4] blockade) on TCGA-LUSC patients. Tumor
immune dysfunction and exclusion (TIDE) algorithm was
also used to predict response of ICI treatment [25]. Finally,
data of IMvigor210 and GSE126045 datasets were obtained
for clinical validation.

2.9. Statistical Analysis. All statistical analyses were per-
formed by R software (version ≥3.6.2; https://www.r-
project.org) and GSEA software (version: 4.0.3, https://
www.broadinstitute.org/gsea). p value < 0:05 was considered
statistically significant.

3. Results

3.1. Analysis Workflow of the Study. In order to investigate
potential immune-related genes that are associated with

(a) (b)

(c)

Figure 3: Relationship between DLX2 and four pathways. (a) Circos plot showing the correlation between DLX2 expression and four
pathways. (b) Heat map visualizing the identification of DEGs conducted by comparing high DLX2 and low DLX2 expression group. (c)
Waterfall plot presenting the overview of somatic mutations in all TCGA-LUSC samples.
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remodeling of tumor microenvironment in LUSC and capa-
ble of predicting efficacy of immunotherapy, this study was
carried out according to the following analysis process

(Figure 1). A total of 482 TCGA-LUSC patients with com-
plete SNV, mRNA, and clinical data were included
(Figure 2(a)), then the score of four pathways (CD8+αβT cell

(a) (b)

(c)

Figure 4: Functional enrichment analysis of DLX2 by GSEA. (a) GOBP enrichment analysis. (b) Hallmark enrichment analysis. (c) KEGG
enrichment analysis.
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proliferation, CD8+αβT cell differentiation, CD8+αβT cell
activation, and ferroptosis pathways) in these patients were
calculated. DEGs were identified by comparing the expres-
sion of every gene between high-score and low-score group,
the co-upregulated or co-downregulated genes were selected
as candidate targeted DEGs. By intersection, 5 co-

downregulated DEGs DLX2, ERAS, SELENOV, UPK1A,
and ACTL6B were identified, while no co-upregulated
DEG was found. Then we focused on DLX2 for further anal-
ysis, including clinicopathological characteristics, function
enrichment analysis, TICs analysis, efficacy of ICIs treat-
ment, etc. Besides, four GEO datasets (GSE157009,

(a) (b)

(c)

(d) (e)

(f)

(g) (h)

(i)

(j) (k)

(l)

(m) (n)

Figure 5: The abundance of TILs in high DLX2-expression group and low DLX2-expression group. Results of TCGA-LUSC data set by
quanTIseq (a, b) and ssGSEA (c). Results of GSE157009 dataset by quanTIseq (d, e) and ssGSEA (f). Results of GSE157010 dataset by
quanTIseq (g, h) and ssGSEA (i). Results of GSE19188 data set by quanTIseq (j, k) and ssGSEA (l). Bubble plots comprehensively
representing the correlation of DLX2 expression and abundance of immune cells infiltration in all four datasets by quanTIseq (m) and
ssGSEA (n). The asterisks indicated the statistical p value (∗: 0:01 < p < 0:05; ∗∗: 0:01 < p < 0:001; ∗∗∗: p < 0:001). (TIL, tumor-infiltrating
lymphocytes; ssGSEA, single sample gene set enrichment analysis; TCGA, the Cancer Genome Atlas; LUSC, lung squamous cell carcinoma).
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GSE157010, GSE19188, and GSE126045) and IMvigor210
dataset were utilized for validation.

3.2. Identification of DLX2 as a Co-downregulated DEG in
the Four Pathways. The clinicopathological characteristics

of TCGA-LUSC patients were summarized in Supplemen-
tary Table 3. 863 upregulated DEGs and 223
downregulated DEGs were obtained from score of
CD8+αβT cell proliferation pathway. 678 upregulated
DEGs and 60 downregulated DEGs were obtained from

(a) (b)

(c) (d)

(e)

Figure 6: Prognostic value of DLX2 on immunotherapy. (a) The correlation between DLX2 expression and PD-L1, StromalScore,
immuneScore, and EstimateScore in TCGA-LUSC and other GEO data sets. (b) The correlation between DLX2 expression and IPS, IPS
of PD-1/PD-L1 blocker, IPS of CTLA4 blocker, as well as IPS of CTLA4 and PD-1/PD-L1 blocker via TCIA website. (c) the correlation
between DLX2 and TIDE in TCGA-LUSC dataset. (d) Kaplan-Meier curve of PFS for patients with DLX2-low and DLX2-high groups in
TCGA-LUSC dataset. (e) Kaplan-Meier curve of OS for patients with DLX2-low and DLX2-high groups in IMvigor210 dataset. (TCGA,
the Cancer Genome Atlas; LUSC, lung squamous cell carcinoma; GEO, the Gene Expression Omnibus; IPS, immunophenoscore; TCIA,
the Cancer Immunome Atlas; PD-1, programmed cell death protein 1; PD-L1, Programmed cell death-ligand 1; CTLA4, cytotoxic T-
lymphocyte-associated antigen 4; TIDE, tumour immune dysfunction and exclusion).
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score of CD8+αβT cell differentiation pathway. 932
upregulated DEGs and 146 downregulated DEGs were
obtained from score of CD8+αβT cell activation pathway.
202 upregulated DEGs and 855 downregulated DEGs were
obtained from score of ferroptosis pathway. The
intersection of DEGs was visualized in a Venn diagram
(Figures 2(b) and 2(c)). The heat map of the five co-
downregulated DEGs was shown in Figure 2(d). The
volcano plots of four pathways were presented in
Figures 2(e)–2(h). The differential analysis results of five
DEGs in the four pathways were summarized in
Supplementary Table 4. We also explored the expression
profiles of the five downregulated DEGs in tumor samples
compared to normal paracancerous ones. Except for ERAS,
other four DEGs were significantly highly expressed in
tumor samples (Figures 2(i)–2(m)).

After exploring and comparing of the five DEGs, low
expression of DLX2 was found to have the closest associa-
tion with various immune-related pathways, larger amount
of immune-activating infiltration cells, and IPS of PD-1/
PD-L1 blockade and/or combined with CTLA-4 blockade,
which might exert impact on enhancing the immunothera-
peutic response of LUSC. Hereon we focused on DLX2 in
this study. All TCGA samples were divided into DLX2-
high and DLX2-low group by comparing to the median
expression value of DLX2 (FPKMvalue = 0:152, z − score =
0:1044).

The correlation between DLX2 expression and scores of
four pathways were presented in circos plot (Figure 3(a)),
which showed that DLX2 expression was negatively corre-
lated with scores of all these four pathways. Besides score
of ferroptosis pathway presented a negative correlation with
the other three CD8+αβT cell-related pathways. The DEGs
screened by expression of DLX2 was presented in
Figure 3(b). In addition, the detailed information of the
top 30 most frequently mutated genes of all 482 TCGA-
LUSC samples divided by DLX2 expression was presented
in oncoplot (Figure 3(c)).

3.3. Expression of DLX2 Remains Stable in Different
Clinicopathological Characteristics Subgroups. We attempted
to investigate the relationship between the expression of
DLX2 and the clinicopathological characteristics including
age (≤65 vs >65 years), gender (male vs female), TNM stages
of patients in TCGA-LUSC dataset. Interestingly, no signifi-
cant differences were observed in any clinicopathological
characteristics we included (Supplementary figure 1, age: p
= 0:95; gender: p = 0:56; TNM stage: p = 0:50; T stage: p =
0:13; N stage: p = 0:19; M stage: p = 0:26). The above
results indicated that the proportion of expression of DLX2
might be similar in different TNM stage, age, and gender
of LUSC patients. Besides expression of DLX2 was not a
candidate prognostic indicator for overall survival of
patients with LUSC (p = 0:972). The results were consistent
with those found in three GEO datasets (i.e, GSE157009,
GSE157010, and GSE19188). These results showed that the
expression of DLX2 remained stable in different
clinicopathological characteristics subgroups of patients
with LUSC.

3.4. Functional Enrichment Analysis. GOBP, KEGG, and
hallmark enrichment analysis were applied by GSEA to eval-
uate the biological function of DLX2 (Figure 4). GOBP
enrichment analysis revealed that lower expression of
DLX2 was closely associated with T/B cell mediated immu-
nity, T-cell mediated cytotoxicity, regulation of natural killer
cell/lymphocyte/leukocyte mediated immunity, positive reg-
ulation of immune effector process, adaptive immune
response, antigen processing, and presentation. While
higher expression of DLX2 was associated with embryonic
digit morphogenesis, cell growth, neural tube development,
regulation of cellular response to transforming growth factor
beta stimulus, regulation of histone methylation, and protein
methylation. KEGG enrichment analysis revealed that
DLX2-low group was associated with systemic lupus erythe-
matosus (SLE), graft versus host disease, autoimmune thy-
roid disease, and other immune-related disease. DLX2-high
group was associated with Wnt signaling pathway, ERBB
signaling pathway, basal cell carcinoma, etc. Hallmark
enrichment analysis revealed that interferon gamma
response, interferon alpha response, and inflammatory
response were activated in DLX2-low group, meanwhile
DLX2-high group is associated with Wnt signaling pathway.
GOBP, KEGG, and hallmark enrichment analysis were also
conducted by GSVA with similar results (Supplementary
figure 2). Together, results of functional enrichment
analysis strongly supported the correlation between low
DLX2 expression with immune-related function.

3.5. Correlation of DLX2 Expression with Tumor-Infiltrated
Immune Cells. To further investigate the correlation between
DLX2 and the TME, we applied quanTIseq and ssGSEA
algorithm to provide an insight into the differential analysis
between the expression of DLX2 and the abundance of var-
ious types of immune cells of patients with LUSC in TCGA
(Figures 5(a)–5(c)), GSE157009 (Figures 5(d)–5(f)),
GSE157010 (Figures 5(g)–5(i)), and GSE19188
(Figures 5(j)–5(l)) datasets. Moreover, the correlation of
DLX2 expression and abundance of immune cells infiltra-
tion in the four datasets were comprehensively summarized
and capable for comparison by balloonplots (Figure 5(m) for
quanTIseq, Figure 5(n) for ssGSEA). Patients with high
DLX2 expression have lower infiltration of activated CD4
T cells, activated CD8 T cells, central memory CD4 T cells,
effector memory CD8 T cells, immature dentritic cells, and
type 1 T helper cells in all of the four datasets. Besides, others
immune-related cells like macrophages M1 are enriched in
DLX2-low subgroup in most datasets.

3.6. DLX2 as a Promising Prognostic Predictor for ICI
treatment. In TCGA-LUSC dataset, the level of PD-L1
expression, ImmuneScore, and ESTIMATEScore were sig-
nificantly higher in DLX2-low subgroup (p < 0:001 each).
In validation of other three GEO datasets, though the signif-
icance varied, consistent tendency was observed
(Figure 6(a)). The results indicated that low-DLX2 expres-
sion was correlated with a more hot-tumor environment
and might promote the activity of immunotherapy.
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Via TCIA website, lower expression of DLX2 was signifi-
cantly associated with better PD-1/PD-L1 blockade (p < 0:001
) as well as CTLA-4 combined and PD-1/PD-L1 blockade
(p < 0:001), while expression of DLX2 seems had no correlation
with IPS (p = 0:872) and CTLA-4 blockade (p = 0:169)
(Figure 6(b)). Together, lower expression of DLX2 was more
likely to be associated with PD-1/PD-L1 blockage. Moreover,
patients with low-expression of DLX were observed to have
low TIDE prediction scores (p < 0:0001), indicating better ICI
treatment response. (Figure 6(c)).

Based on data of 9 LUSC patients receiving nivolumab
monotherapy in GSE126045 dataset, DLX2-low group was
associated with a numerically prolonged PFS (Figures 6(d),
3.4 months [95% CI 0-9.20] vs 1.1 months [95% CI 0-
2.86]; p = 0:866). Though the statistically significant differ-
ence was not reached, the tendency was observed. Based
on clinical data of 348 patients receiving atezolizumab in
IMvigor210 dataset, patients in DLX2-low group have sig-
nificant longer OS than those in DLX2-high group (median
OS: 10.8 vs 7.4 months; hazard ratio [HR]=0.74, 95%CI
0.57-0.96; p = 0:024) (Figure 6(e)).

4. Discussion

In this study, we aimed to determine immune-related genes
which have potential efficacy predicting value of immuno-
therapy in patients with LUSC. Data of TCGA-LUSC was
applied to discover immune-related genes, three GEO data-
sets were used for validation, besides IMvigor210 dataset of
348 patients with urothelial carcinoma receiving the treat-
ment of anti-PD-L1 antibody atezolizumab and
GSE126045 dataset of 9 patients with LUSC under nivolu-
mab treatment were utilized for identifying the prognostic
value of DLX2 on ICI treatment. The integrative results of
a series of integrative bioinformatics analysis revealed for
the first time that DLX2 was a potential immune-related
gene, and low expression of DLX2 might predict a more
active immune environment and better response to ICIs
treatment in LUSC patients.

DLX gene family is composed of six members DLX1/2,
DLX3/4, and DLX5/6 genes which serve as bigene clusters
in the genome on different chromosomes, act as transcrip-
tional factor and have indispensable roles in embryonic
morphogenesis and postnatal development [26, 27]. In
human, DLX2 is located on chromosome 2q31.1. Acting as
a transcriptional activator, DLX2 was found to play a role
in terminal differentiation of interneurons, it also might play
a role in patterning and morphogenesis of craniofacial
region [28–30]. While several researches have proposed the
association between dysregulation of DLX2 and both solid
and hematological malignancies. The overexpression of
DLX2 was related to poor prognosis of hepatocellular carci-
noma, glioblastoma, etc [31, 32]. It was found to promote
the proliferation and metastasis of prostate cancers [33]. In
a study of gastric cancer, increased expression of DLX2
was found to be correlated with more advanced stage, but
it was not an independent prognostic factor [34]. In basic
research, DLX2 was found to have correlation with

radiation-induced epithelial-mesenchymal transition and
resistance of radiotherapy [35].

While its value in LUSC has not been explored previously.
In this study, the expression of DLX2 was firstly identified as
a candidate prognostic factor specifically on patients receiving
immunotherapy. Additionally, analyses on clinicopathological
characteristics of DLX2 revealed that its expression remained
stable as age, gender, or TNM stage change; we can speculate
that its function might remain consistent in different subgroups
of LUSC patients. The results of function enrichment analysis
showed that low-expression of DLX2 was closely related to var-
ious immune-related pathways like T/B/NK cell mediated
immunity, interferon gamma/alpha response, and various auto-
immune diseases. Interferon-γ (IFN-γ)/Interferon-α (IFN-α)
response was found to positively relate to low expression of
DLX2. IFN-γ is a kind of cytokine produced predominantly
by T cells and NK cells in response to a variety of inflammatory
or immune stimuli [36]. IFN-γ has been identified as an irre-
placeable role in the activation of cellular immunity and the
stimulation of antitumor immune response [37]. The treatment
of ICIs would lead to the production of IFN-γ, then promote
the elimination of cancer cells [38]. Besides high expression of
IFN-γ was shown accompanying with significantly longer PFS
in patients with NSCLC or melanoma patients [39]. While the
role of IFN-γ is controversial since studies have also proposed
its relationship with tumor progression, which needs further
investigation [37]. Additionally, IFN-α was found to augment
the expression of PD-L1 in immune cells, which can also
explain the better outcome of PD-1 inhibition in subgroup with
low expression of DLX2 [40].

Low-expression DLX2 is related with various autoim-
mune disease (AID) like SLE and autoimmune thyroid dis-
ease as presented in KEGG functional enrichment analysis.
Autoantibodies of AIDs might enhance the presentation of
cancer antigens to immune cells, improving immune surveil-
lance. Though the correlation between elevated autoanti-
body levels and higher incidence of immune-related
adverse events (irAEs) has been proposed in previous studies
[41, 42]. Its correlation with better clinical outcome of
immune-related disease has also been observed. The result
of a cohort of 137 patients with advanced NSCLC who
received nivolumab or pembrolizumab monotherapy dem-
onstrated that PFS was significantly prolonged in patients
with any preexisting autoimmune antibodies like rheuma-
toid factor, antinuclear antibody, antithyroglobulin, and
antithyroid peroxidase than those without (6.5 months vs.
3.5 months, HR = 0:53, p = 0:002) [42].

LUSC has been found to have more predicted neoepi-
topes than lung adenocarcinoma [43]. Besides, alternations
of many pathways associated with development and pro-
gression of malignancies (such as Notch, Hedgehog, Wnt,
and ErbB pathways) were found to significantly overexpress
in LUSC compared to LUAD [44]. Function enrichment
analysis also revealed that higher expression of DLX2 was
associated with cell growth and development, Wnt signaling
pathway, histone methylation, transforming growth factor β
(TGF-β) pathway, and many cancers. TGF-β has been
established to play roles in cancer growth, differentiation,
migration, and progression [45]. Recently, TGF-β was found
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to suppressed T helper 2-cell-mediated cancer immunity,
targeting TGF-β signaling blockade in CD4+ T cells is a
novel way to remodel TME and restrict tumor progression
[46–48]. Some epigenetic aberrations such as DNA methyl-
ation, histone acetylation, or methylation were found to help
tumor cells to escape immune surveillance. Increased
immune- or inflammatory-related gene signatures were
observed when inhibiting epigenetic mechanisms [49]. Inhi-
bition of histone methylation is a way to promote tumor
immunogenicity and improve the effectiveness of immuno-
therapies when combined with ICIs [50, 51].

In the analysis of TME, low expression of DLX2 was
associated with various tumor-infiltrating immune-positive
cells like activated CD4/CD8 T cells, memory CD4/CD8 T
cells, M1, etc. Research has found activation of Wnt signal-
ing pathway suppressed the proliferation of CD8+ memory
T cells and differentiation of effector T cell, generated
CD8+ memory stem cells and enhanced the polyfunctional-
ity of memory CD8+ T cell [52–54]. DLX2 functions as a
transcription factor of Wnt signaling pathway, which can
partly explain the more abundant infiltration of immune-
enhancing cells in DLX2 low expression group. Patients with
low expression of DLX2 was also found to have higher M1
macrophage counts. M1 macrophages play an important
role in immune function by directly mediating cytotoxicity
and antibody-dependent cell-mediated cytotoxicity (ADCC)
to kill tumor cells [55, 56].

Limitations existed in this study. Firstly, since limited
number of LUSC patients with ICI treatment was available
to confirm the prognostic value of DLX2, its significant sig-
nificance might be ignored, while the better ICI treatment
outcome in DLX2-low patients was observed in a large
sample-size of patients with other cancers. Larger
population-based studies are warranted to identify its prog-
nostic value on ICI treatment of LUSC patients. Secondly,
this study is only based on integrated bioinformatical analy-
sis, experimental evidence should be added in future
research to support the results of this study.

5. Conclusion

Our study of integrated bioinformatical analysis implied that
DLX2 could serve as a promising indicator for remodeling
TME status and predicting the immunotherapy treatment
outcome of LUSC. Further investigations are warranted to
explore the potential prognostic value of DLX2 on ICI treat-
ment and the underlying mechanisms.
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