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of non‑m6A‑related neoantigen‑coding 
lncRNAs assists in immune microenvironment 
analysis and TCR‑neoantigen pair selection 
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Abstract 

Background:  Small peptides encoded by long non-coding RNAs (lncRNAs) have attracted attention for their various 
functions. Recent studies indicate that these small peptides participate in immune responses and antigen presenta-
tion. However, the significance of RNA modifications remains unclear.

Methods:  Thirteen non-m6A-related neoantigen-coding lncRNAs were selected for analysis from the TransLnc data-
base. Next, a neoantigen activation score (NAS) model was established based on the characteristics of the lncRNAs. 
Machine learning was employed to expand the model to two additional RNA-seq and two single-cell sequencing 
datasets for further validation. The DLpTCR algorithm was used to predict T cell receptor (TCR)-peptide binding 
probability.

Results:  The non-m6A-related NAS model predicted patients’ overall survival outcomes more precisely than the 
m6A-related NAS model. Furthermore, the non-m6A-related NAS was positively correlated with tumor cells’ evolution-
ary level, immune infiltration, and antigen presentation. However, high NAS gliomas also showed more PD-L1 expres-
sion and high mutation frequencies of T-cell positive regulators. Interestingly, results of intercellular communication 
analysis suggest that T cell-high neoplastic cell interaction is weaker in both of the NAS groups which might arise 
from decreased IFNGR1 expression. Moreover, we identified unique TCR-peptide pairs present in all glioma samples 
based on peptides encoded by the 13 selected lncRNAs. And increased levels of neoantigen-active TCR patterns were 
found in high NAS gliomas.

Conclusions:  Our work suggests that non-m6A-related neoantigen-coding lncRNAs play an essential role in glioma 
progression and that screened TCR clonotypes might provide potential avenues for chimeric antigen receptor T cell 
(CAR-T) therapy for gliomas.
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Background
Gliomas are the most prevalent brain tumor with dismal 
outcomes, with a median survival time of 12–15 months 
after diagnosis and a 5-year survival rate of no more than 
3% [1, 2]. One factor contributing to gliomas’ refrac-
toriness is relatively low immune responses, namely 
responses that are “immunologically cold” or immuno-
suppressive. Although some of immunotherapy agents 
like depatuxizumab [3] manifested curing effects in 
recurrent glioblastoma patients, other agents including 
bevacizumab [4, 5] and PD-1/PD-L1 antibodies such as 
nivolumab [6, 7] and the like, which have been proven 
effective for the treatment of other tumors, are of lim-
ited value for primary glioma patients. Besides, although 
chimeric antigen receptor T cell (CAR-T) therapy was 
approved for the treatment of B-cell malignancies by the 
American Food and Drug Administration, it does not 
have a satisfying effect on solid tumors such as gliomas, 
which is partly due to the immunosuppressive micro-
environment inside solid tumors [8]. However, the per-
sonalized tumor vaccine that is based on neoantigens 
produced by gliomas provides a new avenue for glioma 
treatment [9]. However, identification of the neoanti-
gens appropriate for use in CAR-T therapy for gliomas is 
challenging.

In most situations, cancers arise from an accumula-
tion of genetic mutations or damage to DNA [10]. Neo-
antigens derive from these non-synonymous genetic 
mutations, including single nucleotide variations (SNV), 
chromosomal deletions and insertions, gene fusion, and 
alternative splicing [11]. As the presented neoantigens 
might elicit T-cell-mediated anti-tumor immunity spe-
cifically against tumor cells, they are considered promis-
ing immunotherapy targets [12]. Recently, neoantigens 
derived from non-coding regions of RNAs have received 
attention [13, 14]. Of these, long-non-coding RNAs 
(lncRNAs) are especially notable for their crucial role in 
modulating immune responses [15, 16] and their ability 
to translate short peptides [17]. LncRNAs have also been 
reported to translate neoantigens that can be presented 
by major histocompatibility complex class 1 molecules 
(MHC I), which contributes to essential cellular immuno-
surveillance [17] and expands the range of immunopepti-
domes that can be targeted for immunotherapy [18].

The translation of lncRNAs can be modulated by many 
factors, including small or short open-reading frames 
(smORF or sORF) [19], eIF4E [20], and N6-methyladen-
osine (m6A) modification. lncRNAs lack canonical ORF 
codes for over 100 amino acids [19]. Therefore, they are 

considered untranslatable until sORF or smORF, which 
encode small peptides, are identified inside them [21]. 
eIF4E is a translation initiation factor that weakly binds 
to 5′ caps of RNA after phosphorylation, which induces 
inhibition of mRNA translation and facilitates interac-
tion between lncRNA and ribosomes [22]. Addition-
ally, m6A modification has been proven to affect mRNA 
translation [23]. Studies have shown that m6A-modified 
sites serve as translation initiation sites for circular RNA 
[21]. Recent studies have provided further evidence that 
lncRNA translation that produces micropeptides is also 
affected by m6A modification [24]. Moreover, TransLnc 
[25] and LncPep [26], two recently created databases, 
have recorded the potentially translatable lncRNAs that 
have been identified through experimental evidence or 
algorithmic deduction. Both databases use m6A modi-
fication as an index in the evaluation of lncRNA trans-
lation potential. By calculating micropeptides’ binding 
affinities to MHC I and MHC II, TransLnc also evalu-
ated their potential to be presented by MHC complex so 
that they might act as neoantigens. Results indicate that 
m6A plays an important role in both lncRNA translation 
and neoantigen production from lncRNA. Moreover, 
select RNA modification processes, such as pseudou-
ridine (Ψ), N1-methyladenosine (m1A), and 5-methyl-
cytosine (m5C), also participate in the modulation of 
mRNA translation, the launching of immune responses 
[27, 28], and the modification of lncRNA [29–32]. How-
ever, whether these non-m6A modifications are related 
to lncRNA-mediated immune processes and neoantigen 
production has yet to be explored.

Here, we investigate the signatures of neoantigen-cod-
ing lncRNAs that could be related to m6A or non-m6A 
modifications in the TransLnc database. We compared 
two sets of lncRNAs by analyzing gene expression data 
of gliomas from The Cancer Genome Atlas (TCGA) 
and discovered that the signature of non-m6A-related 
neoantigen-coding lncRNAs has better efficacy in the 
prognostic model. We then established a scoring model 
using a clustering model of the non-m6A-related neo-
antigen-coding lncRNAs’ signature. This score is highly 
correlated with immune infiltrations, glioma cell devel-
opment, glioma patient prognoses, and tumor mutation 
burden (TMB) of T-cell positive regulators. After investi-
gating the correlation between this score and gliomas’ T 
cell receptor (TCR) repertoires, we found that the score 
model is positively correlated with the expression levels 
of widely expressed neoantigen-active TCR clonotypes. 
In summary, these results indicate that the model of 
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non-m6A-related neoantigen-coding lncRNAs is a prom-
ising tool for determining glioma patient prognoses, and 
it also provides widely targetable T cell clonotypes for 
potential CAR-T therapy for the treatment of gliomas.

Methods
Data preparation
mRNA sequencing data were downloaded from TCGA 
database (https://​www.​cancer.​gov/​about-​nci/​organ​izati​
on/​ccg/​resea​rch/​struc​tural-​genom​ics/​tcga), and valida-
tion data were downloaded from the Chinese Glioma 
Genome Atlas (CGGA) database (http://​www.​cgga.​org.​
cn/). Two datasets from the CGGA, “mRNAseq_325” 
and “mRNAseq_693”, were employed; these are labelled 
herein as CCGA325 and CCGA693, respectively. There 
were 169 glioblastoma multiforme (GBM) samples 
and 529 low-grade glioma (LGG) samples in the train-
ing cohort of TCGA dataset, and there were 139 GBM 
samples and 186 LGG samples in the CGGA325 data-
set. Also, 249 GBM samples and 444 LGG samples were 
included in the CGGA693 dataset. Verhaak classification 
was performed, as described above [33].

Single-cell sequencing (scSeq) data were obtained from 
the Gene Expression Omnibus (GEO) database (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/), from which GSE84465 was 
selected for analysis. This dataset contained 3589 cells. 
Furthermore, another dataset from the CGGA database 
containing 6148 cells was also included. GSE129671 was 
used for SCENIC analysis. The “Seurat” package from R 
was applied to normalize the count data from these data-
sets, and the “FindMarkers” function was used to identify 
unique gene markers in every cluster. Cell distribution 
was displayed using the “tSNE" or “umap” functions. The 
cells were annotated as described in a study that also 
used the GSE84465 dataset [34] after undergoing slight 
modifications.

TCR sequencing data were acquired from the GEO 
database, and two datasets, GSE79338 and GSE188620, 
were used for analysis. The GSE79338 dataset contained 
TCR data from normal brain tissue as LGG and GBM 
were used to explore unique TCR patterns or clonotypes 
in gliomas as compared to normal brain tissue in this 
study. Two samples, GBM09 and GBM13, were excluded 
as they had relatively fewer TCR clonotypes than other 
GBM samples. The GSE188620 dataset contained TCR 
sequencing data before and after GBM-cell lysate vacci-
nation, and it was used in this study for the validation of 
selected TCR patterns.

Neoantigen activation score (NAS) model
In accordance with the literature, the high- to inter-
mediate-level modifications (Ψ and m5C) and ultra-
low-level modifications (m1A) were used as the main 

non-m6A modifications in this study [35]. Their regu-
lators were identified in previous studies [36–38]. The 
cluster model was constructed using the “Consensus-
ClusterPlus” package in R. We used “km” (k-means) as 
the cluster algorithm and “euclidean” as the distance 
function. Two clusters, scored with continuous num-
bers between 2 and 9, were considered to have the best 
clustering results that showed the highest clustering 
reliability (Additional file 2: Fig. S2A).

Next, the differential expression genes (DEGs) were 
identified by comparing cluster 1 to cluster 2 using 
the “limma”, “edgeR” and “DESeq2” packages in R with 
a threshold of false discovery rate (FDR) < 0.05 and 
|log2(fold change)|> 1 (Additional file 12: Table S1 and 
Additional file 13: Table S2). For DEGs of CGGA693 in 
non-m6A-related NAS model, no gene could meet this 
threshold in limma and DESeq2 analyses so we used 
FDR < 0.05 and |log2(fold change)|> 0.4 in edgeR to 
keep the number of DEGs similar to CGGA325 dataset. 
Then the DEGs were confirmed as the intersection of 
these three parts. A univariate cox regression was then 
conducted in order to identify the genes associated 
with significant survival outcomes. Following this, the 
principal components of these significant genes were 
calculated, and TCGA samples’ NASs were calculated 
using the following formula according to a previous 
study [34].

GeneHR>1 and GeneHR<1 represent the expression lev-
els of genes with a hazard ratio (HR) that is higher or 
lower than 1 in survival analyses, respectively. Gene 
expression levels are in fragments per kilobase of tran-
script per million mapped reads (FPKM). To minimize 
the NAS value without altering its prognostic efficacy, k 
is set as 0.0001 to keep most of the NAS value ranging 
from ten to thousands.

After this, the characteristics of cluster 1 and 2 
were identified through the use of the support vector 
machine (SVM) that is embedded in R package “e1071”, 
indicated by the function “svm”. For parameters of this 
function, the kernel “radial” was applied, and k-fold 
cross was set to 10. The randomly selected 520 samples 
(75% of all) in TCGA data were used as training phase 
data while the rest 174 samples (25% of all) were used 
as testing phase data. There were two clusters result-
ing from SVM-based prediction: cluster 1 and clus-
ter 2. The cluster model was then reproduced in the 
CGGA325 and CGGA693 datasets using the “predict” 

NAS = k∗
∑

(GeneHR>1∗(PC1+ PC2))

− k∗
∑

(GeneHR<1∗(PC1+ PC2))

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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function. The NASs were calculated through a similar 
process.

Overall survival outcome prediction
The TCGA, CGGA325, and CGGA693 samples were 
divided into cluster 1 and cluster 2 and into high and 
low NAS groups by the cluster model or by the NAS. 
Kaplan-Meier analysis was used to determine the differ-
ent groups’ overall survival time. The receiver operation 
characteristic (ROC) curve was generated, and the area 
under the curve (AUC) was calculated for each model.

Gene function enrichment
Gene set variation analysis (GSVA) enrichment of gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) was performed using the “GSVA” 
package in R. The GO and KEGG enrichment analysis 
was conducted using the “clusterProfiler” package in R. 
This package was also employed for gene set enrichment 
analysis (GSEA) of the DEGs between high and low NAS 
groups.

Immune microenvironment analysis
The “ESTIMATE” package in R was applied to analyze 
the infiltration ratio of immunocytes and stromal cells 
and to estimate the immune score and tumor purity 
within every TCGA, CGGA325, and CGGA693 sample. 
The immune cell components in the microenvironment 
were analyzed using the CIBERSORT algorithm.

RNA velocity and inter‑cell communication analysis
RNA velocity was analyzed using the “scVelo” and “velo-
cyto” packages in Python 3.8.8. This analysis revealed 
the evolutionary pathways of tumor cells based on RNA 
velocity. Intercellular communication was analyzed using 
the “celltalker” package in R, and differential ligand-
receptor pairs were extracted.

Transcription factors analysis
For the RNA sequencing (RNA-seq) data, Expres-
sion2Kinases (X2K, https://​maaya​nlab.​cloud/​X2K/) was 
employed to compare upstream transcription factors 
of DEGs between low and high NAS groups in TCGA, 
CGGA325, and CGGA693 datasets. For the scSeq data, 
we applied pySCENIC algorithm to construct the tran-
scription factors’ regulatory network. The human tran-
scription factors data were downloaded from cisTarget 
databases (https://​resou​rces.​aerts​lab.​org/​cista​rget/) for 
the network construction. The activation of transcription 
factors was estimated using the “AUCell” package in R.

Least absolute shrinkage and selection operator (Lasso) 
analysis
For the simplify of NAS calculation, lasso analysis was 
performed with R package “glmnet”. The datasets of 
TCGA, CGGA325 and CGGA693 were merged into 
one by their common DEGs. For the parameters of 
“glmnet” function, we used family = "cox", alpha = 1, 
nlambda = 100.

TCR‑neoantigen peptide pairs identification
The TCR clonotypes were clustered into patterns using 
the GLIPH2 algorithm (http://​50.​255.​35.​37:​8080/), and 
the binding probability between selected TCR clonotypes 
and potential neoantigen peptides was analyzed using the 
DLpTCR algorithm (http://​jiang​lab.​org.​cn/​DLpTCR/). 
Differences in the clonotypes before and after vaccina-
tion were analyzed using the “scRepertoire” package in R.

Patients and tissue specimens
For immunohistochemistry staining, the paraffin-embed-
ded glioma tissues of WHO grade II (n = 3), III (n = 3) 
and IV (n = 3) were acquired from glioma patients who 
underwent surgery in Department of Neurosurgery, Qilu 
Hospital of Shandong University. And the normal brain 
tissues (n = 3) were from craniocerebral trauma patients 
whose normal brain must be partially resected for 
decompression. And for the quantitative real-time PCR, 
the frozen glioma tissues for RNA extraction of WHO 
grade II (n = 4) and IV (n = 4) were also acquired from 
glioma patients in Department of Neurosurgery, Qilu 
Hospital of Shandong University.

Immunohistochemistry (IHC) staining
The formalin-fixed and paraffin-embedded tissues were 
sectioned into 4  μm slices. Antigen retrieval was con-
ducted in boiled sodium citrate buffer (pH 6.0). Then 
endogenous horseradish peroxidase was blocked with 
3% H2O2 and the tissues were blocked with 10% normal 
goat serum. Then the slides were incubated with primary 
antibodies targeting TMSB10 (Elabscience #E-ab-15878, 
1:100 dilution), vimentin (VIM) (Cell Signaling #5741S, 
1:200 dilution) and PD-L1 (Invitrogen #14–5982-82, 
1:100 dilution). Then target protein was visualized with 
DAB with standard protocols. The cell nuclei were 
stained with hematoxylin. Then images were obtained 
with an Olympus inverted microscope.

Cell lines and cell culture
LN229, U118MG, A172, U251MG and Jurkat cells 
were obtained from Culture Collection of the Chinese 
Academy of Sciences. The GBM#P3, GBM#BG5 and 
GBM#BG7 were patient-derived glioblastoma stem-like 
cells isolated from glioblastoma specimens and were 

https://maayanlab.cloud/X2K/
https://resources.aertslab.org/cistarget/
http://50.255.35.37:8080/
http://jianglab.org.cn/DLpTCR/


Page 5 of 23Zhao et al. Journal of Translational Medicine          (2022) 20:494 	

functionally characterized [39, 40]. The LN229, U118MG, 
A172, U251MG glioma cell lines were cultured in Dul-
becco’s modified Eagle medium (Macgene, #CM10017) 
with 10% fetal bovine serum (FBS). The Jurkat cell was 
cultured in RPMI-1640 (Macgene, #CM10041) with 10% 
FBS. The GBM#P3, GBM#BG5 and GBM#BG7 were cul-
tured in Neurobasal™ medium (Gibco/Thermo Fisher 
Scientific, # 21,103,049) supplemented with 10  ng/ml 
basic fibroblast growth factor (bFGF; PeproTech, #100-
18B), 20  ng/ml epidermal growth factor (EGF; Thermo 
Fisher Scientific, # PHG0311L) and 2% B-27™ Neuro Mix 
(Thermo Fisher Scientific, # A1895601).

Quantitative real‑time PCR
Total RNA from cells or tissues was extracted with the 
RNA-Quick Purification Kit (#RN001, ESscience Bio-
tech). 1000 ng of total RNA was synthesized into cDNA 
with Hifair® III 1st Strand cDNA Synthesis Super-
Mix (Yeasen Biotechnology, #11141ES10). Then Hieff® 
qPCR SYBR Green Master Mix (Yeasen Biotechnology, 
#11201ES03) was applied for amplification in the quanti-
tative real-time PCR. The volume of reaction mixture was 
10 μl and the reaction procedure was set according to the 
manufacturer’s two-step protocol. The primer sequences 
were listed in Additional file 14: Table S3.

Cell counting kit‑8 (CCK‑8) assay
The Jurkat cells were seeded into 96-well plates at a den-
sity of 1 × 105 per well with BAPTA-AM at 0, 10, 20 and 
40 μM. Then CCK-8 assay was conducted following man-
ufacturer’s protocol (Yeasen Biotechnology, #40203ES76) 
at the time of 0, 24, 48  h after seeding. The OD values 
were measured at the wave length of 450 nm.

Calcium colorimetric assay
Jurkat cells were seeded into 6-well plate at a density of 
5 × 105 per well and were treated with BAPTA-AM at 
0, 10, 20 and 40  μM for 48  h. Then calcium colorimet-
ric assay was performed with Calcium Colorimetric 
Assay Kit (Beyotime Biotechnology, #S1063S) following 
manufacturer’s protocol. Briefly, after counting under 
microscope, cells were collected by 600 g centrifugation 
of 5  min. Then cells were treated with lysis buffer and 
the lysate were centrifugated again at 12000 g for 5 min. 
Then the supernatant was extracted and used for calcium 
colorimetric assay to detect calcium concentration. Then 
calcium mass per million cells was calculated.

Co‑culture and ELISA assay
Jurkat cells were seeded into 6-well plate at a density of 
5 × 105 per well. And they were activated by adding 2 μg/
ml soluble anti-CD3 (Proteintech, #60,181–1-Ig) and 
1  μg/ml soluble anti-CD28 (Proteintech, #65,099–1-Ig) 

for 24  h, as previously described [41]. Then activated 
Jurkat cells were seeded into 24-well plate at a density 
of 1 × 105 per well and BAPTA-AM was added to acti-
vated Jurkat cells at 0, 10, 20 and 40 μM for 24 h. At the 
same day of BAPTA-AM treatment, the LN229 cells were 
seeded into 96-well plates at a density of 3 × 103 per well. 
After BAPTA-AM treatment, Jurkat cells were added 
to LN229 cells at 2 × 103 per well. After 48 h co-culture, 
the supernatant was extracted for ELISA assay detecting 
IFN-γ (Proteintech, #KE00146). The remaining LN229 
cells were used for CCK-8 assay.

Statistical analysis
Shapiro-Wilk test was applied to normality test. The 
Mann-Whitney test was used to compare two groups of 
data that did not subject to normal distribution and Stu-
dent’s t-test was employed to compare two groups of data 
that did. And the ANOVA test was employed to conduct 
multiple comparisons. The log-rank test was used to 
determine the overall survival outcome, and the Spear-
man test was used to analyze the correlations between 
two sets of data. Analyses were conducted using R (ver-
sion 4.1.3), Python (version 3.8.8), and GraphPad Prism 
(version 8.3.0).

Results
Non‑m6A‑related neoantigen‑coding lncRNAs were 
identified in glioma patients in TCGA dataset
The overall workflow of this study was manifested in 
Additional file  1: Fig. S1A. First, the expression levels 
of non-m6A-related regulators in TCGA dataset were 
collected. In accordance with a previous study [35], the 
non-m6A modifications were divided into the following 
three classes according to their levels: 1) high to interme-
diate levels of modifications with hundreds to thousands 
of modification sites (Ψ and m5C); 2) ultra-low levels of 
modifications with few modification sites (m1A); and 
3) unknown levels of modification that require further 
confirmation (like N4-acetylcytidine [ac4C], 2’-O-meth-
ylation [Nm], and 7-Methylguanosine [m7G]). Next, 
modifications in the first two classes, including Ψ, m5C, 
and m1A, were selected as the main non-m6A modi-
fications to be investigated. The regulators involved in 
Ψ, m5C, and m1A modification are listed in Additional 
file15: Table  S4 [36–38]. We identified the non-m6A-
correlated lncRNA in TCGA dataset (Additional file  1: 
Fig. S1B) with the function “cor.test” in R. The p value 
threshold was set to 0.001 and |R| threshold was set to 
0.4 (Additional file  16: Table  S5). And the correlation 
network was constructed with “igraph” package in R. 
Then lncRNAs that significantly correlated with glioma 
patients’ overall survival time were selected (Additional 
file  1: Fig. S1C) using uniCox analysis. According to 
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TransLnc, potential peptide-coding lncRNAs in which 
peptides could be presented by MHC I were deter-
mined as MHC I is the main contributor of endogenous 
antigens, including tumor-derived antigens. A total of 
13 lncRNAs were discovered, 5 of which had an HR of 
greater than 1 and 8 of which had an HR of less than 1. 
These 13 lncRNAs were significantly upregulated in the 
glioma group compared to the normal group (Additional 
file 1: Fig. S1D).

Non‑m6A modification is activated in high grade gliomas 
and NAS predicts glioma patients’ prognosis
The process of establishing the NAS model is illustrated 
in Fig. 1A andAdditional file 1: Fig. S1A. Consensus clus-
tering was conducted based on the expression of non-
m6A-related neoantigen-coding lncRNAs. The glioma 
samples from TCGA were divided into two clusters to 
acquire the highest relability in every cluster (Additional 
file 2: Fig. S2A), and principal component analysis (PCA) 
plotting revealed differences in the distribution between 
cluster 1 and cluster 2 (Additional file  2: Fig. S2B). We 
identified the expression of selected non-m6A regula-
tors in these two clusters, and results indicate that most 
of the writers and readers were upregulated in cluster 2 
(Fig.  1B). For the erasers, the FTO and TET2 were sig-
nificantly elevated in cluster 1 while levels of ALKBH1 
and ALKBH3 were not significantly different between the 
two clusters (Fig.  1B). This suggests an enhanced non-
m6A modification state in cluster 2 compared to cluster 
1. In cluster 2, the lncRNAs with an HR greater than 1 
were of a significantly higher expression level than those 
in cluster 1, while those with an HR less than 1 were of a 
significantly lower expression level (Fig. 1C). Then SVM 
algorithm was used to learn the gene expression features 
of cluster1 and cluster2 and to reproduce the cluster-
ing model in validation datasets. Similar results were 
observed in the CGGA325 dataset (Additional file 2: Fig. 
S2C), while, in the CGGA693 dataset, only a few genes 
were significantly differently expressed between the two 
clusters (Additional file  2: Fig. S2D). Furthermore, the 
cluster model predicted the prognosis efficiently in all gli-
omas and LGG. In the model, cluster 2 manifested a sig-
nificantly worse prognosis than cluster 1, while in terms 
of GBM, there was no significant difference between the 
clusters (Additional file  3: Fig. S3). However, in ROC 
analysis, the prognostic efficacy of the cluster model was 
less than satisfactory in that the AUC value of the non-
m6A-related neoantigen cluster model was 0.72 (Fig. 1G), 
which was even less than the that of age (AUC = 0.82) 
and grade (AUC = 0.82).

We hypothesized that the accuracy of cluster model 
was limited by its binary classification of TCGA sam-
ples. To improve the accuracy of the non-m6A-related 

neoantigen cluster model, an NAS model was devel-
oped based on the DEGs between cluster 1 and cluster 
2 according to a previous study [34], as discussed in the 
“Methods” section. As mentioned above, the formula 
included gene expression levels and their weight pro-
duced by PCA, so it provided a quantified parameter that 
was related to the expression of genes with HR > 1 and 
HR < 1. According to our analysis on clustering model, 
cluster2 showed worse prognosis than cluster1, and all 
DEGs of HR > 1with significant prognostic effects ele-
vate in cluster2 compared to cluster1. HR > 1 also indi-
cates that high expression of a gene is associated with 
worse prognosis. Also, all DEGs of HR < 1 with signifi-
cant prognostic effects downregulate in cluster2. This 
result is shown in venn diagram (Additional file  2: Fig. 
S2E). Therefore, the formula basically reflects the simi-
larity degree between the gene expression pattern of an 
RNA-seq sample and cluster2. The NAS model distin-
guished glioma subtypes at different levels more pre-
cisely than the cluster model and was highly correlated 
with the expression of selected regulators or lncRNAs 
(Fig.  1B, C). Similar results were obtained when NASs 
were calculated in the CGGA325 and CGGA693 datasets 
(Additional file 2: Fig. S2C, D). Moreover, the NAS model 
performed well when predicting the prognosis of GBM 
patients in TCGA (Fig.  1D), CGGA325 (Fig.  1E), and 
CGGA694 (Fig. 1F) datasets in that the high NAS group 
presented shorter average survival time. Similar results 
were found in all glioma and LGG groups in these three 
datasets (Additional file 4: Fig. S4). The AUC value of the 
non-m6A-related NAS model was 0.88, which was much 
higher than in the cluster model, as were the values for 
age and grade (Fig. 1G).

To identify the difference between the non-m6A-
related NAS model and m6A-related NAS model, the 
m6A-related NAS model was constructed in a simi-
lar manner (Additional file  5: Fig. S5). The AUC value 
of the m6A clustering model was 0.59, while that of the 
NAS model was 0.87 (Fig.  1G). Then data of all 3 data-
sets (TCGA, CGGA325 and CGGA693) were merged 
and AUC values of all models were calculated again. The 
results indicated that AUC value of non-m6A-related 
NAS model was 0.76 (Additional file 1: Fig. S1E), larger 
than m6A-related NAS model (AUC = 0.66). It suggested 
the non-m6A-related model had better prognostic accu-
racy than the m6A-related model in all three datasets. 
Therefore, the non-m6A-related NAS model was selected 
for further research.

High NAS are correlated with aggressive subtypes 
of glioma
In order to identify the relationship between NAS and 
glioma subtype, non-negative matrix factorization 
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Fig. 1  The construction and comparison of NAS models. A Flow chart of the process of NAS model construction. B non-m6A-related regulators’ 
expression and corresponding clinical and genetic characteristics based on NAS were shown in heatmap. C neoantigen-coding prognosis-related 
lncRNAs’ expression and corresponding clinical and genetic characteristics based on NAS were shown in heatmap. D–F Overall survival analysis 
based on the non-m6A-related NAS in TCGA, CGGA325, CGGA693, respectively. G Comparison of non-m6A-related NAS models and other 
prognostic models with ROC curves in TCGA dataset
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(NMF) clustering was used to divide the samples into 
three clusters according to Verhaak classification, as 
described in previous literature [33]. The results showed 
that, of the three subtypes, the mesenchymal (MES) 
subtype had the highest average NAS, and the proneu-
ral (PN) subtype showed the lowest average NAS in all 
three datasets (Fig.  2A–C). The MES subtype was the 
most aggressive subtype and was associated with poor 
survival outcomes, while the PN subtype displayed the 
lowest levels of aggressiveness [33]. Therefore, the NAS 
was positively correlated with the aggressiveness of glio-
mas, as predicted by the Verhaak classification using bulk 
sequencing data.

The scSeq data of glioma cells in the GSE84465 data-
set were clustered and annotated (Additional file  6: 
Fig. S6A) following a previous study [34] with a slight 
modification, and the marker genes in every cluster 
were identified (Additional file  6: Fig. S6C). Results 
were reproduced in the CGGA scSeq dataset using 
the same procedure (Additional file  6: Fig. S6B, D). 
Moreover, the cells were also divided into two clus-
ters using SVM. Based on the cluster model, the DEGs 
were explored using the “DEsingle” package in R (Addi-
tional file  17: Table  S6), and the NAS was calculated. 
Cluster 2 overlapped extensively with cells with a rela-
tively high NAS in the t-distributed stochastic neighbor 
embedding (t-SNE) reduction plot (Fig. 2D, E), and the 

Fig. 2  The NAS is positively correlated with glioma aggressiveness. A–C Distribution of NAS in samples grouped by Verhaak classification in TCGA, 
CGGA325, CGGA693, respectively. D, E Distribution of clusters and NAS in GSE84465 and CGGA dataset, respectively. The cells are displayed by 
tSNE reduction. F The NAS of cluster1 and cluster2 in GSE84465 and CGGA dataset, respectively. G The NAS of four cell types, low neoplastic, high 
neoplastic, inflammation-related glioma cells and OPC in GSE84465 and CGGA scSeq datasets, respectively. H–J The RNA velocity of GSE84465 
displayed by clusters, subtypes and NAS, respectively
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Mann–Whitney test confirmed these results (Fig.  2F). 
Additionally, we also found that the low neoplastic cells 
showed a significantly lower NAS than the high neo-
plastic and inflammation-related glioma cells in both 
the GSE84465 and CGGA datasets (Fig.  2G). We then 
classified the cells in the GSE84465 dataset into four 
previously established molecular subtypes on a single 
cell level based on existing literature [34, 42]. The RNA 
velocity of glioma cells in the GSE84465 dataset was 
then calculated by analyzing the abundance of spliced 
and unspliced RNA so as to profile the evolutionary 
processes of glioma cells. Most of the cells in clus-
ter 2 were at the end of their revolutionary processes 
(Fig.  2H). Meanwhile, the MES and oligodendrocyte-
progenitor-like (OPC) subtypes were located at the end 
of the revolutionary pathway (Fig.  2I), indicating that 
most glioma cells become more aggressive over time. 
NAS increased as the glioma cells developed (Fig.  2J), 
indicating that NAS reflects the stage of glioma cell 
revolution. These results were also confirmed through 
pseudo-time analysis (Additional file 6: Fig. S6I). Addi-
tionally, cell trajectory analysis showed that OPCs and 
high neoplastic glioma cells were at the apex of cell 
trajectory, while low neoplastic cells were upstream of 
cell trajectory both in the GSE84465 (Additional file 6: 
Fig. S6E, G) and CGGA datasets (Additional file 6: Fig. 
S6F, H). The fact that high neoplastic glioma cells had 
higher NASs than low neoplastic ones suggests that 
glioma cells develop to be more aggressive when this 
development is accompanied by higher NAS. Together, 
these data indicate a positive correlation between NAS 
and glioma aggression.

NAS model is associated with antigen‑presenting 
and T‑cell‑related pathways
To identify the biofunctions involved in differences in 
NAS levels, we conducted enrichment analysis with the 
DEGs of TCGA samples with low or high NAS. GSVA 
enrichment analysis revealed that samples with a high 
NAS showed a higher enrichment score in T-cell-medi-
ated immunity, NK-cell-mediated cytotoxicity, and 
antigen processing and presentation in both the GO and 
KEGG pathways (Fig.  3A, B). GO enrichment analysis 
had very similar results in terms of T-cell-related func-
tions, antigen processing, and presentation (Fig. 3C) as 
well as the significant pathways enriched in the KEGG 
database, including immune-related pathways, such as 
NK-cell-mediated cytotoxicity, the chemokine signal-
ing pathway, and antigen processing and presentation 
(Fig. 3D). GSEA enrichment analysis of the scSeq data 
revealed that anti-tumor immunity factors, such as T 
cell cytokine production and NK-cell activation, were 

elevated in the high NAS group (Fig.  3E). However, 
cell-cell adhesion was downregulated in this dataset. 
Analysis of the scSeq data in the CGGA dataset also 
showed facilitated T-cell-related functions in the high 
NAS group (Fig.  3F). Taken together, NAS and the 
non-m6A-related neoantigen-coding lncRNAs were 
associated with T-cell-related immunity and antigen 
processing and presentation.

Higher NAS gliomas are correlated with higher levels 
of immune infiltration
To determine the relationship between NAS and immune 
infiltration, the “ESTIMATE” package in R was employed 
to assess immune infiltration in the samples from TCGA 
dataset. NAS was positively correlated with immune 
score and negatively correlated with tumor purity 
(Fig.  4A), suggesting that a higher NAS implies higher 
levels of immune infiltration. Analysis of the samples 
from the CGGA325 and CGGA693 datasets revealed 
similar trends (Additional file  7: Fig. S7A, B). Following 
this, we used CIBERSORT to profile changes of infil-
trated immune cells in detail, with results indicating that, 
although the proportion of CD8 + T cells and T helper 
cells was elevated, the proportion of regulatory T (Treg) 
cells increased while the proportion of activated NK cells 
declined (Fig.  4B, C). Similar results were observed in 
the samples from the CGGA325 and CGGA693 data-
sets; CD8 + T cells and the proportion of Treg cells were 
elevated in the high NAS group (Additional file  7: Fig. 
S7C–F). Given that a higher NAS suggests poorer sur-
vival outcomes and more aggressive tumors, we analyzed 
the possible mechanisms underlying higher immune 
infiltration that does not suppress glioma cells. The 
expression of PD-L1 was elevated when the glioma grade 
rose, indicating higher immunosuppression (Fig.  4D). It 
was also found that the expression of four lncRNAs (i.e., 
AC060766.4, AC0738962, LEF-AS1, and LINC00893) 
were positively correlated with PD-L1 (Fig.  4E). These 
four lncRNAs were included in the five lncRNAs with 
hazard ratios greater than 1 (Additional file 1: Fig. S1B). 
Thus, it was clear that immune infiltration was higher in 
the high NAS group than in the low NAS group and that 
increased PD-L1 expression might suppress the activa-
tion of T-cell-mediated immunity.

The expressions of NAS-related genes and PD-L1 were 
detected with IHC. In NAS, PC1 + PC2 was the main 
index influencing final results. TMSB10 was the gene 
with the highest PC1 + PC2 value (Additional file 7: Fig. 
S7G). VIM was in the top 10 list of PC1 + PC2 value, 
and it was also reported to be a marker of tumor inva-
siveness [43] and immunosuppression [44]. The correla-
tions between NAS and expression of TMSB10, VIM and 
PD-L1 were checked (Fig.  5A). It was shown that NAS 
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was significantly correlated with expression of TMSB10 
(R = 0.9), VIM (R = 0.71) and PD-L1 (R = 0.47). Then 
we detected expression of TMSB10, VIM and PD-L1 
with IHC. It was found that gliomas of more advanced 
grades exhibited higher TMSB10, VIM and PD-L1 levels 
(Fig. 5B, C). These results suggest genes positively corre-
lated with NAS and PD-L1 are expressed more in higher 
grade gliomas, and it also indicates higher NAS might be 
associated with more PD-L1 expression.

Abnormal expression of T‑cell positive regulators 
especially calcium‑related genes in high NAS group might 
lead to T cell malfunction
We found conflicting results in that a high NAS is associ-
ated with more immune infiltration, but it also predicts a 
worse prognosis; this suggests that the infiltrating immu-
nocytes do not suppress glioma cell growth. We analyzed 
the functions of T cells, which are the direct execution-
ers of anti-tumor immunity. A recent study screened 

Fig. 3  Biofunction enrichment between low or high NAS groups based on TCGA and scSeq datasets. A, B The GSVA analysis of GO and KEGG 
pathways of TCGA samples is illustrated by heatmap and clinical features. C, D GO and KEGG enrichment analysis based on DEGs between low and 
high NAS groups in TCGA dataset. E, F GSEA enrichment analysis based on DEGs between low and high NAS groups in GSE84465 and CGGA scSeq 
datasets, respectively
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regulators that could positively regulate the function of 
T cells, and 33 genes with varying functions were identi-
fied [45]. Therefore, it was necessary to analyze the pos-
sibility that abnormal expression and mutation patterns 
of these 33 genes resulted in T cell malfunctions. Genes 
related to Ca2+ flux (AHNAK and CALML3), DNA 
repair (ZNF830), and autophagy (HOMER1) were signifi-
cantly downregulated in the high NAS group of the sam-
ple from TCGA dataset (Fig.  6A). Similar results were 
achieved by analyses of the CGGA325 and CGGA693 

datasets (Additional file 8: Fig. S8A, B). The other regula-
tors were upregulated in the high NAS group.

Moreover, the SNV data in TCGA sample showed that 
the TMB of these 33 genes was higher in the high NAS 
group than in the low NAS group without statistical sig-
nificance (Additional file 18: Table S7) and that AHNAK 
contributed most of the mutations to high and low NAS 
groups (Fig.  6B, C). Similarly, the samples in cluster 2 
showed more mutation burdens related to these 33 genes 
than those in cluster 1 (Additional file 8: Fig. S8C, D). T 
cells of high-grade gliomas might be of interference with 

Fig. 4  The immune landscape based on bulk RNA-seq data of TCGA. A Correlations between Stromal score, ESTIMATE score, Immune score, tumor 
purity and NAS. B Infiltration ratio of all immunocytes in low and high NAS groups analyzed by CIBERSORT. C Infiltration ratio of Treg, CD8 + T cells, 
T helper and activated NK cells in low and high NAS groups based on CIBERSORT analysis. D The expression of PD-L1 in normal, LGG and GBM 
samples. E The correlations between expression of PD-L1 and non-m6A-related neoantigen-coding lncRNAs
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Ca2+ flux, DNA repair, autophagy, and the aldo–keto 
metabolism. Among these gene functions, Ca2+ flux 
mediated by AHNAK was highlighted as this gene dis-
played the most mutations among the 33 genes studied. 
Then we tried to validate the role of Ca2+ in T cell func-
tion by in  vitro functional assay. The intracellular Ca2+ 
chelator BAPTA-AM [46] was applied to Jurkat cells at 
the concentration of 0, 10, 20 and 40 μM for 48 h. Then 
intracellular calcium was detected and it significantly 
decreased in BAPTA-AM groups (Fig.  6D). Jurkat cell 
proliferation was also significantly inhibited by BAPTA-
AM treatment (Fig.  6E). For the co-culture assay, the 
workflow was shown in Additional file 8: Fig S8E. Briefly, 
the Jurkat cell were activated with CD3/CD28 antibodies 

for 24 h according to a previous study [41]. After another 
24 h’ treatment with BAPTA, activated Jurkat cells were 
co-cultured with LN229 cells. 48 h later, the IFN-γ in cul-
ture medium, which was regarded as a marker of T cell 
activation [41], was detected by ELISA. The results sug-
gested that IFN-γ secretion was also inhibited in BAPTA-
AM groups (Fig.  6F). The increase of remaining LN229 
cells in BAPTA-AM groups also indicated suppressed 
function of activated Jurkat cells (Fig.  6G, H). Taken 
together, in high NAS samples, abnormal Ca2+ flux might 
play an essential role in the failure of T cell-mediated gli-
oma growth suppression.

Fig. 5  IHC results of NAS-related genes (TMSB10 and VIM) and PD-L1. A Correlations between NAS and expression levels of TMSB10, VIM and PD-L1, 
respectively. B Representative IHC images of TMSB10 B, VIM C and PD-L1 D, respectively. Normal brain tissues (n = 3) and glioma tissues of WHO 
grade II (n = 3), III (n = 3) and IV (n = 3) were used. C Positive ratios of TMSB10, VIM and PD-L1 in IHC results, respectively. Bar = 50 μm
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Fig. 6  Expression of positive regulators of T cells and their mutations in TCGA dataset. A Expression of positive regulators of T cells illustrated by 
heatmap based on clinical features and NAS. B, C Single nucleotide variations of positive regulators of T cells in low (B) or high (C) NAS groups in 
TCGA dataset, respectively. D The calcium mass per million Jurkat cells after BAPTA-AM treatment at the concentration of 0, 10, 20 and 40 μM. E 
The cell viability of Jurkat cells after BAPTA-AM treatment. F IFN-γ concentrations in the co-culture medium. G, H The microscopic images (G) and 
viability of remaining LN229 cells (H) of co-culture system after 48 h. Bar = 100 μm
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High NAS gliomas are associated with transcription factors 
involved in stemness
Upstream transcription factors were also impor-
tant for elucidation of potential mechanisms in NAS 
changes. The X2K was employed in order to deter-
mine the upstream regulatory transcription factor 
networks in TCGA, CGGA325, and CGGA693 data-
sets. The DEGs of the low and high NAS groups were 
imported into X2K, after which the top 20 upstream 
regulatory transcription factors in TCGA (Fig.  7A), 
CGGA325, (Fig.  7B), and CGGA693 (Fig.  7C) data-
sets were obtained. We noticed that some of the top 

20 transcription factors were common across all three 
datasets, such as the SUZ12, REST, EZH2, SMAD4 and 
AR. The SUZ12 [47], REST [48], and EZH2 [49] genes 
were reported to contribute to the stemness of cancer 
cells, and they exhibited higher expression levels in 
the higher NAS group (Fig. 7D). These results indicate 
that higher NAS is associated with the facilitation of 
stemness transcription factors’ expression in RNA-seq 
data.

In terms of the scSeq data, we applied pySCENIC in 
the construction of regulatory networks of transcription 
factors. The differential activated transcription factors 

Fig. 7  Transcription factors analysis revealed enhanced stemness-related transcription factors’ activities in high NAS groups. A-C The top 20 
transcription factors enriched by X2K in TCGA A, CGGA325 B, CGGA693 C datasets, respectively. D The expression levels of EZH2, SUZ12 and REST in 
TCGA, CGGA325 and CGGA693 datasets, respectively. E The top 5 activated transcription factors analyzed by pySCENIC in low and high NAS groups 
in GSE84465 dataset
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in the GSE84465 dataset were calculated (Fig.  7E). The 
top 5 activated transcription factors were demonstrated, 
and stemness-related genes, such as SOX10 [50] and 
SOX8 [51], were activated in the higher NAS cells, while 
in the lower NAS cells, no such genes were observed in 
the top 5 activated transcription factors. However, in the 
CGGA scSeq data, opposite results were obtained (Addi-
tional file 9: Fig. S9A). We conducted another validation 

in dataset GSE129671. Among the five most activated 
transcription factors, MYC [52] in high NAS group was 
reported to facilitate cell stemness.

To investigate the stemness-related and NAS-related 
genes’ expressions in glioma specimens, the lasso analy-
sis was applied to identify major contributors to NAS. By 
merging TCGA, CGGA325 and CGGA693 datasets, lasso 
regression identified five genes and a simplified NAS 

Fig. 8  The expression levels of stemness-related genes in glioma specimens and glioma cell lines. A The correlation analysis between NAS 
and lasso-derived-NAS in TCGA, CGGA325 and CGGA693 datasets. B Expression of NAS-related genes in glioma specimens. C Expression of 
stemness-related genes in glioma specimens. D Expression of stemness-related genes in differentiated and stem-like glioma cell lines
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could be calculated as: NAS = 0.22864885*(COL5A2 
expression level) + 0.1083532*(PVT1 expres-
sion level) + 0.07381116*(CHI3L2 expres-
sion level) + 0.03597545*(SERPINE1 expression 
level) + 0.02452755*(SOCS3 expression level). And the 
lasso-derived NAS was highly correlated with NAS in 
all three datasets (Fig.  8A). Then these five genes were 
detected with qRT-PCR in 4 grade II and 4 grade IV glio-
mas. The results indicated all five genes elevated in grade 
IV gliomas and COL5A2 and PVT1 showed statistical 
significance (Fig.  8B), suggesting higher NAS in grade 
IV gliomas. And five stemness-related genes identified 
by analyses above were also detected, including EZH2, 
SUZ12, REST, SOX10 and MYC. The results showed only 
EZH2 significantly elevated in grade IV gliomas (Fig. 8C). 
These five genes were also detected in our patient-derived 
glioblastoma stem-like cells (GBM#P3, GBM#BG5 and 
GBM#BG7) and differentiated cells (A172, U118MG, 
U251MG and LN229). It suggested EZH2 and SOX10 
were significantly elevated in stem-like cells (Fig.  8D). 
These results indicated that higher stemness existed in 
the higher NAS groups of most samples and datasets. 
And EZH2 was the most significantly elevated stemness-
related gene in our assay.

Enhanced T cell‑glioma cell interactions in high NAS group 
might be escaped via low interferon‑γ receptor (IFNγR) 
pathway expression
We applied the “celltalker” packages in R to analyze inter-
cell communication in order to identify potential mech-
anisms underlying the suppressed function of T cells in 
the high NAS group. In the low NAS group, low neoplas-
tic cells were active in most significant interactions, inter-
acting with dendritic cells and T cells via the ADAM12 
and ITGA9/SDC4 pathways, with both having no points 
in the total interaction plot (Fig. 9A). Conversely, in the 
high NAS group, most interactions occurred between 
T cells and OPC or inflammation-related glioma cells 
(Fig.  9B, C). The ADAM12 and ITGA9/SDC4 pathways 
were the two main pathways between these cells. More-
over, significant interactions between T cells and four 
types of glioma cells were analyzed, and results showed 
that there were more interactions between T cells and 
low neoplastic, inflammation-related glioma cells and 
OPC in the high NAS group than in the low NAS group. 
Furthermore, in the CGGA dataset, T cells were not 
involved in most significant interactions in the low NAS 
group, while they interacted with other immunocytes, 
such as dendritic and microglial cells, in the high NAS 
group (Additional file  10: Fig. S10A, B). Additionally, 
regarding significant interactions, only some of the inter-
actions between T cells and inflammation-related glioma 
cells in the high NAS group were significant, indicating 

that inflammation-related glioma cells are involved in 
T-cell-mediated immunity (Additional file 10: Fig. S10C).

It is important to note that there were no significant 
interactions between T cells and high neoplastic glioma 
cells whose NAS was relatively higher than that men-
tioned above. We deduced that less T cell binding and 
cell–cell adhesion might be the underlying mechanism. A 
recent study indicated that the binding of T cells to gli-
oma cells calls for the IFNγR signaling pathway (IFNGR1, 
JAK1 and JAK2) in which IFNGR1 was found necessary 
for this kind of cell-cell adhesion [53]. Results showed 
that expressions of IFNGR1 and JAK1 were significantly 
higher compared to the other three glioma cell types, but 
expression of JAK2 was not obviously different (Fig. 9D–
F). Furthermore, IFNGR1 was found to be significantly 
negatively correlated with NAS (Fig.  8G), while JAK1 
and JAK2 were not. We also found that the low neoplas-
tic cells showed higher IFNGR1 expression, but JAK1 
expression slightly decreased in low neoplastic cells, in 
the CGGA dataset (Additional file  10: Fig. S10D–F). A 
significant negative correlation between IFNGR1 and 
NAS was also found (Additional file 10: Fig. S10G). This 
suggests an increased interaction between T cells and 
glioma cells and that high neoplastic cells might escape 
this interaction by downregulating IFNGR1 to decrease 
T cell binding.

TCRs with two patterns are predicted to bind 
to neoantigens from non‑m6A‑related lncRNAs
To determine some possible approaches to glioma ther-
apy based on the non-m6A-related neoantigen model, we 
screened published TCR sequencing datasets to explore 
TCR clonotypes that might bind to the peptides coded 
by the 13 selected non-m6A-related lncRNAs. LGG and 
GBM samples from GSE79338, a dataset including TCR 
sequencing data from normal brain tissue, were used to 
identify unique TCR clonotypes in GBM and LGG. In 
our search for the MHC-restricted peptide antigens, we 
clustered TCR clonotypes into complementarity deter-
mining region 3 (CDR3) patterns using the GLIPH2 
algorithm, and we identified many unique TCR CDR3 
patterns in the GBM and LGG samples that could not 
be found in normal tissues. From these TCR CDR3 pat-
terns, we extracted 52 common patterns in the LGG and 
GBM samples (Fig. 10A, Additional file 19: Table S8). By 
comparing the frequencies of the patterns in GBM to 
those in LGG using the “edgeR” package in R, we iden-
tified the 10 patterns that differed the most between the 
two groups (Fig. 10A). Five of these amino acid patterns, 
FGEQ, %GSTDTQYF, MNEQ, HDEQ, and RNKQ, were 
upregulated in the GBM patterns, thereby implying that 
these patterns might widely exist in glioma patients and 
that could be related with the progression of gliomas.
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Next, we applied the DLpTCR algorithm to assess 
the possibility of recognition and binding between the 
MHC I-presenting peptides that may be encoded by the 
13 selected lncRNAs and the TCR clonotypes of the 5 
selected patterns in the GBM or LGG samples described 
above. MNEQ and HDEQ were the patterns with the 
greatest binding probabilities (Fig. 10B).

The scTCR data from the GSE188620 dataset of gli-
oma tissues from four glioma patients before and after 

tumor-cell lysate vaccination were examined in order 
to explore the 5 selected patterns. Unique clonotypes 
were found in the after-vaccination samples (Additional 
file  11: Fig. S11A-D). However, for the 5 selected pat-
terns, while HDEQ and RNKQ showed extremely low 
expressions, the other three patterns’ expressions were 
significantly higher. Furthermore, the total expressions 
of %GSTDTQYF and MNEQ were significantly elevated 
in samples after vaccination, which were accompanied 

Fig. 9  Intercellular communication analysis of single cell RNA-seq based on GSE84465. A, B Top 30 interactions between cells in low or high NAS 
groups, respectively. C The interaction ratios between T cells and four kinds of glioma cells in single cell RNA-seq of low or high NAS groups. D–F 
The expression of IFNGR1, JAK1 and JAK2 in four kinds of glioma cells. G The correlations between expression of IFNGR1, JAK1, JAK2 and NAS in 
glioma cells
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Fig. 10  The screening of unique TCR patterns in gliomas compared to normal tissues. A The clustering of TCR clonotypes into patterns with 
GLIPH2 and analysis of patterns with edgeR. B The top 10 predicted TCR clonotype-neoantigen pairs by DLpTCR. C Total reads of three patterns in 
prevaccination and postvaccination cells in four patients. D Reads of three patterns in prevaccination and postvaccination cells in every patient. E 
The significant expanded TCR clonotypes after vaccination. F The top 10 predicted TCR clonotype-neoantigen pairs by DLpTCR with the expanded 
TCR clonotypes
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by a slight, statistically insignificant decrease in FGEQ 
(Fig. 10C). Expressions of %GSTDTQYF were elevated in 
patients 1, 3, and 4, but statistical significance was only 
found in patient 4 (Fig. 10D). Patients 1 and 2 showed ele-
vated MNEQ expressions (Fig.  10D). We also identified 
the clonotypes that expanded after vaccination (Fig. 10E), 
which may include neoantigen-reactive TCR clonotypes. 
The binding possibility of the expanded TCR clonotypes 
and peptides was also determined, with 44 TCR-peptide 
pairs having a binding probability over 0.98; this sug-
gested high binding possibilities between potential neo-
antigen-reactive TCR clonotypes and selected peptides. 
In summary, we determined that the peptides that might 
be encoded by the 13 selected lncRNAs show high bind-
ing probabilities with potential neoantigen-reactive TCR 
clonotypes whose patterns widely exist in glioma tissues. 
This provides a promising foundation for future CAR-T 
therapy research.

Discussion
In this study, we investigated neoantigen-coding lncRNAs 
using the TransLnc database, and we found that neoanti-
gen-coding lncRNAs related to non-m6A modifications, 
including pseudouridine, m5C, and m1A, have the poten-
tial to play a role in the prediction of glioma patients’ 
prognoses. The cluster model that was based on the 13 
selected non-m6A-related neoantigen-coding lncRNAs 
could predict the prognosis in all gliomas and LGG. Fur-
thermore, the NAS that was based on the cluster model 
predicted prognosis better in both GBM and LGG. The 
NASs based on the non-m6A-related neoantigen-coding 
lncRNAs together with cluster models were more accu-
rate than those based on the m6A-related models. More-
over, a higher NAS indicates more aggressive gliomas, 
both at the tumor level and at the cellular level. Enrich-
ment analysis suggested that immune pathways, includ-
ing endogenous antigen processing and presentation as 
well as T-cell-mediated immunity, were enriched in high 
NAS samples. Moreover, NAS was positively correlated 
with immune infiltration, including CD8 T cell infiltra-
tion, but high NAS gliomas also exhibited more PD-L1 
expression suggesting an immunosuppression environ-
ment, which is consistent with the fact that a higher 
NAS predicts worse survival outcomes. Further analysis 
of the immunosuppression of microenvironment T cells 
revealed that several positive regulators of T cells down-
regulate functions, including Ca2+ flux and DNA repair. 
The Ca2+ flux-related gene AHNAK also manifested 
most of the mutations present in TCGA dataset. Tran-
scription factor analysis indicated that the expression of 
stemness-related transcription factors was elevated in the 
high NAS group compared to the low NAS group. Addi-
tionally, cell communication analysis confirmed that the 

high NAS group showed more inter-cell communication 
between immune cells and inflammation-related glioma 
cells and that high neoplastic glioma cells might escape 
T cell binding by downregulating IFNGR1. Finally, we 
identified several unique TCR CDR3 patterns that widely 
exist in glioma tissues, two of which (%GSTDTQYF and 
MNEQ) were significantly elevated in glioma tissues 
after tumor-cell lysate vaccination. And increased lev-
els of these two neoantigen-reactive TCR patterns were 
found in high NAS gliomas, suggesting NAS model was 
also correlated with neoantigen response. Therefore, 
non-m6A-related neoantigen-coding lncRNAs play an 
essential role in neoantigen-related immune microenvi-
ronment of gliomas, which is a conclusion that provides 
a potential avenue for future CAR-T therapy, which could 
have wide targetability among glioma patients. Our non-
m6A-related NAS model exhibited higher prognostic 
efficacy in TCGA dataset than m6A-related NAS model, 
m6A/non-m6A clustering model, age, gender and grade 
(Fig.  1G). In all three RNA-seq databsets, non-m6A-
related NAS model also showed obviously better prog-
nostic effect than m6A-related NAS model and was close 
to WHO grade model (Additional file 1: Fig. S1E). More-
over, the non-m6A-related NAS model was also highly 
associated with aggressive subtypes in both RNA-seq and 
scSeq data. It could also predict immune infiltration and 
T cell-glioma cell interaction via IFNGR1 pathway. These 
advantages make it a tool better than classic pathological 
grading in aspect of studying antitumor immunity.

LncRNAs are commonly considered as transcripts that 
cannot code peptides, but some small peptides encoded 
by lncRNAs were recently discovered, making it a new 
and interesting field in the study of non-coding RNAs 
(ncRNAs). Some of the m6A modification sites were 
found to participate in regulating ncRNA translation as 
elements similar to internal ribosome entry sites [21, 54]. 
Moreover, these small peptides are also involved in the 
progression of different kinds of cancers. For example, 
the micropeptide 53aa encoded by the lncRNA HOXB-
AS3 plays a role in metabolic reprogramming in colon 
cancer, and it suppresses the proliferation of colon can-
cer cells [55]. Another study showed that a 130aa-peptide 
known as SRSP encoded by the lncRNA LOC90024 plays 
a role in modulating mRNA splicing by binding to SRSF3 
and thereby promoting the proliferation, migration, and 
invasion of tumor cells [56]. The current study has also 
proven that Yin Yang 1-binding micropeptide (YY1BM) 
encoded by LINC00278 can be more efficiently translated 
when m6A modification is demethylated by ALKBH5, 
and it protects esophageal squamous carcinoma cells 
from apoptosis induced by nutrient deprivation [24]. 
Thus, peptides translated from lncRNA have a strong 
effect on cancer cell biology and can be regulated by 
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RNA modification such as m6A. In our study, we found 
non-m6A modification model exhibited better prog-
nostic efficacy compared with m6A modification model 
according to TransLnc database. In addition, lncRNA-
encoded micropeptides have been proven to affect 
immunity functions. The lncRNA Aw112010 encodes a 
small peptide in murine macrophages, which promotes 
inflammation in mucosa immunity [57]. Another peptide, 
miPEP155 encoded by MIR155HG, has been reported 
to affect antigen presentation by binding to a chaper-
one: HSC70 [58, 59]. Furthermore, the antigen encoded 
by lncRNAs can also be present and involved in cellular 
immunosurveillance [17]. Moreover, the m6A reader 
YTHDF1 is involved in promoting neoantigen degrada-
tion by regulating levels of lysosomal proteases through 
translation [60]. This is consistent with our results in that 
NAS is positively associated with immune infiltration and 
T-cell-induced immunity as well as with antigen presen-
tation pathways. The TransLnc database [25] collected all 
predicted encoded peptides from lncRNAs together with 
the possible m6A modification status of lncRNAs. The 
binding affinities of these peptides to MHC complexes 
were also calculated using NetMHCpan [61], which sug-
gests that RNA modification plays a significant role in 
antigen production from lncRNA. Our work confirms 
that the signature of several neoantigen-coding lncRNAs 
from TransLnc correlates with glioma patients’ survival 
outcomes. Additionally, the neoantigen peptides pro-
vided by TransLnc were predicted to have a high prob-
ability of binding to potential neoantigen-reactive TCR 
clonotypes, which might be potential therapeutic targets 
for immunotherapy.

For tumors with immunosuppressive microenviron-
ments such as gliomas [62], canonical immunothera-
pies have not exhibited satisfying outcomes in primary 
gliomas, and some such therapies have only benefited 
patients with recurrent gliomas [3–7]. Our study shows 
that tumor-related inflammation was inhibited in 
high-grade and high NAS glioma groups even though 
immune infiltration, including the level of CD8 + T 
cells, increased. IHC results also revealed higher PD-L1 
levels in higher NAS gliomas. Therefore, innovations in 
gliomas immunotherapies are urgently required. The 
neoantigens belong to immunopeptides that specifically 
present on the surface of tumor cells. Due to its specific-
ity in tumor immunity, these are considered promising 
targets for immunotherapy [63]. Recently, the neoanti-
gen vaccine’s ability to induce T-cell-mediated immunity 
has been widely discussed [9, 63, 64]. Some circum-
stantial evidence advocates for the reinvigoration of 
exhausted T cells in tumor patients. An in  vivo experi-
ment showed that the vaccination can achieve benefi-
cial outcomes when neoantigen-reactive T cells express 

exhausted markers before vaccination [65]. Despite 
the fact that it was difficult to reinvigorate exhausted T 
cells after vaccination, it was suggested that, even after a 
tumor grows and possible immunosuppression is estab-
lished, T-cell-mediated anti-tumor immunity can be 
facilitated by neoantigen vaccination. Our results sug-
gest that non-m6A-related neoantigen-coding lncRNAs 
play a crucial role in determining glioma prognosis, and 
the study screens widely existing unique TCR clonotypes 
that could recognize potential neoantigens encoded by 
selected lncRNAs. High NAS gliomas are also found to 
contain more neoantigen-reactive TCR patterns, indicat-
ing NAS model together with lncRNA-derived micro-
peptides is associated with neoantigen-related immune 
response. The identified TCR-neoantigen pairs could 
provide universal targets for CAR-T therapy. Moreover, 
the protein-coding abilities of selected lncRNAs and the 
binding ability of potential micropeptides to TCR might 
be validated in further researches.

Our study established a NAS model based on non-
m6A-related lncRNAs that were predicted to encode 
neoantigen peptides. This model exhibited its abilities 
to predict prognosis of glioma patients, immune infil-
tration in gliomas and neoantigen expression in tumor 
vaccine therapy. The correlations between NAS-related 
genes and PD-L1 was also verified by IHC. Besides, the 
screening of TCR-neoantigen binding pairs also provided 
several neoantigen-reactive TCR patterns that might be 
utilized for CAR-T therapy. But the effect of these TCR 
patterns needs more biological experiment verification in 
the future.

Conclusions
In conclusion, we established a prognostic model based 
on the non-m6A-related neoantigen-coding lncRNAs 
and NAS, which were found to be positively correlated 
with T cell immunity, antigen processing and presenta-
tion, and immune infiltration. We also screened possible 
TCR clonotypes of universally targeted neoantigens that 
were translated from the selected lncRNAs. Therefore, 
this study details the important role of non-m6A modi-
fication in peptides encoded by lncRNA, and it provides 
TCR clonotypes that can be used in potential CAR-T 
studies and therapies in the future.
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