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Abstract 

Pneumococcal meningitis is associated with dysregulation of the coagulation cascade. Previously, we detected 
upregulation of cerebral plasminogen activator inhibitor-2 (PAI-2) mRNA expression during pneumococcal meningi‑
tis. Diverse functions have been ascribed to PAI-2, but its role remains unclear. We analyzed the function of SERPINB2 
(coding for PAI-2) in patients with bacterial meningitis, in a well-established pneumococcal meningitis mouse model, 
using Serpinb2 knockout mice, and in vitro in wt and PAI-2-deficient bone marrow-derived macrophages (BMDMs). 
We measured PAI-2 in cerebrospinal fluid of patients, and performed functional, histopathological, protein and mRNA 
expression analyses in vivo and in vitro. We found a substantial increase of PAI-2 concentration in CSF of patients with 
pneumococcal meningitis, and up-regulation and increased release of PAI-2 in mice. PAI-2 deficiency was associated 
with increased mortality in murine pneumococcal meningitis and cerebral hemorrhages. Serpinb2−/− mice exhibited 
increased C5a levels, but decreased IL-10 levels in the brain during pneumococcal infection. Our in vitro experiments 
confirmed increased expression and release of PAI-2 by wt BMDM and decreased IL-10 liberation by PAI-2-deficient 
BMDM upon pneumococcal challenge. Our data show that PAI-2 is elevated during in pneumococcal meningitis in 
humans and mice. PAI-2 deficiency causes an inflammatory imbalance, resulting in increased brain pathology and 
mortality.
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Introduction
Pneumococcal meningitis (PM) is the most common 
form of bacterial meningitis and is associated with high 
mortality and risk of neurological sequelae [5, 6]. Cer-
ebrovascular complications are an important cause of 
poor outcome and death [34, 38]. Activation of the coag-
ulation cascade and inhibition of fibrinolysis have been 
shown to be associated with the risk of cerebral infarc-
tion in meningitis [7, 33, 43, 44]. A direct interaction 

by pneumococcal virulence factors with coagulation 
or fibrinolysis factors has been suggested, although it 
is difficult to dissect whether this is independent of the 
inflammatory response [41].

Plasminogen activator inhibitor-1 (PAI-1) is an impor-
tant regulator of fibrinolysis by inhibiting tissue plas-
minogen activator (tPA) and urokinase (uPA) mediated 
proteolytic degradation of fibrin clots [23]. In a study on 
the role of PAI-1 in PM we showed that the functional 
genetic variation rs1799889 in SERPINE1 (coding for 
PAI-1) influenced the risk of cerebral infarction, hemor-
rhage, poor disease outcome and mortality in patients 
[7]. Subsequently, in a mouse model of PM we demon-
strated that PAI-1-deficiency resulted in higher mortality 
and increased cerebral hemorrhages, suggesting a protec-
tive role of PAI-1 [7].
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Analogous to PAI-1, PAI-2 (also known as SERPINB2) 
is classically viewed as an inhibitor of extracellular uPA 
and tPA, even if PAI-2 is slower than PAI-1 at inhibiting 
these proteases (in vitro) [10, 15]. However, it is unclear 
what its key function is, given that the vast majority of 
PAI-2 is located intracellularly in the cytoplasm. A broad 
range of activities has been ascribed to PAI-2, such as 
regulation of monocyte proliferation and differentiation 
[46], priming interferon α/β responses [3], inhibition of 
annexin-1 cleavage [13], interleukin 1β processing [17] 
and also apoptosis [14]. Despite over 1000 publications 
on PAI-2, no consensus view on its (patho)physiological 
function has been reached, which has led to labels like 
“the undecided Serpin” [29].

Some studies using PAI-2-deficient mice showed that 
PAI-2 can modulate Th1/Th2 immune response, impli-
cating a role in adaptive immunity [27, 36, 37, 47]. Our 
knowledge of the PAI-2 functions in innate immunity is 
limited. PAI-2 antigen could be detected in the plasma of 
sepsis patients and was associated with mortality [21, 35]. 
In PAI-2-deficient mice however, no differences to wild 
type (wt) mice in survival were found after challenge with 
endotoxin or cecal ligation and puncture [11]. An in vitro 
model of monocytic cells showed stimulation with B. 
burgdorferi induced production and secretion of PAI-2. 
This resulted in significantly diminished uPA-dependent 
invasion by monocytic cells, proposing a role of PAI-2 in 
leukocyte migration [20]. Studies focusing on the regula-
tion of PAI-2 expression after stimulation with bacteria 
and/or bacterial components showed significant up-reg-
ulation of PAI-2 expression in mononuclear cell and/or 
macrophages upon exposure [4, 20, 39, 40]. In a mouse 
model of PM, we observed a strong upregulation of PAI-2 
mRNA expression in brains of infected mice [33]. So, it 
seems apparent that PAI-2 is formed during bacterial 
infections, but the specific role PAI-2 plays in infections 
remains unclear.

To determine the role of PAI-2 during PM we analyzed 
PAI-2 concentrations in cerebrospinal fluid of pneumo-
coccal meningitis patients and immunohistochemically 
stained PAI-2 in brains of patients who died of pneu-
mococcal meningitis. Subsequently, we compared the 
disease course in wt versus PAI-2-deficient mice and 
the response of wt versus PAI-2-deficient BMDM upon 
pneumococcal challenge.

Methods
Dutch bacterial meningitis cohort
In a nationwide prospective cohort study, we included 
patients with community-acquired bacterial menin-
gitis with an age of 16  years or older with positive CSF 
cultures who were identified by The Netherlands Ref-
erence Laboratory for Bacterial Meningitis (NRLBM) 

from March 2006 to October 2011 [5, 25]. The NRLBM 
provided the names of the hospitals where patients with 
bacterial meningitis had been admitted 2–6  days previ-
ously. The treating physician was contacted, and written 
informed consent was obtained from all participating 
patients or their legally authorized representatives, and 
controls. Methods of the study have been described in 
detail previously [5]. The study was approved by the 
Medical Ethics Committee of the Academic Medical 
Center, Amsterdam, The Netherlands.

CSF PAI‑2 analysis
CSF of patients with PM (n = 268) was obtained from 
the diagnostic lumbar puncture and subsequently 
stored at −  80°C. Control CSF samples (n = 14) were 
obtained from patients with benign thunderclap head-
ache in whom a lumbar puncture was performed to rule 
out subarachnoid hemorrhage. CSF PAI-2 levels were 
determined using the Millipore Luminex kit accord-
ing to the manufacturer’s instructions (Merck Millipore, 
MA, USA). We performed association analysis between 
the CSF concentrations of PAI-2 on admission and the 
clinical outcome (as measured by the Glasgow outcome 
scale, GOS) as well as the occurrence of cerebrovascular 
complications (comprising cerebral infarction and hem-
orrhages) in patients with pneumococcal meningitis. 
An unfavourable outcome was defined as a GOS score 
of 1–4, and a favorable outcome was defined as a score 
of 5. Cerebrovascular infarction and hemorrhages were 
defined as focal neurologic signs on admission or dur-
ing the course of the disease with consistent findings on 
cranial computed tomography or magnetic resonance 
imaging.

PAI‑2 expression of human meningitis cases
Brain sections were obtained from patients included in 
the Dutch bacterial meningitis cohort. The brains were 
macroscopically examined, followed by formalin fixa-
tion. The sampled cut-up blocks were then embedded in 
paraffin, cut and stored. Brain sections were stained with 
primary antibodies directed against PAI-2 (Bio-Connect, 
Netherlands, dilution 1:100), the respective secondary 
antibody and chromogen. After counterstaining with 
hematoxylin solution, tissue sections were examined 
using a Carl Zeiss Axioskop light microscope.

Animal pneumococcal meningitis model
We used a well-characterized mouse model of PM [22]. 
Briefly, mice were weighed, scored clinically, and the 
temperature was taken. Clinical scoring comprised a 
beam walk test, a postural reflex test, presence/absence 
of pilo-erection, reduced vigilance, and/or seizures. The 
maximum clinical score was 13, indicating moribund 
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mice that had to be euthanized due to ethical considera-
tions, whereas a score of 0 defined uninfected healthy 
mice. After initial clinical evaluation, bacterial meningitis 
was induced by intracisternal injection of 15 µl of 107 col-
ony forming units (cfu) per ml Streptococcus pneumoniae 
type 2 (D39 strain, kindly provided by Prof. Sven Ham-
merschmidt, University of Greifswald, Germany) under 
short-term anesthesia with isoflurane. To assess the role 
of PAI-2 in the development of meningitis, infected mice 
were observed for 24 h. To get insight into PAI-2 function 
in more advanced disease, mice were treated with ceftri-
axone at 24 h to prevent death from overwhelming infec-
tion and assessed at 48  h post infection. At the end of 
each experiment, animals were clinically examined again. 
Thereafter, mice were anaesthetized with ketamine/xyla-
zine, and a catheter was placed into the cisterna magna to 
obtain cerebrospinal fluid (CSF) samples for white blood 
cell (WBC) counts. Subsequently, animals were perfused 
transcardially with ice cold phosphate buffered saline 
(PBS). The cerebellum was dissected and homogenized 
in 1  ml sterile PBS for determination of bacterial titers. 
Cerebellar homogenates were diluted serially, plated on 
blood agar plates, and cultured for 24  h before colony 
forming units (CFU) were counted. Intracerebral hemor-
rhages were determined in frozen mouse brains, which 
were cut in a frontal plane into 10  μm thick sections. 
From the anterior parts of the lateral ventricles, ten serial 
sections were photographed with a digital camera at 
0.3 mm intervals throughout the ventricle system. Hem-
orrhagic spots were counted, and – in selected experi-
ments—the bleeding area was measured.

Measurement of cytokine expression
In mice surviving up to the 48-h time-point, concentra-
tions of C5a, IL-10, and IL-1β in homogenized brains 
were determined by ELISA (R&D Systems, Germany), 
according to the manufacturers’ instructions. Cytokine 
concentrations were given as amount of cytokine per mg 
brain protein.

Experimental groups in the mouse model
The following experimental groups were investigated: 
(1) male C57BL6 wt mice injected intracisternally with 
15  µl of PBS (so-called controls; n = 4 investigated 24  h 
after infection and n = 6 investigated 48  h after infec-
tion, respectively); (2) wt mice injected intracisternally 
with 15  µl of S. pneumoniae (n = 9 investigated 24  h 
after infection and n = 8 investigated 48 h after infection, 
respectively); (3) Serpinb2-deficient mice injected intra-
cisternally with 15 µl S. pneumoniae (Serpinb2−/−, back-
crossed for more than 10 generations onto the C57BL6 
background, n = 9 investigated 24  h after infection and 
n = 12 investigated 48  h after infection, respectively). 

Supplemental experimental groups were carried out to 
analyze PAI-2 protein concentrations in murine CSF and 
plasma over the course of the disease, namely uninfected 
controls (n = 5), infected wt mice investigated 24 and 
48 h after infection, respectively (n = 12 in each group).

Immunohistochemical analysis
Brains from control and meningitic wt and Serpinb2-
deficient mice were fixed in 10% formalin, embedded in 
paraffin, and cut into 7 µm sections. Brain sections were 
stained with primary antibodies directed against PAI-2 
(ab137588, Abcam, dilution 1:100) and MRP-14, a marker 
for neutrophils (Invitrogen Antibodies, dilution 1:2000), 
the respective secondary antibodies and chromogens. 
After counterstaining with hematoxylin solution, tissue 
sections were examined using an Olympus BX-51 light 
microscope and images captured with a cooled Moticam 
5000 video camera connected to a PC.

Cell culture experiments with BMDM
Bone marrow–derived macrophages (BMDMs) were 
prepared from bone marrow cells obtained from femurs 
as described previously [22]. PAI-2-deficient and wt 
BMDM were exposed to increasing concentrations of 
the serotype 2 pneumococcal strain D39 (up to 106 cfu/
ml; that corresponds to MOI = 10). Four h after infec-
tion, BMDM were treated with ceftriaxone (100 µg/ml). 
Again 20  h later, medium samples were withdrawn and 
analyzed for cell viability using a commercially available 
LDH assay (Enzo Life Sciences) and for the presence of 
IL-10, IL-6, IL-1β (using ELISA kits from R&D Systems), 
and PAI-2 (using an ELISA Kit from FineTest®). We also 
isolated RNA from both infected and control PAI-2-defi-
cient and wt BMDM and assessed the expression of the 
macrophage surface markers CX3CR1, ITGAM (CD11b), 
MRC1 (CD206), and CD36, of the macrophage pheno-
type markers iNOS and ARG1, as well as of PAI-2 by RT-
PCR (using commercially available PrimePCR™ primer 
pairs from Biorad).

Statistical analysis
Statistical tests were performed using GraphPad Prism 
and SPSS  software. The principal statistical test was 
a Mann–Whitney U test for continuous variables, for 
grouped analyses a two-way ANOVA with Tukey’s mul-
tiple comparisons test or a log-rank test (Mantel) for 
survival. For correlation analysis we used spearman’s 
rank correlation coefficient. Differences were consid-
ered significant at P < 0.05. Patient data are displayed 
as median ± interquartile ranges (IQR), mouse data as 
mean ± standard deviation.
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Study approval
The animal experiments were approved by the animal 
ethic committee of the government of Upper Bavaria, 
Germany (AZ 211–2531-67/99 und -47/08).

Results
PAI‑2 is released into the CSF and blood 
during pneumococcal meningitis
We measured PAI-2 levels in CSF samples from 268 
patients with PM. The median level of PAI-2 was 
387  ng/ml (Interquartile range [IQR] 197—618), which 
was higher than CSF PAI-2 concentrations in 14 con-
trols (median 18 ng/ml; IQR 0.3–27; p < 0.001) (Fig. 1a). 
CSF PAI-2 concentrations on admission were signifi-
cantly higher in patients with an unfavourable outcome 
of pneumococcal meningitis (median 520  ng/ml, IQR 
336–796 vs. 297 ng/ml, IQR 175–471 in patients with a 
favorable outcome; p < 0.001). CSF PAI-2 levels were also 
higher in patients who suffered cerebrovascular compli-
cations compared to those who did not (median 487 ng/
mg IQR 331–749 vs. 370 ng/mg, IQR 193–542, P = 0.02). 
CSF PAI-2 was significantly correlated to CSF protein 
concentration (r = 0.63, p < 0.001). Immunohistochemi-
cal investigations showed strong PAI-2 staining in the 
inflammatory infiltrate in the leptomeningeal space 
(Fig. 1b, c).

Subsequently, we investigated whether the findings 
in patients with PM correspond to those in the mouse 

model. Previously, we observed a 15-fold up-regulation 
in PAI-2 mRNA expression in the brain of meningitis 
mice 24  h after pneumococcal infection compared to 
uninfected control mice [33]. Consistent with this, we 
found a marked increase in PAI-2 protein levels in CSF 
and plasma samples collected at 24 h after pneumococ-
cal inoculation (median 285  ng/ml CSF PAI-2; IQR 192 
– 419 versus median 8  ng/ml CSF PAI-2; IQR 3–19; 
p < 0.0001) (Fig. 1d, e). At 48 h CSF PAI-2 levels were not 
significantly different. Comparable to the patient data, 
the immunohistochemical examination showed PAI-2 
positive cells particularly in the leukocyte infiltrate in 
the leptomeningeal space (Fig. 1f, g) and the ventricular 
system.

Taken together, we found a substantial up-regulation 
and release of PAI-2 in patients and mice with PM.

PAI‑2 deficiency is associated with worse outcome 
of murine pneumococcal meningitis
To get better insight into the functional role of PAI-2 
in PM, we compared the disease phenotype of PAI-
2-deficient mice (Serpinb2−/−) to that of wt mice. In a 
first series of experiments, mice were examined 24  h 
after intracisternal inoculation of S. pneumoniae. At 
this time point, Serpinb2−/−mice showed signs of the 
disease that were identical to those of wt mice. There 
were no differences between groups in the numbers of 
CSF leukocytes and cerebral hemorrhages as well as 

Fig. 1  CSF PAI-2 levels (a) of patients included in the Dutch bacterial meningitis cohort with PM. Immunohistochemical analysis with PAI-2 of 
human brain sections obtained from uninfected control cases (b) and PM cases (c). Murine CSF (d) and plasma (e) PAI-2 levels 24 and 48 h after 
induction of PM. Immunohistochemical analysis with PAI-2 of murine brain sections obtained from uninfected control cases (f) and PM cases (g). 
The sections were stained with a PAI-2 antibody and counterstained with hematoxylin–eosin. Both human and murine immunohistochemical 
examination showed strong PAI-2 staining in the inflammatory infiltrate in the leptomeningeal space. The scale bar indicates 100 µm in length
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in pneumococcal titers in the brain and blood. Con-
sequently, PAI-2 does not seem to play a critical role 
in the initial stages of meningitis. Different results 
emerged when PAI-2-deficient mice were evaluated 
at advanced stages of the disease, 48  h after infection. 
In these experiments, mice were treated with ceftriax-
one after 24 h comparable to a clinical situation. PAI-2 
deficiency did not affect pneumococcal killing by cef-
triaxone, CSF pleocytosis and clinical score values of 
surviving mice. Five of 12 PAI-2-deficient mice (41%) 
died before the end of the experiment, compared to 
none of the wt mice (Log-rank P = 0.04; Fig. 2a). Upon 
opening of the skull intracerebral (n = 1), subarach-
noidal (n = 3) and subdural hemorrhages (n = 1) were 
detectable in 4 of 12 Serpinb2−/− mice (33%) compared 
to none of the wt mice (Fig.  2b–e). Pathological brain 
examination revealed a greater number of hemorrhagic 
spots and larger total bleeding areas in PAI-2-deficient 
mice as compared to wt mice (mean number of hem-
orrhagic spots 63.6 Serpinb2−/− vs. 25.4 wt, p < 0.001; 
mean total bleeding area 5.53 mm2 Serpinb2−/− vs. 
1.15 mm2 wt, p < 0.001; Fig. 2f, g). The increase in cer-
ebral hemorrhages was accompanied with a more pro-
nounced immune reactivity against MRP-14, a known 
marker of neutrophils, in infected Serpinb2−/− mice 
compared to infected wt mice (Fig.  3). Thus, a higher 
level of neutrophilic infiltration around parenchymal 
vessels may contribute to the increase in cerebral hem-
orrhages in PAI-2-deficient mice with PM.

Serpinb2−/− mice exhibited increased C5a levels, but 
decreased IL‑10 levels in the brain during pneumococcal 
infection
PAI-2 was previously reported to suppress IL-1β pro-
duction by controlling caspase-1 activation [9, 17]. In 
addition, PAI-2 deficiency can lead to increased uPA/
tPA-dependent plasmin activity, which is capable of con-
verting C5 into its active form C5a, thus resulting in ele-
vated C5a concentrations [2, 12]. Both, IL-1β and C5a are 
known mediators of hyper-inflammation and vascular 
damage in murine PM [42]. This motivated us to deter-
mine C5a and IL-1ß concentrations in brains of infected 
wt and PAI-2-deficient mice and also measure brain lev-
els of IL-10, a key anti-inflammatory cytokine in PM [24, 
45, 48]. Serpinb2−/− with PM had higher C5a concen-
trations (Fig.  4a), but lower IL-10 levels (Fig.  4b). Brain 
IL-1β levels were similar in both mouse strains (Fig. 4c). 
These data suggest dysregulated inflammation as a possi-
ble contributing factor of the aggravated brain pathology 
of PAI-2-deficient mice.

PAI‑2 deficiency led to decreased IL‑10 release by BMDM 
upon pneumococcal infection
Since macrophages express high levels of PAI-2 upon 
Toll-like receptor (TLR) activation [9, 17] and regulate 
innate immune responses to bacterial infections, we 
next examined the expression of PAI-2 and its functional 
relevance in murine BMDM upon pneumococcal chal-
lenge. Quantitative RT-PCR analysis showed a marked 

Fig. 2  Kaplan Meier survival curve showing increased mortality in PAI-2-deficient (Serpinb2−/−) mice (a). Macroscopical images of PAI-2-deficient 
mouse brains (b-e). Basal view of the brain cut through the mesencephalon showing subarachnoidal bleeding (b). Left frontal view of the brain 
showing subdural hematoma over the left hemisphere (c). Basal view of the brain showing subarachnoidal and intracerebral hematoma (asterisk) 
(d). Multiple small cortical hemorrhages (e). Number of hemorrhages (f) and total bleeding areas (g) 48 h after pneumococcal inoculation in wt and 
PAI-2-deficient mice. The scale bar indicates 1 mm in length
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up-regulation of PAI-2 mRNA expression in wt BMDM, 
which was absent in PAI-2-deficient cells (Fig.  5a). A 
concentration-dependent release of PAI-2 was observed 
by wt BMDM into the cell culture supernatant (Fig. 5b). 
This liberation started at a non-cytolytic concentration 
of 105  cfu/ml (MOI = 1) S. pneumoniae and increased 
sharply with the onset of macrophage lysis. The com-
parative RT-PCR analysis of selected macrophage sur-
face and activation markers such as CD11b (ITGAM), 
CD206, iNOS or ARG did not reveal any differences in 
their expression levels between BMDM obtained from wt 
and PAI-2-deficient mice. There were also no differences 
between both genotypes in the release of the pro-inflam-
matory cytokines IL-1β and IL-6. However, PAI-2-defi-
cient BMDM responded to S. pneumoniae challenge by 
a significantly decreased IL-10 liberation compared to 

wt BMDM (Fig. 5c). Taken together, our in vitro experi-
ments showed a selective influence of PAI-2 deficiency 
on pneumococcal-induced IL-10 expression by BMDM, 
which is consistent with our observation in the mouse 
model.

Discussion
Our results show PAI-2 expression in the inflammatory 
infiltrate and PAI-2 liberation into the CSF in patients 
and mice with PM. In mice with PM, PAI-2 deficiency 
was associated with increased mortality. The higher mor-
tality was accompanied by an increase in number and size 
of intracerebral hemorrhages, possibly due to aggravated 
neutrophilic inflammation, especially around parenchy-
mal vessels. Increased neutrophilic infiltration was paral-
leled by increased C5a and reduced IL-10 concentrations 

Fig. 3  Immunohistochemical analysis with MRP-14 of brain sections obtained from non-infected wt mice (a–c), S. pneumoniae-infected wt mice 
(d–f) and S. pneumoniae-infected Serpinb2-deficient mice (g–i). Brain sections were obtained at 48 h after intracisternal application of PBS or S. 
pneumoniae (3 mice per group). The sections were stained with anti-murine MRP-14 antibody and counterstained with hematoxylin–eosin. Mice 
lacking Serpinb2 showed enhanced MRP-14 staining in the brain parenchyma (g, h) and to a lesser degree also in infiltrates in the leptomeningeal 
space (i), compared to wt mice subjected to PM (d–f). The scale bar indicates 200 µm in length
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in brains of infected PAI-2-deficient mice, pointing to an 
immunoregulatory function of PAI-2 in PM. Consistent 
with this, murine BMDM showed increased PAI-2 pro-
duction as well as reduced IL-10 release in the absence of 
PAI-2 after pneumococcal challenge.

PAI-2 is one of the major molecules up-regulated in 
monocytes and macrophages upon TLR2 and/or TLR4 
engagement [9]. Accordingly, increased PAI2 expression 
and/or release was found in cell cultures of these cells fol-
lowing exposure to Borrelia burgdorferi, Pseudomonas 
aeruginosa, Helicobacter pylori, bacterial DNA, and 
meningococcal LPS-containing outer membrane vesicles 
[4, 20, 39, 40]. As we demonstrated in this study, infec-
tion with S. pneumoniae also leads to increased expres-
sion of PAI-2 and its massive release both in  vitro and 
in vivo (animal model and patients). These observations 
point to a function of PAI-2 in the regulation of innate 
immunity. There are only a few publications in patients 
with sepsis [32, 35] that have addressed this hypothesis, 
even though mice deficient in PAI-2 have been avail-
able as a suitable tool for investigating this question for 
over 20 years [11]. In the initial publication, the authors 
showed that Serpinb2−/−mice exhibited normal develop-
ment, survival, and fertility. Serpinb2−/−mice were found 
to exhibit no differences to wt mice in monocyte recruit-
ment into the peritoneum after thioglycolate injection, in 

the degree of arterial and venous thrombosis after LPS 
injection into the footpad, and in survival after challenge 
with LPS or cecal ligation and puncture. In contrast to 
this negative initial phenotype analysis, it has since been 
reported that PAI-2-deficient mice differ from normal 
mice in their disease phenotype in schistosomal, lenti-
viral, and enteric nematode infections due to an altered 
TH1/TH2 immunity [27, 36, 47]. In mouse models of 
acute neurodegeneration, it has been shown that defi-
ciency of PAI-2 limits brain oedema development fol-
lowing traumatic brain injury but did not influence lesion 
volume after cerebral trauma or infarction [18, 19].

In our mouse PM model, we now observed a distinct 
disease phenotype: PAI-2 deficiency was associated with 
increased mortality, which was paralleled by a substantial 
increase in intracerebral hemorrhages. This disease phe-
notype is similar to the phenotype we previously found 
in PAI-1-deficient (Serpine1−/−) mice [7]. Like PAI-1, 
PAI-2 is considered to be an authentic and physiologi-
cal inhibitor of uPA and tPA within extracellular envi-
ronments [1, 30]. Consequently, a lack of PAI-2 could 
lead to an increased formation of plasmin from plasmi-
nogen and thus to an imbalance between the coagula-
tion and fibrinolysis system with an increased risk of 
bleeding. This is supported by our observations that 
PAI-2 deficiency was associated with increased cerebral 

Fig. 4  Brain C5a (a), IL-10 (b), IL-1β (c) determined in homogenized brain of infected mice surviving up to the 48-h time point. Mice lacking 
Serpinb2 had significantly higher C5a concentrations and lower IL-10 levels compared to wt mice
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hemorrhages in experimental PM. However, the his-
topathological examinations of murine brains demon-
strated a substantial difference between Serpinb2−/− and 
Serpine1−/− mice. In Serpinb2−/−mice, the increase in 
cerebral hemorrhages was associated with pronounced 
neutrophilic infiltrates, while in Serpine1−/− mice the 
increase in bleeding was not accompanied by enhanced 
inflammation around parenchymal vessels. In Ser-
pine1−/− mice, cerebral hemorrhage occurred also in 
the absence of perivascular infiltrates. This finding sug-
gests mechanistic differences between both genotypes. 
In contrast to the PAI-1, PAI-2 appears to be involved in 
the regulation of inflammation. This is supported by our 
observation that Serpinb2−/− mice had higher brain C5a 
levels, but lower brain IL-10 concentrations than wt mice 
24 h after the start of antibiotic therapy. Previous work by 

our and other groups has demonstrated that C5a is a crit-
ical driver of inflammation in PM, while IL-10 appears to 
be an important antagonist [24, 45]. The altered expres-
sion of C5a and IL10 is likely to result in an immune 
imbalance in favor of a continued pro-inflammatory 
state. However, to what extent increased inflammation 
and increased fibrinolysis due to PAI2 deficiency contrib-
ute to development of cerebral hemorrhages is unclear.

How PAI-2 affects C5a and IL-10 concentrations is 
unclear. In myeloid cells, IL-10 production is induced by 
various signals downstream of pattern-recognition recep-
tors alongside that of pro-inflammatory cytokines such 
as IL-1β [28, 31]. Large amounts of IL-1ß are produced 
and released during PM [16]. Genetic and pharmacologi-
cal interference with IL-1ß generation leads to a milder 
immune response (and a better outcome) [22]. Recently, 

Fig. 5  PAI-2 mRNA expression (a), as well as PAI-2 (b) and IL-10 release (c) into the cell culture supernatant of wt and PAI-2-deficient BMDM upon 
pneumococcal challenge. Pneumococcal exposure led to strong upregulation of PAI-2 mRNA expression (a) and increased PAI-2 release by wt 
BMDM (b). PAI-2-deficient BMDM responded to S. pneumoniae challenge by decreased IL-10 liberation compared to wildtype BMDM (C). Todd 
Hewith Broth with yeast (THY), culture medium for S. pneumoniae, was used as a control
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PAI-2 expression in macrophages has been shown to 
suppress IL-1β production, presumably via increasing 
autophagy and NLRP3 degradation, resulting in decreased 
caspase-1 activation [28, 31]. In our in  vivo and in  vitro 
experiments, however, PAI-2 deficiency had no impact 
on IL-1β production/secretion. Thus, the lower IL-10 
production in the absence of PAI-2 does not appear to be 
related to lower IL-1β production. Consequently, the IL-10 
reduction appears to be based on an IL-1beta independent 
mechanism that has yet to be elucidated.

The conversion of plasminogen to plasmin is tightly 
controlled by the availability of plasminogen activators 
and their inhibitors such as PAI-2. Plasmin is the only 
enzyme that is able to cleave complement C5 at a similar 
rate as the canonical C5 convertase [26], generating bio-
logical active C5a [2, 12]. Accordingly, PAI-2 deficiency 
could lead to increased plasmin activity and thus, to 
increased C5a production in PM. This pathway can con-
tribute to a prolonged pro-inflammatory state, causing 
enhanced perivascular inflammation, increased cerebral 
hemorrhages, and reduced survival.

The analysis of CSF PAI-2 levels in patients indicating 
high levels of PAI-2 are associated with poor outcome are 
contrasting with the mouse experiments showing absence 
of PAI-2 causes worse outcome. Several explanations for 
this discrepancy can be provided: first, timing of CSF 
sampling was variable in patients, who were in different 
stages of the disease with variable duration and severity 
of symptoms, different underlying conditions, virulence 
of bacteria etc. Second, PAI-2 CSF levels were correlated 
to CSF protein levels, which indicates at least part of the 
PAI-2 came from leakage through the blood–brain-bar-
rier. Finally, PAI-2 may play a role at different stages of 
the disease, which is difficult to extrapolate from the sin-
gle measurement in CSF. Our mouse experiments show 
that PAI-2 deficiency is associated with increased cer-
ebral hemorrhages, an aggravated immune response, and 
consequently an unfavourable clinical course. This fits 
well with the biological activities known so far for PAI-2.

We show Serpinb2−/− mice have a clear disease pheno-
type in PM that is associated with increased perivascu-
lar neutrophilic infiltration and heavier bleeding. These 
observations fit with the previously discussed concepts 
of an immunoregulatory role of PAI-2 in pathophysi-
ological conditions. Our study has several limitations. 
First, although we were able to connect the pathologi-
cal changes with changes in the brain concentrations of 
C5a and IL-10 we were unable to clarify the underlying 
mechanism of these changes. Furthermore, in the ani-
mal experiments only animals surviving the full 48  h 
were assessed for clinical scores, weight loss, tempera-
ture, exploratory behavior, CSF white blood cell count, 
bacterial cerebellar titer, and brain protein cytokine 

concentrations. As deceased mice can be assumed to be 
more severely affected on most (or all) of these param-
eters, relevant clinical features of meningitis in PAI-2-
mice may have been missed as numbers were too small 
to show statistically significant differences. Finally, we 
did not quantify fibrinolysis by measuring uPA, tPA and 
plasmin activity due to no (or a limited amount of ) left-
over CSF, blood and brain tissue. We did not feel that 
additional mouse experiments for this purpose only were 
justified.

Conclusion
In conclusion, our data suggests that PAI-2 has an anti-
inflammatory role in pneumococcal meningitis. PAI-2 
deficiency increased C5a and reduced IL-10 concen-
tration, resulting in increased mortality due to brain 
hemorrhages. SerpinB2 has been studied as a potential 
treatment in a mouse stroke model and proven to be 
effective in reducing brain damage [8]. Therefore, a simi-
lar therapeutic approach may be tested in a mouse PM 
model to assess its efficacy against meningitis-associated 
vascular damage and death.
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