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Abstract

Background: Establishing imaging registries for large patient cohorts is challenging because 

manual labeling is tedious and relying solely on DICOM (digital imaging and communications in 

medicine) metadata can result in errors. We endeavored to establish an automated hip and pelvic 

radiography registry of total hip arthroplasty (THA) patients by utilizing deep-learning pipelines. 

The aims of the study were (1) to utilize these automated pipelines to identify all pelvic and hip 

radiographs with appropriate annotation of laterality and presence or absence of implants, and (2) 

to automatically measure acetabular component inclination and version for THA images.

Methods: We retrospectively retrieved 846,988 hip and pelvic radiography DICOM files from 

20,378 patients who underwent primary or revision THA performed at our institution from 2000 

to 2020. Metadata for the files were screened followed by extraction of imaging data. Two deep-

learning algorithms (an EfficientNetB3 classifier and a YOLOv5 object detector) were developed 

to automatically determine the radiographic appearance of all files. Additional deep-learning 

algorithms were utilized to automatically measure the acetabular angles on anteroposterior pelvic 
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and lateral hip radiographs. Algorithm performance was compared with that of human annotators 

on a random test sample of 5,000 radiographs.

Results: Deep-learning algorithms enabled appropriate exclusion of 209,332 DICOM files 

(24.7%) as misclassified non-hip/pelvic radiographs or having corrupted pixel data. The final 

registry was automatically curated and annotated in <8 hours and included 168,551 anteroposterior 

pelvic, 176,890 anteroposterior hip, 174,637 lateral hip, and 117,578 oblique hip radiographs. The 

algorithms achieved 99.9% accuracy, 99.6% precision, 99.5% recall, and a 99.6% F1 score in 

determining the radiograph appearance.

Conclusions: We developed a highly accurate series of deep-learning algorithms to rapidly 

curate and annotate THA patient radiographs. This efficient pipeline can be utilized by 

other institutions or registries to construct radiography databases for patient care, longitudinal 

surveillance, and large-scale research. The stepwise approach for establishing a radiography 

registry can further be utilized as a workflow guide for other anatomic areas.

Level of Evidence: Diagnostic Level IV. See Instructions for Authors for a complete description 

of levels of evidence.

Patient registries are organized systems that allow institutions to collect uniform data that 

can be utilized to evaluate specific outcomes for a population defined by a disease or 

exposure, and facilitate the achievement of predetermined scientific, clinical, or policy 

purposes1. These registries serve as data repositories for studies with a variety of purposes, 

including but not limited to understanding the natural history of a disease, evaluating 

diagnostic or therapeutic interventions, monitoring benefits and harms, measuring the 

quality of care, and/or identifying disparities among patient populations2. In contrast to a 

database that can be regarded as an unstructured pool of data, a registry is a structured and 

organized collection that can be further utilized for research purposes3,4.

Although most orthopaedic registries utilize clinical data, medical-imaging registries in 

other fields have also been described3. Although image analysis is a pillar of orthopaedic 

evaluation and longitudinal surveillance, current registries are limited by inadequate linkage 

of clinical and radiographic data. Radiographs serve as the cornerstone of patient evaluation 

and surveillance, and merging clinical and radiographic information is critical to maximize 

the potential of registries. For example, our own institution has a well-characterized total 

joint arthroplasty registry that has followed patients since 1969; however, most studies 

generated from this database have included limited radiographic outcomes or have relied 

on tedious manual review of a subset of patients of interest. Furthermore, the mere process 

of identifying relevant radiographs is cumbersome and not standardized, thus impeding 

the ability to answer clinical questions expeditiously. Ideally, the creation of radiography 

registries would be linked with clinical registries to leverage a powerful combination of 

information.

Most medical-imaging registries store and transfer information as DICOM (digital imaging 

and communications in medicine) files5. In addition to imaging information, most DICOM 

files include text metadata about the patient (e.g., name, sex, and age) and/or the imaging 

process (e.g., site, date, time, and magnification). Such metadata are stored as “tags” or 

“attributes” in those files to ensure that patient images will never be separate from their 
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metadata6. Furthermore, DICOM is both a data-storage format and a universal transfer 

protocol; thus, imaging and metadata from most modern imaging devices can be easily 

integrated with a picture archiving and communication systems (PACS), regardless of its 

manufacturer7.

Computer algorithms can assess DICOM tags and organize them according to their 

metadata. Although this approach seems like an intuitive solution to automatically build and 

organize medical-imaging registries, there are 2 critical shortcomings. First, several DICOM 

tags are entered manually and, because of different data-entry protocols or human error, 

can be inaccurate or incomplete. Second, imaging registries typically need to be organized 

according to some imaging features that are not documented or reliably identifiable in 

DICOM tags. For example, DICOM files are not annotated with important features, such 

as the presence or absence of devices or pathology. Therefore, building medical-imaging 

registries necessitates more comprehensive strategies to screen DICOM files and enhance 

imaging data with corresponding clinical and text data.

Artificial intelligence and deep-learning algorithms are emerging technologies that are 

widely utilized in both medical and nonmedical computer-based image processing8; their 

application in medical imaging has included enhancement of diagnosis, prognosis, lesion 

detection, and generating synthetic medical imaging9–11. Deep-learning algorithms are also 

powerful tools to screen DICOM pools and classify images. These tools usually work in 

the background to facilitate clinical workflows, such as routing specific radiographic studies 

toward certain specialists, but their research application for establishing large registries from 

retrospective studies is less discussed. The present study endeavored to utilize deep-learning 

algorithms to automatically construct a registry of hip and pelvic radiographs for an existing 

clinical registry of total hip arthroplasty (THA) patients. We hypothesized that a pipeline 

based on DICOM file processing and deep-learning algorithms could accurately identify and 

organize hip and pelvic radiographs according to selected features such as the radiographic 

view, laterality, presence or absence of a prosthesis, and annotation of salient prosthesis 

features. The aims of the study were (1) to utilize these automated pipelines to identify all 

pelvic and hip radiographs with appropriate annotation of laterality and presence or absence 

of implants and (2) to automatically measure acetabular component inclination and version 

for THA images. Herein, we report our stepwise approach, hoping that it will facilitate 

similar efforts at other interested institutions.

Materials and Methods

Following institutional review board approval, we retrospectively utilized our total joint 

registry to identify 20,378 THA patients who underwent 1 or more primary or revision 

THA procedures at our institution between 2000 and 2020. We subsequently retrieved 

846,988 radiography DICOM files of these patients from our institutional PACS, referring 

to this initial pool of file as the “institutional radiography database.” This collection of files 

included all radiographic studies (hip or otherwise) for these patients over that timeframe. 

Advanced imaging such as computed tomography and magnetic resonance imaging was 

excluded. We then developed a 3-step deep-learning-based pipeline to identify hip and 

pelvic DICOM files from the above database, process them, and organize their data 
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into a formal THA radiography registry (Fig. 1). Each step is briefly introduced below. 

Implementation details for all steps are described in Appendix Supplement 1.

Step 1: File Screening and Image Retrieval

To better understand the data at hand, we programmatically processed the metadata of all 

DICOM files in the institutional radiography database. Specific metadata values relevant for 

constructing a radiography registry (Table I) were recorded and described statistically. All 

files that had missing, inaccessible, or corrupted imaging data were excluded. We retrieved 

the imaging data for all remaining DICOM files from the previous step and saved them as 

grayscale images in PNG format. All of the DICOM files were anonymized and saved after 

running the pipeline, to facilitate potential future research with outside institutions.

Step 2: Appearance Classification

We developed 2 deep-learning algorithms to automatically determine the anatomic area 

captured in the radiograph (i.e., hip, pelvis, or neither), the view of the radiograph (i.e., 

anteroposterior hip, anteroposterior pelvis, lateral hip, or oblique hip), the visible joint 

(i.e., left, right, or both), and the presence of a prosthesis (i.e., yes or no). First, an 

EfficientNet-B312 deep-learning algorithm was developed to look at an input radiograph 

and automatically categorize it into 1 of the following 10 categories: anteroposterior hip 

or pelvis, right lateral hip without prosthesis, right lateral hip with prosthesis, left lateral 

hip without prosthesis, left lateral hip with prosthesis, right oblique hip without prosthesis, 

right oblique hip with prosthesis, left oblique hip without prosthesis, left oblique hip with 

prosthesis, or not a standard hip or pelvic radiograph. Next, a YOLOv513 deep-learning 

object detection algorithm was developed to further organize the curated anteroposterior 

hip or pelvis radiographs into 8 categories: right anteroposterior hip without prosthesis, 

right anteroposterior hip with prosthesis, left anteroposterior hip without prosthesis, left 

anteroposterior hip with prosthesis, anteroposterior pelvis without prosthesis, anteroposterior 

pelvis with prosthesis on the right, anteroposterior pelvis with prosthesis on the left, and 

anteroposterior pelvis with prostheses on both sides. Together, the 2 deep-learning models 

could classify any input radiographs into 1 of the 17 categories (16 of which shown in Fig. 

2).

Step 3: Annotation of Acetabular Angles

To further enrich our registry, we utilized 2 previously developed deep-learning algorithms 

to measure acetabular component inclination and anteversion angles on postoperative 

anteroposterior pelvic and lateral hip radiographs, respectively14. All ground truth 

measurements of the acetabular components were performed by 2 orthopaedic surgeons. The 

development process of these algorithms, along with the definition of measured acetabular 

angles, are available in the original source and briefly described in Appendix Supplement 

1. We applied these algorithms on all anteroposterior pelvic and lateral radiographs 

obtained from the previous step, except for those considered nonstandard according to the 

implementation protocol of the mentioned algorithms.
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Implementation and Validation

To build the final registry, the outputs of the above steps were collated, and the obtained 

data set was saved as a single file in CSV format. To validate the registry and following 

appropriate sample-size estimation (see Appendix Supplement 1), we collected a random 

test sample of 5,000 DICOM files from the radiography database (none of which were 

previously utilized for training or validating the deep-learning algorithms), and 2 authors 

(P.R. and B.K.) abstracted the same data points as a gold-standard comparison. The total and 

class-wise accuracy, precision, recall, and F1 score, along with the confusion matrix for all 

comparisons, were reported for the performance of the deep-learning algorithms utilized in 

step 2. The deep-learning algorithms used in step 3 were previously validated by Rouzrokh 

et al.14 and Hevesi et al.15.

Source of Funding

This work was supported by National Institutes of Health (NIH) grants R01AR73147 and 

P30AR76312.

Results

Of the 846,988 DICOM files from 20,378 THA patients in the institutional radiography 

database, 110,672 (13.1%) were excluded in step 1 for missing, inaccessible, or corrupted 

imaging data. The remaining 736,316 files were saved in PNG format to be further analyzed 

by deep-learning algorithms. Appendix Supplement 2 shows the availability of metadata 

tags described in Table I for all DICOM files from the institutional radiography database. 

Although some metadata such as “PatientID,” “PatientSex,” and “StudyDate” are mandatory 

and therefore were consistently present in all files, several other metadata fields were 

missing for a substantial number of files.

The performance of the trained EfficientNetB3 and YOLOv5 deep-learning algorithms 

is described in Appendix Supplement 2. Following the application of these algorithms 

in step 2, an additional 98,660 (11.6%) DICOM files were excluded because they were 

identified by the deep-learning algorithms to be nonstandard hip or pelvic radiographs, 

yielding a total of 209,332 (24.7%) excluded DICOM files in total. Among those, some 

were from other anatomic areas (e.g., knee or ankle) that could not be detected with use 

of DICOM metadata on retrieval. In addition, 45 DICOM files had metadata indicating 

non-hip/pelvic anatomic areas (and would have been excluded if they had been screened 

solely on the basis of their metadata), yet the classifier accurately identified them as 

hip or pelvic radiographs. Other excluded files were hip or pelvic radiographs that had 

nonstandard views (e.g., those captured in the operating room) or were of poor quality. 

The remaining files included 168,551 anteroposterior pelvic, 176,890 anteroposterior hip, 

174,637 lateral hip, and 117,578 oblique hip radiographs from 20,266 patients. In step 3, a 

total of 92,445 acetabular component inclination angles and 92,367 acetabular component 

anteversion angles were annotated on postoperative anteroposterior pelvic and lateral hip 

radiographs, respectively, in 16,955 patients.

Rouzrokh et al. Page 5

J Bone Joint Surg Am. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The final THA radiography registry was assembled in <8 hours by processing every DICOM 

file from the institutional radiography database according to steps 1 through 3. Table II 

demonstrates 4 sample rows from the CSV file generated for the final radiography registry. 

This file includes all desired patient-level, study-level, and imaging-level data for every 

DICOM file from the radiography database.

For the test sample of 5,000 DICOM files, no files with imaging data were mistakenly 

excluded during the file screening and image retrieval step (step 1). Together, the 2 

algorithms (EfficientNetB3 and YOLOv5) achieved an accuracy, precision, recall, and F1 

score of 99.9%, 99.6%, 99.5%, and 99.6%, respectively (Table III). Only 27 of the 5,000 

files were mistakenly classified compared with gold-standard manual annotations. Of these, 

26 errors were the result of classifying a nonstandard radiograph as standard or vice versa, 

and only 1 error occurred as a result of a misclassification of an anteroposterior hip 

radiograph as an oblique hip radiograph. Examples of errors are demonstrated in Figure 

3. Appendix Supplement 3 plots the confusion matrix for all 5,000 comparisons.

The mean difference (and standard deviation) between human-level and machine-level 

measurements of the fully automated (i.e., no human annotation) acetabular component 

inclination and anteversion annotation algorithms was 1.3 (1.0°) and 1.4 (1.3°) for 

inclination and anteversion angles, respectively. Differences of 5° or more between human-

level and machine-level measurements were observed in <2.5% of cases (n = 14).

Discussion

This study utilized a deep-learning-based pipeline to build a radiography registry of hip 

and pelvic radiographs from a pool of 846,988 DICOM files derived from a large cohort 

of 20,378 THA patients from an institutional arthroplasty registry. Our approach was 

based on interpreting DICOM metadata and relying on multiple deep-learning algorithms 

to appropriately curate and annotate radiographs in a fully automated fashion. Once 

developed and validated, the collection of algorithms was able to construct the final 

radiography registry of 637,656 included radiographs in <8 hours with an accuracy of 

99.9%. Furthermore, our deep-learning pipeline was able to accurately identify DICOM files 

by imaging appearance even in the presence of inaccurate metadata values, highlighting 

the utility of the automated method in resource-constrained environments and the ability to 

approximate human annotator performance for labeling radiographs.

The process for creating our THA radiography registry using a deep-learning pipeline 

is a stepwise approach that can be replicated and refined by other institutions. In fact, 

we are presently creating radiography registries for other anatomic areas with use of 

similar methodologies. In addition to supporting patient care and research within individual 

institutions, establishing a facile workflow for radiography registry development may 

potentiate multicenter collaboration or support the enhancement of national registries. 

Through techniques such as natural language processing-enhanced data abstraction 

and deep-learning image characterization16–19, registries such as the American Joint 

Replacement Registry can be poised to answer questions on a scale not previously possible.
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The efforts to curate this database are analogous to an investment in critical infrastructure. 

Although the registry itself does not answer clinical questions of interest, it is a critical 

foundational effort to enable a myriad of studies and more integrated longitudinal 

surveillance. In the preoperative realm, a database of this type can now be utilized to 

understand the radiographic natural history of the hip prior to arthroplasty. By comparisons 

of preoperative and postoperative radiographs, questions such as those regarding the 

restoration of leg length and offset can be explored. In the postoperative phase, the artificial 

intelligence pipelines from this registry can be built on to evaluate the change in implant 

position or change in bone quality on serial radiographs. Indeed, we have since performed a 

study with this registry showing that deep-learning algorithms can detect femoral component 

subsidence of as little as 0.1 mm20.

The present article should be interpreted with consideration of the following limitations. 

First, although the deep-learning algorithms were highly accurate, a small number of errors 

did occur; however, these errors were far more infrequent than human errors discovered in 

DICOM metadata. Furthermore, most of the algorithm errors were the result of radiographs 

that were nonstandard or of poor quality. Importantly, performance was superior to previous 

error rates of deep-learning algorithms on other medical imaging data sets21,22. Second, 

our deep-learning algorithms were trained on imaging data from 1 institution and during a 

specific time frame (2000 to 2020). A natural limitation to all deep-learning algorithms is 

that they may not generalize with the same level of accuracy to imaging data from other 

institutions or even images from another time frame at the same institution with substantially 

different qualities. However, the fine-tuning of an already-trained algorithm on images from 

different institutions is much more straightforward than de novo algorithm development and 

can improve the overall performance and generalizability of the algorithm with each external 

fine-tuning event.

In conclusion, we constructed an accurate and organized hip and pelvic radiography registry 

for THA patients with use of a pipeline of deep-learning algorithms for performing this 

task in a fully automated fashion. The stepwise approach detailed in this report may enable 

the establishment of similar radiography registries by other institutions, or even national 

registries. Similarly, the methodology can be applied to other anatomic areas in orthopaedic 

surgery with a similar workflow. As imaging data represent a noted limitation to most 

current large databases, this process has implications for enabling integrated clinical and 

radiographic research and improving patient characterization and surveillance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The 3-step deep-learning-based pipeline designed to build a hip and pelvic radiography 

registry for THA patients. Every DICOM file from the institutional radiography database 

goes through the 3 steps in this pipeline to be processed and merged into the THA 

radiography registry. AP = anteroposterior.
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Fig. 2. 
Examples of radiographic appearance classes (RACs) assigned to every DICOM file in the 

radiography database. Lateral, oblique, and anteroposterior hip radiographs will each have 

4 categories based on the presence of the prosthesis and the side of the visible joint (Figs. 

2-A through 2-L). Anteroposterior pelvic radiographs have 4 possible RACs based on the 

presence of the prosthesis on neither side, right side, left side (not shown on the figure 

for brevity), or both sides of the pelvis (Figs. 2-M, 2-N, and 2-O). Poorly taken or non-hip/

pelvic radiographs were considered as nonstandard (Fig. 2-P).
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Fig. 3. 
Examples of errors of the deep-learning-based pipeline in classifying the radiographic 

appearance of DICOM files. Colored rectangles on anteroposterior (AP) radiographs show 

how the YOLOv5 deep-learning algorithm detected hips with or without prostheses. These 

detections were utilized for further classifying the anteroposterior hip or pelvis radiographs. 

The numbers on the top left side of AP radiographs show how confident the YOLOv5 

algorithm was in its predictions. Most errors occurred as a result of nonstandard radiographs 

(Figs. 3-C, 3-E, 3-F, and 3-H), radiographs containing less prevalent hardware variations 
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(Fig. 3-I), or radiographs with lower quality or malpositioning (Figs. 3-A, 3-B, and 3-G). 

Nevertheless, the underlying reason for a few errors are not clear (Fig. 3D).

Rouzrokh et al. Page 13

J Bone Joint Surg Am. Author manuscript; available in PMC 2023 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rouzrokh et al. Page 14

TABLE I

Important DICOM Metadata for Building the Radiography Registry of Hip and Pelvic Radiographs*

Tag Keyword Importance

(0010, 0010) PatientName Identifying the patient

(0010, 0020) PatientID Identifying the patient

(0010, 0040) PatientSex Identifying the patient

(0032, 1032) RequestingPhysician Identifying the corresponding physician for the patient

(0008, 0082) InstitutionNumber Identifying the location of radiographs (radiographs from different institutes may have unique 
properties important for further research)

(0008, 0070) Manufacturer Identifying the manufacturer of the radiography device (radiographs from different manufacturers 
may have unique properties important for further research)

(0008, 0015) BodyPartExamined Identifying the body parts targeted for radiography

(0008, 1030) StudyDescription Identifying the body parts targeted for radiography

(0008, 103E) SeriesDescription Identifying the body parts targeted for radiography

(0008, 0020) StudyDate Identifying the date of radiography and sorting of radiographs

(0008, 0030) StudyTime Identifying the time of radiography and sorting of radiographs

(0008, 0018) SOPInstanceUID Identifying and sorting of radiographs; each DICOM has a unique SOPInstanceUID (e.g., 
anteroposterior view of the hip in a patient)

(0020, 000E) SeriesInstanceUID Identifying and sorting of radiographs; several radiographs (e.g., lateral and anteroposterior view 
of the hip in a patient) could be captured in a series and thus have similar SeriesInstanceUIDs

(0020, 000D) StudyInstanceUID Identifying and sorting of radiographs; multiple series (e.g., anteroposterior and lateral views of 
the hip and anteroposterior and lateral views of the knee) can be captured for a single patient in a 
single study and thus, all DICOM files from that study will have similar StudyInstanceUIDs

(0008, 0060) Modality Identifying the type of radiograph (e.g., conventional vs. digital radiography); digital and 
conventional radiographs have different qualities that may be important for future research

(0028, 0010) Rows Identifying the resolution of the radiograph

(0028, 0011) Columns Identifying the resolution of the radiograph

(0018, 1164) ImagerPixelSpacing Identifying the real (physical) distance in the patient between the centers of adjacent pixels and 
estimating the real measurements on radiographs

(0028, 0004) PhotometricInterpretation Pixel data from DICOM files with a “Monochrome 1” value for this metadata element are 
inverted (i.e., actual black pixels are visualized as white in the radiograph and vice versa); such 
pixel data need to be re-inverted to the actual value before saving to disc

*
Keyword, and the reason for importance, are mentioned for each metadata tag. Please note that not all mentioned tags are present in every DICOM 

file and that files contain more tags than shown in the above table. Only those deemed important for building a radiography registry are listed.
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TABLE III

Performance of the Deep-Learning-Based Pipeline for Classification of the Radiographic Appearance of 5,000 

Radiographs from the Test Sample*

Radiographic Appearance Class Accuracy Precision Recall F1 Score

Anteroposterior left hip without prosthesis 99.9% 98.0% 97.0% 97.5%

Anteroposterior right hip without prosthesis 99.9% 95.7% 100.0% 97.8%

Anteroposterior left hip with prosthesis 99.9% 97.9% 98.5% 98.2%

Anteroposterior right hip with prosthesis 99.9% 100.0% 97.5% 98.7%

Anteroposterior pelvis without prosthesis 99.9% 98.7% 98.0% 98.0%

Anteroposterior pelvis with prosthesis on right 99.9% 99.8% 99.8% 99.8%

Anteroposterior pelvis with prosthesis on left 99.9% 100.0% 98.9% 99.4%

Anteroposterior pelvis with prosthesis on both sides 99.9% 99.5% 99.7% 99.6%

Lateral left hip with prosthesis 100.0% 100.0% 100.0% 100.0%

Lateral right hip with prosthesis 100.0% 100.0% 100.0% 100.0%

Lateral left hip without prosthesis 100.0% 100.0% 100.0% 100.0%

Lateral right hip without prosthesis 100.0% 100.0% 100.0% 100.0%

Oblique left hip with prosthesis 100.0% 100.0% 100.0% 100.0%

Oblique right hip with prosthesis 100.0% 99.7% 100.0% 99.8%

Oblique left hip without prosthesis 100.0% 98.3% 100.0% 99.1%

Oblique right hip without prosthesis 100.0% 100.0% 100.0% 100.0%

Nonstandard 99.5% 98.9% 98.2% 99.0%

Total 99.9% 99.6% 99.5% 99.6%

*
The reported metrics are neither for the EfficientNetB3 nor the YOLOv5 algorithms, but rather for the outcomes of a pipeline that is based on 

both. The independent performance of each algorithm is separately discussed in Appendix Supplement 2.
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