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ABSTRACT With the number of cancer cases projected to significantly increase over time, researchers are currently exploring
‘‘nontraditional’’ research fields in the pursuit of novel therapeutics. One emerging area that is steadily gathering interest revolves
around cellular mechanical machinery. When looking broadly at the physical properties of cancer, it has been debated whether a
cancer could be defined as either stiffer or softer across cancer types. With numerous articles supporting both sides, the evi-
dence instead suggests that cancer is not particularly regimented. Instead, cancer is highly adaptable, allowing it to endure
the constantly changing microenvironments cancer cells encounter, such as tumor compression and the shear forces in the
vascular system and body. What allows cancer cells to achieve this adaptability are the particular proteins that make up the me-
chanical network, leading to a particular mechanical program of the cancer cell. Coincidentally, some of these proteins, such as
myosin II, a-actinins, filamins, and actin, have either altered expression in cancer and/or some type of direct involvement in can-
cer progression. For this reason, targeting the mechanical system as a therapeutic strategy may lead to more efficacious treat-
ments in the future. However, targeting the mechanical program is far from trivial. As involved as the mechanical program is in
cancer development and metastasis, it also helps drive many other key cellular processes, such as cell division, cell adhesion,
metabolism, and motility. Therefore, anti-cancer treatments targeting the mechanical program must take great care to avoid
potential side effects. Here, we introduce the potential of targeting the mechanical program while also providing its challenges
and shortcomings as a strategy for cancer treatment.
SIGNIFICANCE The number of cancer cases are projected to significantly increase over time, and new strategies are
needed to address this deadly disease. Cancer is inherently a disease of altered cell mechanics. Because cancer cells are
subjected to numerous types of mechanical stresses during the course of cancer progression, they acquire a system of
mechanoresponsive proteins, which allow them to adapt to this changing mechanical landscape. Here, we review the
alterations in the cellular mechanical systems associated with cancer progression and how these systems are integrated
with many other systems within the cell. We also review the current status of cancer therapeutics that target this machinery
as well as the potential opportunity for new therapeutic development in this space.
INTRODUCTION

Cancer is a unique disease in which its pathology is not pre-
dominantly caused by environmental, pathogenic, or para-
sitic factors but rather inopportune mutations that render a
normal cell malignant. As a result, normal cells begin to
develop characteristics of unchecked growth and aberrant
behavior, which then become detrimental as tumor forma-
tion commences. Being able to understand what gives rise
to cancers, how they become metastatic, and the factors
that promote or demote their cancerous behavior requires
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the unraveling of complicated biological and medical prob-
lems. When pathologists examine cancer tissue, they can
decipher different cancer stages based on cell and tissue
shape. Morphology and shape of cancer cells is regulated
by many factors such as intracellular tension and altered nu-
cleus function. It is, however, majorly governed by the
cortical cytoskeleton, which helps define the stage of cancer
progression. These elements are determined by mechanical
factors. Specifically, a mechanical program grants these
cancer cells the ability to adapt and navigate the constantly
changing mechanical environments (i.e., TME). In fact, the
mechanical surroundings and the mechanical stresses they
impose on the cancer cells continuously evolve throughout
the course of cancer development (Fig. 1). These stimuli,
in turn, affect gene expression and tumor progression. The
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FIGURE 1 The interactions between the external mechanical environ-

ment and the intrinsic mechanoresponsive machinery. During different

stages of cancer progression, cancer cells experience various external me-

chanical inputs, starting from ECM stiffness and tension, but these mechan-

ical inputs progressively expand to include fluid shear stress and cell-cell

collisions and interactions as cancer progresses. While these forces have

significant impact on gene expression and the development of cancer cells,

these cells also harbor an intrinsic mechanoresponsive machinery that en-

dows the cells with the ability to sense and respond to these mechanical

stimuli. For a Figure360 author presentation of this figure, see https://doi.

org/10.1016/j.bpj.2022.04.039.
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mechanical program renders the cancer cells the ability to
constantly navigate and respond to mechanical stimuli and
potentially acts as a node of communication to other cellular
pathways that also drive cancer development.

For the purposes of this review, we point out that the
mechanical program includes two sets of actin-associated
mechanical proteins. One set can bear mechanical load
without accumulating in response to mechanical stress
(i.e., non-mechanoresponsive). In contrast, a separate set
of proteins bears load and accumulates locally in response
to the mechanical stresses (i.e., mechanoresponsive)
(Fig. 1). As one example of these differential roles, in
Dictyostelium, myosin II, a-actinin, cortexillin, and filamin
can sense and respond to applied mechanical stress. In
contrast, other actin-associated proteins, such as dynacortin,
coronin, and fimbrin, can bear load but not accumulate in
response to stress (1). Removal of these load-bearing
cross-linkers shifts the applied stresses over to the mecha-
noresponsive proteins, such as myosin II, allowing it to
accumulate to a greater extent in response to smaller
stresses. In the human scenario, specific paralogs of
a-actinins (ACTN4), filamins (filamin B [FLNB]), non-
muscle myosin II (NMII) proteins are mechanoresponsive,
while specific sister paralogs are not (NMIIB’s mechanores-
ponsiveness is unique in that it is cell-type specific).
Interestingly, the expression levels of at least one these me-
chanoresponsive proteins are elevated in many different
types of cancers (2,3). As a result, these changes reflect a re-
programming of cancer that favors increased mechanical
adaptability required for growth and metastasis.
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In this review, we discuss how we can consider cancer as
a biophysical disease, where the mechanical properties of
the surroundings and the cells themselves dictate different
stages of cancer progression. We also focus on the mechan-
ical program that confers the degree of adaptability neces-
sary for cancer cells to navigate through complex
mechanical environments, and we discuss the targetability
of this program alongside potential challenges for future
cancer therapeutic development.
THE TUMOR MECHANICAL MICROENVIRONMENT
IS CONSTANTLY EVOLVING

The tumor microenvironment (TME) is a dynamic land-
scape comprised of cancer cells surrounded by extracellular
matrix (ECM) and adjacent stromal cells. The TME con-
tains chemical signals that can promote growth and invasion
of cancer cells through alternating their mechanical proper-
ties and behaviors. The presence of intratumoral hypoxia
has been shown in several studies to associate with an in-
crease in invasion and metastasis (4,5). Tumor cells respond
to hypoxia through the upregulation of hypoxia-inducible
factors (HIFs) 1 and 2. The upregulation of HIFs positively
correlates with metastasis and poor prognosis in breast can-
cer (6–9). Chronic hypoxia also causes HIF-dependent pul-
monary endothelial cell death and increases microvascular
permeability, predisposing lungs for metastases (10).
Another study revealed that the enhanced motility and inva-
siveness of breast cancer cells in hypoxic conditions are
facilitated by HIF-dependent RhoA-ROCK1 signaling. Un-
der these conditions, phosphorylation of myosin phospha-
tase target subunit 1 (MYPT1) and myosin light chain
(MLC) is increased, leading to changes in integral mechan-
ical activities of these cells, including cell contraction,
focal-adhesion formation, and matrix contraction (11).
Other chemical signals, such as stress hormone signaling
through b-adrenergic receptors, can also modulate the me-
chanics of cells involved in the tumor and TME. Soluble
stress hormones act on Arp2/3, causing actin-filament rear-
rangements that subsequently increase the stiffness and
reduce the deformability of macrophages. These changes
can affect the migration and phagocytosis ability of these
cells (12). Strikingly, the activation of b-adrenergic
signaling also reduces deformability in various cancer cell
lines, including ovarian, prostate, melanoma, and leukemia
cells. This reduction is associated with actin-cytoskeleton
remodeling and myosin II activity (13). These findings
elucidate the consistent observation that b-adrenergic
signaling is strongly associated with enhanced metastasis
and cancer progression (14–16).

Apart from chemical stimuli, the TME also harbors con-
stant physical and mechanical inputs, thereby forming the
mechanical microenvironment. Remarkably, the ECM
within the TME is typically thought to be a by-product of
the tumor and is actively involved in promoting cancer
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growth and proliferation, enhancing invasion and dissemi-
nation, and altering the gene-expression profile of the tumor
cells and, in turn, having profound influence on cancer pro-
gression (17).

As tumor formation occurs, certain signals stimulate
increased matrix deposition, increasing the overall stiffness
of the ECM surrounding the tumor. The expanding tumor
gradually bears forces imposed by its surroundings, and,
in return, the tumor experiences compression and tension,
leading to activation of various growth factors that aid tumor
progression (18,19). Simultaneously, the ECM can be re-
modeled as a consequence of tumor compression, which
further exacerbates the tension placed on tumor cells (20).
In the instance of invasion, invading cancer cells have to
navigate against a progressively stiffened ECM toward the
circulatory system (21,22). Throughout this process, these
cells continue experiencing other various mechanical forces,
ranging from interstitial compression to shear forces. As
migrating cancer cells intravasate, they become exposed to
shear forces from other adjacent cells within the circulatory
system as well as from hydrodynamic flow (23–25).

Accumulating evidence shows that the tumor mechanical
microenvironment can direct and reprogram cancer initia-
tion, proliferation, and invasion. In fact, numerous studies
confirm that the mechanical niche can significantly stimu-
late cancer development (26–28). Moreover, the mechanical
microenvironment is a constantly evolving landscape
throughout the course of cancer progression, which contin-
uously challenges cancer cells to adapt to these mechanical
cues.
SUBSTRATE STIFFNESS AFFECTS CANCER
DEVELOPMENT

Substrate stiffness is one of the major mechanical inputs
experienced by cells and is largely defined by the composi-
tion of the ECM surrounding the tumor (27,29–31).
Increasing evidence shows that substrate stiffness affects
numerous signaling pathways and acts as a driver for cancer
development. For example, increased ECM stiffness leads to
enhanced invasion and metastasis in breast cancer cells in
three-dimensional models (20,32,33). Other studies in
colorectal cancer indicate that matrix stiffness leads to
tumorigenesis and cancer progression (34–36). Specifically,
increased activity of lysyl oxidase, an enzyme that catalyzes
collagen cross-linking, leads to increased substrate stiffness
and allows for progression of colorectal cancer (34). Similar
observations were also made in other cancer types, such as
glioblastoma and pancreatic and ovarian cancers (29,37,38).
Interestingly, substrate stiffness can in turn influence the
mechanical properties of the ECM by altering gene expres-
sion of cells. Expression of integrins mediated through YAP
signaling, matrix metalloproteases, and ECM proteins are
increased as substrate stiffness increases (39). It is important
to note that YAP signaling may not mediate its effects on
substrate stiffness in all cancer types, and YAP has a
context-dependent role in mechanotransduction. For
example, using tunable three-dimensional cultures, a study
established that mechanotransduction occurs independently
of YAP signaling in breast cancer (40). Regardless, this
positive feedback between substrate stiffness and ECM
mechanics highlights the cross communication between
substrate stiffness, external mechanical forces, and gene
expression.

Many cytoskeletal signaling and regulation pathways are
directly altered by substrate stiffness during tumor progres-
sion. For example, ROCK1, a regulator of myosin II activity,
and ROCK2, a regulator of cofilin, are implicated in modu-
lating breast cancer motility in a substrate-stiffness-depen-
dent manner (41). Using polyacrylamide gels mimicking
different levels of substrate stiffness of breast tissue, the au-
thors found that cancer cells cultured on stiff substrates
migrated and invaded more than those cultured on soft sub-
strates. These differences are accompanied by elevated
expression of ROCK1 and ROCK2 along with enhanced
activation of their downstream targets. Another study shows
the critical role of myosin II, a central cytoskeletal protein,
in promoting tumorigenesis on stiff substrates. In this sce-
nario, the transforming growth factor-b1 pathway responds
to elevated substrate stiffness and acts as a key driver for
cancer proliferation in hepatocellular carcinoma and breast
cancer cells. Furthermore, the addition of blebbistatin, a
myosin II inhibitor, blocks the upregulation of the trans-
forming growth factor-b1 pathway (42,43).
OTHER MECHANICAL FORCES ALSO INFLUENCE
CANCER PROGRESSION

In addition to substrate stiffness, cancer development is
remarkably influenced by other mechanical inputs origi-
nating from its surroundings (26,27,44). A recent study
demonstrated that cancer invasion is enhanced as its mechan-
ical confinement increases. Specifically, the migration speed
of colon and breast cancer cells is higher through narrow mi-
crochannels than through wide channels, both of which
mimic the various dimensions of TME confinement (45).
Furthermore, hemodynamic forces, immunological stress,
collisions, and fluid forces greatly impact the gene-expres-
sion profile of cells during invasion. Shear stresses were
found to act through ligand-dependent activation and phos-
phorylation of the MAPK/PI3K/Akt pathway, a prominent
cancer proliferation pathway (46,47). While shear forces in
the circulation are traditionally thought to impose cell death
on circulating tumor cells, more intermediate shear forces
can facilitate adhesion and extravasation of circulating tumor
cells, enhancing their metastatic potential (48,49).

Beyond shear forces found in the circulatory system, flu-
idic forces in the tumor mechanical microenvironment can
also modulate cancer progression, especially during inva-
sion and metastasis. Using microfluidic platforms, a study
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found that hydrodynamic forces enhance epithelial-mesen-
chymal transition, a critical step of metastasis, in ovarian
cancer cells (50). Fluid forces also increase glioblastoma
cell invasion through CXCR4 signaling, a well-studied
regulator of glioma invasion. Cells that experience high
fluid pressure are correlated with cancer aggression in pa-
tient-derived glioma stem cells (51). Additionally, a separate
study indicates that tissue fluidity endows glioblastoma cells
with the ability to effectively infiltrate into normal brain
matter, facilitating their aggressive behavior. The fluid prop-
erty of the tumor mass, measured by magnetic resonance
elastography, correlates significantly with the fingering
growth capacity of these cells (52).

Altogether, there is an immense range of mechanical
forces that cancer cells must endure during transformation
and disease progression. These external forces have strong
impacts on the development, progression, and aggressive-
ness of the tumor cells. However, reciprocity between the
mechanical microenvironment and intracellular gene
expression and signaling also exists. These cancer cells
are not merely acted upon by their physical surrounding.
Increasing evidence suggests that an intrinsic mechanical
program lends these cells the ability to constantly sense
and adapt to their surroundings.
AN INTRINSIC PROGRAM ALLOWS CANCER TO
BE MECHANICALLY ADAPTIVE

Previous studies found a positive correlation between
increased tissue stiffness and cancer behavior, which sug-
gests that cancer progression depends on tumor tissue stiff-
ening (53,54). In addition, tissue stiffness can result from
increased deposition of matrix proteins like type 1 collagen
by cancer-associated fibroblasts (55–59). However, a recent
study showed that inhibiting tumor tissue stiffness in liver
of pancreatic ductal adenocarcinoma (PDAC) metastasis
enhanced tumor growth and led to diminished survival in or-
thotopic PDACmouse models (60). This study indicates that
the tumor stroma has a protective role in PDAC, resulting in
the opposite outcome from the prediction of a pro-tumori-
genic influence on PDAC progression. These studies indi-
cate that there has been a lack of consensus, correlating
cancer tissue stiffness and progression.

This lack of consensus also follows the same trend in the
correlation between cancer cell stiffness and invasiveness.
Stiffer pancreatic cancer cells were shown to be more inva-
sive (61). On the other hand, tumor cells and metastatic tu-
mor cells have been reported to be soft (62,63). Also, recent
studies revealed that soft cancer cells can evade T cell
killing by impeding perforin-pore formation (64). Further-
more, cell softness can be used as a biomarker for cancer
cells with tumor repopulating ability and stem cell markers
(65). In the progression of cancer, tumor cell heterogeneity
is important to note because some tumor cells are cancer
stem cells or tumor stem cells that are intrinsically soft
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and more resistant to anti-cancer drugs. As a result, using
cell softness as a biomarker for cancer cells with more
aggressive characteristics remains unsettled. Studies have
shown that more deformable cancer cells tend to be more
invasive (29,66). On the other hand, there are studies where
invasive cancer cells tend to be stiffer (13,61,67). Taken
altogether, the relationship between cancer tissue and cell
stiffness and invasive behavior depends on the context.

Given the context-dependent nature of cancer behavior, it
is important to consider the external landscape experienced
by cancer cells and how the internal mechanical machinery
must respond to these inputs rather than focusing on individ-
ual mechanical phenotypes such as cell stiffness. As with
healthy cells, cancer cells must be able to integrate chemical
and physical signals from their external environments.
Unlike their healthy counterparts, the survival of cancer
cells is contingent upon their ability to adapt to mechani-
cally distinct, yet ever-changing, microenvironments. This
adaptation requires the mechanoresponsive machinery,
which includes the proteins that are uniquely poised to sense
and respond to mechanical stresses and that help establish
the mechanical and force-producing activities of the cell.
Collectively, the mechanoresponsive cytoskeletal machin-
ery in humans encompasses NMII proteins (NMIIA,
NMIIB, and NMIIC), specific paralogs of a-actinins
(ACTN4, but not ACTN1), and FLN (FLNB, with FLNA
to a much smaller extent) (2,68,69).

In cancer, NMII proteins play essential roles in tumor for-
mation, growth, and metastasis, which is driven by NMII’s
role in adhesion, mechanotransduction (70), motility, and
contractility. A comprehensive review compiled a list of
the different cancers with altered NMII expression and/or
regulation (3). Interestingly, different cancers express spe-
cific subsets of NMII paralogs and exhibit different trends
across cancer types and detection methods. For example,
PDACs expresses NMIIA and NMIIC but not NMIIB (2).
Additionally, driving myosin assembly reduces tumor cell
dissemination and metastasis in in vitro and in vivo models
(2,71). A recent study mimicked the mechanical properties
of breast cancer tissue to investigate the roles of NMIIA
and NMIIB in regulating cell’s response to substrate stiff-
ness. In this study, the authors found that the signaling path-
ways (Rac1-NMIIA and PKCz-NMIIB) triggered by
substrate stiffness also regulate the distribution and activa-
tion of NMIIA and NMIIB (72). Note that each NMII iso-
form’s function does not scale with their cellular
concentrations. The isoforms exist in different concentra-
tions that can span 100-fold in range (e.g., NMIIC ranges
from 5–10 nM when present, while NMIIA ranges from
500–750 nM in pancreatic cells). Yet, depletion of either
has a similar magnitude in decrease of cortical tension (2).

ACTNs play a different role compared with NMII, but
their role is just as pervasive across different cancer types.
The ACTN family consists of four paralogs that act as
actin cross-linkers: ACTN1–4. ACTN4 has been linked to
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metastasis through alterations in cell behaviors and differen-
tiation (3). A group recently found that ACTN4 promotes
proliferation, migration, and metastasis in osteosarcoma
and augments invasive ability through the nuclear factor
kB pathway (73). In addition, a recent study found that
ACTN4 serum levels were significantly higher in cervical
cancer patients than in the healthy control patients, suggest-
ing that ACTN4 could be a prognostic biomarker for cervi-
cal cancer (74). In cancer stem cells, inhibition of ACTN4
led to increased sensitivity to anti-cancer drugs and reduced
spheroid formation, proliferation ability, and tumor forma-
tion in vivo (75). Moreover, ACTN4 in breast cancer pro-
motes invasive ability by directing NMIIA localization
and distribution and NMIIB mRNA and protein expression
(76). In PDAC cells, ACTN4 has been shown to interact
with the GTPase dynamin 2 to alter invasive ability and
ECM remodeling. The disruption of the dynamin 2 and
ACTN4 interaction prevents migration and invasion due to
a compromised actin-rich structure present at the basal sur-
face of cells (77).

The FLN proteins are a family of actin cross-linkers that
associate with actin filaments (F-actins) to make a dense gel
meshwork (78). Human cells encode for three isoforms:
FLNA, FLNB, and FLNC (79). Collectively, FLNs are
found in the cell cortex, the F-actin-rich region underlying
the plasma membrane (79–81). Recently, work discovered
that FLNB knockout in HeLa cells altered the expression
of genes involved in apoptosis, tumorigenesis, and metasta-
ses (82). Additionally, FLNB expression is upregulated spe-
cifically in pancreatic cancerous glands, whereas FLNA is
elevated across the entire pancreatic tissue and stroma (2).
A recent clinical study found that FLNA expression
increased after chemotherapy in patients with colorectal
cancer (83). Furthermore, increased FLNA expression
induced resistance to a tyrosine kinase receptor inhibitor
that is used to treat non-small cell lung cancer (84). Finally,
the correlated expression of FLNA and clusterin, a secreted
glycoprotein, has the potential to be a hepatocellular carci-
noma biomarker (85).

An emerging relevant family of proteins that might play
an important role in the mechanical program are the
dynamins. The dynamin superfamily consists of dynamins
1, 2, and 3. The superfamily encompasses multi-domain
GTPases, which have a modular structure, are greater than
70 kDa, and have a low affinity for guanine nucleotides
(86). The dynamin-superfamily proteins mediate membrane
fission and fusion during endocytosis and organelle biogen-
esis and organize the cytoskeleton, among others (87).
Dynamins 1, 2, and 3 have different expression levels in tis-
sue. A recent study used qRT-PCR and immunohistochem-
istry to determine the expression of dynamins 1, 2, and 3 in
tissue sections of human hepatocellular carcinoma HCC.
Specifically, the group found that the expressions of dyna-
mins 1, 2, and 3 were upregulated in patients with human
hepatocellular carcinoma (88). Another group inhibited
dynamin in pediatric acute leukemia cell lines and found
suppressed cell proliferation and induced caspase-depen-
dent apoptotic cell death (89). One study demonstrated
how dynamin GTPase bundles F-actins by forming a helical
structure (90). Furthermore, they found that the assembly
and disassembly cycles of dynamin generate mechanically
stiff actin bundles (90,91).

Overall, NMII, ACTN, and FLN proteins are heavily
implicated in cancer progression and serve as biomarkers
of cancer formation and progression. Altogether, these ob-
servations further highlight the role these mechanorespon-
sive proteins have in allowing cancer cells to endure and
survive in a broad range of changing mechanical environ-
ments. Unsurprisingly, upregulation of this mechanical pro-
gram is associated with poor clinical outcomes (88,92–97).
Pancreatic cancer seems to be particularly vulnerable, as
multiple mechanoresponsive proteins are upregulated in
PDAC progression.
TARGETING THE MECHANICAL-ADAPTABILITY
PROGRAM AND ITS CHALLENGES

The mechanical-adaptability program embedded in the me-
chanical network is an alluring area for cancer therapeutics.
Its direct role in tumor metastasis and proliferation makes it
an appealing target (98). Unsurprisingly, proteins within this
mechanical program have altered expression in many forms
of cancer (98). By manipulating this program, one can ima-
gine modifying these proteins to diminish or even reverse
cancer progression. Here, we present various studies target-
ing mechanical program components in the hopes of reme-
dying cancer. These targets include F-actins, a-actinin,
NMII, and 14-3-3 (3,71,99,100). However, from a cell-
biology standpoint, a system-wide inhibition of individual
mechanical proteins should be handled with caution, as per-
turbing a single component of the mechanical system can
lead to unforeseen consequences. Due to this, extensive
consideration must be addressed before attempting to
modify the mechanical network. The mechanical network
is anything but an isolated system, as it is integrated with
many other processes and functions of the cell that can
also be affected. Such diverse processes include signaling,
gene expression, and cell metabolism (101–109). As a
result, solving one process’s defects can introduce a new
problem in another cellular process. It is therefore impera-
tive to understand the downstream effects of manipulating
mechanical-network components in treating cancer.
Targeting the mechanical program through actin

Actin is a globular protein that assembles into filaments to
create a polymeric network in the cell’s cortex and cyto-
plasm. Actin serves as one of the main structural compo-
nents of the cell, contributing to numerous cellular
capabilities such as cell motility, division, adhesion, and
Biophysical Journal 121, 3573–3585, October 4, 2022 3577
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signaling (71,98). In the context of cancer, actin reorganiza-
tion is especially involved in tumor metastasis and prolifer-
ation (98). The Yu et al. study explored targeting actin as a
potential therapeutic. Tumor cells were exposed to magnetic
compounds that bind to the cell’s actin cytoskeleton. Upon
applying an alternating magnetic current, the compounds
aggregate and disrupt the cell’s actin, leading to downstream
cell-cycle arrest and death (110). The main obstacle of this
approach lies with the challenges of targeted drug delivery
to tumor cells. For another potential therapeutic angle,
Yamaguchi and Condeelis summarize the roles of several
actin remodeling proteins in the cancer-progression process.
These proteins include N-WASP, cofilin, and cortactin, all of
which have altered expression levels in different cancers,
leading to enhanced metastatic capabilities (98). Collec-
tively, these changes in expression of this network of
proteins suggests the target potential of these proteins for
cancer intervention.

The following studies reveal the challenges of targeting
actin and the regulators of actin assembly within a tumor
environment. Absi et al. found that knocking down
N-WASP or Rho-subfamily GTPase CDC42 in breast can-
cer cells diminished the rapid F-actin remodeling and accu-
mulation at the immune synapse region in response to
natural killer cells (111). As a result of impairing the actin
response, natural killer cells were then able to recognize
cancerous cells and mark them for removal (111). Conse-
quently, researchers exploring therapeutics must recognize
actin’s role in other processes; otherwise, unaccounted ef-
fects such as increased metastasis and immune evasion
may arise. Outside of conventional cancer-related conse-
quences, Park et al. introduced a cytoskeletal and metabolic
link while investigating actin’s role in glycolytic activity
(101). Actin assembly sequesters TRIM21, an E3 ubiquitin
ligase that mediates phosphofructokinase-protein degrada-
tion and renders it inactive. Actin polymer sequestration
of TRIM21 increases phosphofructokinase-protein levels,
thereby enhancing the glycolytic activity in non-small cell
lung cancer (101,112). This study complements the exhibi-
tion of aerobic glycolysis, i.e., the Warburg effect, of cancer
cells where glycolysis is favored despite having access to
the more ATP efficient metabolic process of oxidative phos-
phorylation (113). In short, actin association with meta-
bolism emphasizes the overlap that must be considered
when targeting the mechanical program’s components that
associate with actin assembly and organization.
Targeting the mechanical program through
myosin II

As introduced previously, myosin II is another key compo-
nent of the mechanical-adaptability program. In cancer,
myosin II plays an array of roles in cancer formation and
disease progression (70). Myosin II has three paralogs
(NMIIA, NMIIB, and NMIIC) with distinct roles in cell
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motility and spatial-force generation with differing impacts,
depending on cell type (114). NMII depletion reduced cell
migration and cell-to-cell adhesion in mammalian cells
(115). Despite not being a defined ‘‘genetic’’ cancer driver,
NMII proteins lay at the intersection of many different path-
ways that allow cancer cells to exploit the myosin II machin-
ery (70,115). For example, the Rho-ROCK pathway in
cancer has been shown to induce tumor cell migration and
invasion via altered ROCK function, which increases
actin-myosin assembly and contraction (116). Additionally,
NMIIA has been implicated as a tumor suppressor in squa-
mous cell carcinomas, in which its expression improved p53
stability and nuclear accumulation (114,117,118). These
observations emphasize the potential of altering NMII
directly instead of going after the cancer-altered pathways.
However, unsurprisingly, NMII modulation is anything but
simple.

Myosin II proteins are integrated with several cellular
processes that include membrane-associated proteins,
RNA-interacting proteins, nuclear proteins, and metabolic
enzymes (119). This concept of an integrated contractility
network has been explored in Dictyostelium discoideum
and lends insight into the intricacy of the mammalian
system. For example, Ren et al. found several metabolism-
related proteins, including adenine nucleotide translocase
and methylmalonate semialdehyde dehydrogenase, that,
upon overexpression, serve as genetic suppressors of
myosin II mutants (120). A follow-up proteomic study iden-
tified interactions between metabolic components and the
cytoskeleton, and methylmalonate semialdehyde dehydro-
genase turned up again as a biochemical interactor of the
contractility network (121).

To further complicate the therapeutic potential of NMII,
studies show the ambiguous nature of NMII in different
cell types. In glioblastoma, in vivo modeling revealed indi-
vidual NMIIA or NMIIB knockout failed to suppress tumor
proliferation and invasion individually (108). When NMIIA
was deleted alone, tumor invasion was reduced, but tumor
lethality increased because proliferation was enhanced.
However, when both NMIIA and NMIIB were deleted
together, tumor invasiveness and proliferation were reduced.
Similarly, as described by Wang et al., NMIIA’s role as an
oncogene or tumor suppressor still remains unresolved. In
their review, they discuss that high expressions of NMIIA
in gastric and esophageal cancer are correlated with poor
prognosis and metastasis. In contrast, they also outline
that in skin, head, and neck squamous carcinomas, NMIIA
levels were reduced. They conclude that NMIIA is impor-
tant in post-transcriptional activity and nuclear retention
of p53 (122). Thus, NMIIs can be either cancer promoting
or inhibitory depending on the context. This differential
impact undoubtedly reflects the cell type and its particular
state, as well as the tumor cell’s environment, which is
constantly evolving. Thus, while it is possible to target com-
ponents of the mechanical network, we must consider
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unintended consequences due to interactions with other
cellular processes.
FIGURE 2 The challenges of targeting the mechanical program due to its

intricate relationship with other cellular processes. With more interest in

looking at the components of the mechanical program for cancer therapeu-

tics, a holistic view of the system is required. The mechanical program, like

other cellular processes, affect different processes and vice versa. As a

consequence, modulating one process that results in tumor-suppressive

effects may result in pro-tumor behavior in another. Those marked with

asterisks (*) are example drugs that modulate the mechanical program.
Variable results in different experimental systems

Given the complexity of different experimental systems, the
results of studies on the mechanical-adaptability program
with cultured cells and those with in vivo systems may not
always align. For example, when Ivkovik et al. used blebbis-
tatin to inhibit NMIIA in an ex vivo glioma model, they
were able to block cancer invasion (123). As a follow up
on this study, another group found that blebbistatin did
indeed block rat glioma cell invasion in the brain cortex
(124). Despite these results, however, Picariello et al. found
that in their glioma rat models, deleting NMIIA shifts the
glioma cells’ stiffness toward optimal proliferation—killing
the glioma rat models faster despite blocking glioma inva-
sion (108). This underlines the difficulty in targeting a
component of the mechanical-adaptability program due to
their role in numerous cellular functions. Additionally, can-
cer progression adds another layer of complexity into inter-
preting results across different studies. On this topic, Singh
and Settleman discussed the topic of cancers and their K-ras
‘‘addiction’’ and how K-ras, despite being the most frequent
mutant oncogenic event promoting tumorigenesis, is
perhaps not required for tumor maintenance during malig-
nant cancer progression (125). This implies that the biolog-
ical context of primary tumor cells may be substantially
different than that of malignant cancer cells. While the
aforementioned appear to be tall obstacles, it is overall
worth targeting the mechanical-adaptability program as it
results in desirable therapeutic outcomes, and current
ongoing research will only strengthen the anti-cancer thera-
peutic pipeline.
Updates on therapeutic development targeting
the mechanical program

Given the significance of the mechanical-adaptability ma-
chinery in cancer development and its potential targetability,
developing therapies against this machinery has been a
focus for researchers in cancer mechanobiology. Recent
studies show promise on this front (Fig. 2). Metformin,
a classical anti-diabetic drug, demonstrates anti-cancer
activity through acting on tumor-associated fibroblasts
(126–131). Investigators performed proteomic analysis of
tumor-associated fibroblasts treated with metformin and
found that proteins involved in F-actin depolymerization
and cortical cytoskeletal regulation constituted a high per-
centage of the dysregulated proteins (131). Cisplatin and
paclitaxel, both well-known chemotherapeutic drugs, have
also been reported to affect cell mechanics. These drugs
have long been thought to retard cancer progression through
DNA damage. However, recent studies reveal they also
influence actin stress-fiber formation and cytoskeleton orga-
nization in several cancers, leading to increased stiffness in
these cells (132–135).

Another prominent group of anti-cancer drugs targeting
the adaptability program works within the Rho/ROCK
pathway, which regulates many cellular processes, including
actin remodeling and cell migration, morphology, and prolif-
eration. F-actin and NMII proteins are downstream targets of
the Rho/ROCK signaling cascade. Recent findings show that
ROCK1 and ROCK2 are upregulated in numerous cancers
(136–138) and are associated with tumor size, cancer aggres-
sion, and metastasis (137,139). Many ROCK inhibitors show
significant effects in cancer treatment. For example, the
ROCK inhibitor Fasudil reduces proliferation and dissemina-
tion of fibrosarcoma, melanoma, breast, and bladder cancer
cells (140–143). This compound also reduces extravasation
of PDAC cells and their attachment to secondary sites
(144). Another example ROCK inhibitor is Y-27632. This
compound is reported to attenuate the growth and invasion
phenotypes of bladder, ovarian, and skin cancers and works
in part by blocking ROCK-mediated phosphorylation of
myosin light-chain kinase, a direct activator of myosin II
(145–148). Interestingly, one study shows that Y-27632 in-
creases breast cancer cells’ rigidity (145). This observation
is somewhat non-intuitive, as one initially assumes that
ROCK inhibition would lead to inactive myosin II, which
in turn would lead to softer cells. While the effects in this
study are fairly small, they highlight the necessity of confirm-
ing assumptions when manipulating a cell’s mechanical
system.

Since several components of the mechanical program
exert tumor-suppressor functions, inhibiting this system
may lead to cancer enhancement instead. A recent study
identified 4-hydroxyacetophenone (4-HAP) as an activator
of the system, reducing metastatic potential of PDAC.
4-HAP activates NMIIB and NMIIC by promoting their
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assembly and thereby increasing cell stiffness and cortical
tension. The increased NMII assembly, in turn, reduces
invasive phenotypes and blocks dissemination in PDAC
cancer cells. 4-HAP also reduced metastasis in mouse
models of pancreatic and colorectal cancers (2,71). Impor-
tantly, 4-HAP does not appear to impact NMIIA, which
may allow this molecule to bypass some of the conse-
quences of targeting all NMII paralogs simultaneously.
Moreover, by driving NMIIB and/or NMIIC assembly,
4-HAP is not expected to disrupt NMII’s tumor-suppressive
roles that have been suggested in a number of scenarios,
including in squamous cell carcinomas and glioblastoma,
as discussed above. Taken together, these studies suggest
that targeting the mechanical program has the potential to
develop future therapeutics in cancer treatment.
CONCLUSION

Cancer is a complex disease with devastating consequences.
For decades, scientists and researchers have relentlessly
investigated new approaches in therapeutic development to
tackle this group of diseases. Thus far, current therapeutic
approaches focus mainly on a handful of systems control-
ling cell cycle, replication, immune evasion, etc. To more
effectively treat cancer, simultaneously targeting multiple
systems facilitating the progression of cancer is needed. In
this review, we have discussed the impact of the surrounding
mechanical environment on cancer cells as well as how the
external mechanical stimuli can lead to changes in gene
expression, drive tumor development, and facilitate invasion
and metastasis (Fig. 1). These stimuli pose mechanical chal-
lenges but also force the cancer cells to develop systems that
allow them to adapt and survive. The reciprocity between
cancer cells and their mechanical surroundings acts similar
to a feedback system that endows cancer with the immense
ability to adapt to different environments through various
stages of progression. At the heart of this feedback system
is the mechanical program comprised of the F-actins and
the mechanoresponsive proteins, including NMII, ACTN,
FLN, and no doubt others. This program renders cancer
cells their ability to sense, respond, and adapt to the
numerous mechanical stimuli coming from their constantly
evolving surroundings.

Due to its significance in facilitating cancer adaptability
and progression, this mechanical program poses as an ideal
target for treatment development. As mentioned previously,
promising compounds that target different central compo-
nents of this system have produced encouraging results for
anti-cancer activity. However, challenges remain to be over-
come (Fig. 2). For one, some components in this system
display both pro- and anti-cancer activity. Moreover, the
mechanical system is inextricably connected to numerous
other cellular pathways, such as signal transduction, meta-
bolism, RNA regulation, etc. Therefore, more studies are
necessary to determine whether prospective therapeutics tar-
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geting this system can do so efficiently without disturbing
overall cellular balances. Nevertheless, the mechanical
program is an attractive avenue for cancer therapeutic devel-
opment, especially for combination therapies in the future.
Now is the time for scientists to consider cancer a biophys-
ical disease, as both external and intrinsic mechanical fac-
tors play significant roles in shaping and advancing the
disease.
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