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Abstract

Purpose: To develop an ultrafast and robust MR parameter mapping network using deep 

learning.

Methods: We design a deep learning framework called SuperMAP that directly converts a series 

of undersampled (both in k-space and parameter-space) parameter-weighted images into several 

quantitative maps, bypassing the conventional exponential fitting procedure. We also present a 

novel technique to simultaneously reconstruct T1rho and T2 relaxation maps within a single scan. 

Full data were acquired and retrospectively undersampled for training and testing using traditional 

and state-of-the-art techniques for comparison. Prospective data were also collected to evaluate the 

trained network. The performance of all methods is evaluated using the parameter qualification 

errors and other metrics in the segmented regions of interest.

Results: SuperMAP achieved accurate T1rho and T2 mapping with high acceleration factors 

(R = 24 and R = 32). It exploited both spatial and temporal information and yielded low error 

(normalized mean square error of 2.7% at R = 24 and 2.8% at R = 32) and high resemblance 

(structural similarity of 97% at R = 24 and 96% at R = 32) to the gold standard. The network 

trained with retrospectively undersampled data also works well for the prospective data (with a 

slightly lower acceleration factor). SuperMAP is also superior to conventional methods.

Conclusion: Our results demonstrate the feasibility of generating superfast MR parameter 

maps through very few undersampled parameter-weighted images. SuperMAP can simultaneously 

generate T1rho and T2 relaxation maps in a short scan time.
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1. INTRODUCTION

Quantitative MRI relaxation times, like the time for spin-lattice relaxation (T1), the time for 

spin-spin relaxation (T2), and the time for spin-lattice relaxation at rotating frame (T1rho), 

are regarded as essential imaging biomarkers for diagnosis of a range of diseases.1–6 To 

perform parameter mapping, conventional methods require repeated scans of the same 

anatomical structure with varying sequence parameters like multiple echo times (TEs) and 

flip angles (FAs), or various inversion recovery times (TIs), which limits its wide clinical 

use.7,8 Accordingly, the new technique to accelerate parameter mapping is highly needed 

and remains an interest in MR research.

To speed up data acquisition, compressed sensing (CS)9 and parallel imaging10–12 are 

widely used. Data acquisitions can be further accelerated by exploring spatial-temporal 

correlations.13 MR fingerprinting14 which uses simulated signal revolutions along with 

pattern recognition also provides fast parameter mapping.15 Even though reconstruction with 

deep learning has shown success for highly accelerated MRI,16–21 the application for fast 

parameter mapping is still limited.22–24

For parametric mapping, the total scan time is equal to the scan time of a single contrast 

image multiplied by the total contrast-weighted image numbers in the parametric direction. 

Therefore, there are two main strategies to lower the scan time for parametric mapping: 

downsampling the k-space of each image and decreasing the number of contrast-weighted 

images. The first strategy is used by most fast parametric mapping methods. The weighted 

images are reconstructed from undersampled k-space with CS algorithms.25–41 The second 

strategy to reduce the number of contrast-weighted images acquires the full k-space. Various 

studies have been performed to maintain quantification accuracy with the least number 

of contrast-weighted images.42–45 In practice, the fitting process has to deal with the 

uncertainty introduced by noise, signal destabilization, or hardware imperfections so that 

the required number of contrast images is hence much larger than the number of unknown 

parameters.46,47 For example, T1rho mapping has two unknown parameters to estimate but 

usually acquires 5 to 8 T1rho-weighted images.35,48,49

Several methods based on deep learning have also been proposed for fast MR parametric 

mapping.23,50–54 The recent work MANTIS55 combines CNN mapping with data 

consistency in the k-space. MANTIS uses cyclic loss17,56 to enforce model and data fidelity. 

However, only k-space data are downsampled for acceleration. Therefore, it is highly 

desirable to investigate the combination of both strategies to achieve higher accelerations.

In this work, a novel technique using deep learning is proposed for superfast parameter 

mapping. The method demonstrates the feasibility of single-parameter mapping and joint 

T1rho and T2 mapping from both undersampled k-space and reduced number of contrast 

images. For T1rho or T2 mapping, accurate quantitative maps can be estimated from as 

few as two undersampled (in k-space) parameter-weighted images. For joint T1rho and T2 

mapping, both relaxation maps can be generated simultaneously with three undersampled 

(in k-space) parameter-weighted images acquired in a single scan. To the extent of our 
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knowledge, SuperMAP is the first deep learning technique for parameter mapping using 

both the undersampled k-space and the reduced number of parameter-weighted images.

2. THEORY

2.1 SuperMAP for single-parameter estimation

SuperMAP is a deep encoder-decoder style framework and reconstructs desired parametric 

maps directly from undersampled (both in k-space and parameter-space) parameter-weighted 

images using a deep residual CNN network, and such a deep structure can represent highly 

complex nonlinear models. Residual learning57 and patch-wise training/padding58,59 are 

used to improve the accuracy and robustness. Our network has three major differences from 

the U-Net60 used in MANTIS. The first is that SuperMAP keeps the data the same size in 

the encoder and decoder by padding while the data are shrunk in the encoder and expanded 

in the decoder in MANTIS. This helps maintain the accuracy in high acceleration factors 

with spatio-temporal undersampling.58 The second difference is that we use patches instead 

of the entire image for training so that the size of training data is augmented significantly 

and the network converges more quickly, especially with an additional loss.58,59 Finally, the 

additional loss used for cycle consistency in SuperMAP is shuffled (i.e., for a single batch, 

the patches for Loss 1 do not have to match the same slice for the full image for Loss 2), 

further preventing overfitting and making the network more generalizable. More details can 

be found in Section 3.3.

In our network, the nonlinear relationship F between input x (undersampled parameter-

weighted images) and output y (desired parameter maps) is defined as y = F(x; Θ). 

The network parameter Θ is learned during training by minimizing the loss function 

L Θ = 1
n ∑i = 1

n F xi; Θ − yi
2 1 . Two pairs of losses are used to train SuperMAP, as 

shown in Figure 1. Similar to the deep learning network we designed for diffusion tensor 

imaging61, the first loss term (Loss1) ensures the estimated maps from the network are 

consistent with the reference while bypassing the conventional fitting of an exponential 

decay signal model. The second loss (Loss 2) enforces model-data consistency by matching 

the k-space calculated from the estimated parameter maps to the acquired k-space.55 To 

calculate the k-space data, the parameter-weighted images are first obtained by feeding the 

estimated parameter τ into the parametric model Sj = S0e−Tj/τ at different contrast times Tj, 

and then Fourier transform Sj’s followed by k-space sampling.

In T1rho (or T2) mapping, two undersampled T1rho-weighted (or T2-weighted) images 

from different spin-lock time (or echo time) are used as the input to generate the T1rho 

map (or T2 map) as the output. The T1rho maps (or T2 map) from fully sampled, 

parameter-weighted images are used as the target. During training, the network parameters 

Θ are learned and updated. In the testing, the newly acquired undersampled parameter-

weighted images are fed with learned Θ to construct the desired quantitative maps F(xt; Θ). 

SuperMAP exploits both the spatial and temporal correlation among the selected parameter-

weighted images while learning the connection from the undersampled weighted images 

(both in k-space and parameter-space) to the corresponding T1rho (or T2) maps. Some 

preliminary results have been presented in a conference abstract.62
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2.2 SuperMAP for joint parameter estimation

The proposed network can be extended to jointly estimate T1rho and T2 maps from 

undersampled parameter-weighted images, as demonstrated in Figure 2. With the deep 

network, 3 contrast images (1st, 4th, and 7th) are used to simultaneously reconstruct both 

T1rho and T2 maps, where the 1st is a shared contrast image with both T1rho and T2 

weighting, the 4th is a T1rho-weighted image, and the 7th is a T2-weighted image. The 

output has 2 channels representing 2 different parameter maps, T1rho and T2 maps. The 

choice for these 3 contrast images was based on the conclusion drawn from the single-

parameter estimation. As shown in Table 2, the use of later contrast images leads to a 

more accurate estimation. In addition, these 3 parameter-weighted images are undersampled 

in k-space for additional accelerations. Some preliminary results have also been shown in 

conference abstracts.63,64

2.3 Patch-based processing

Patch-wise images are utilized in our method. Rather than using the original images, we crop 

the original images into overlapping patches (size of 21) with an overlapping rate of 67%. 

Patch-wise processing has several benefits. Small patches instead of an entire image can 

significantly reduce memory usage, and sufficient training data become available to avoid 

overfitting, as reported in many studies.58,59 In this study, there are approximately 6 million 

training samples from as few as eight in-vivo datasets when using overlapping patches. On 

the other hand, sufficiently large patches ensure the spatial correlation is learned by the 

network for enhanced robustness to the aliasing artifacts caused by undersampling, noise, 

and misregistration due to motion. For a kernel size of three, the patch size is calculated 

based on the depth of the network (2 × depth + 1).58

3. METHODS

3.1 Data acquisition

In vivo full data were collected in compliance with the institutional IRB at a 3T scanner 

(Prisma, Siemens Healthineers) with a 1Tx/15Rx knee coil (QED). Ten knees were 

scanned with MAPSS (magnetization-prepared angle-modulated partitioned k-space spoiled 

gradient-echo snapshots) T1rho and T2 quantification pulse sequence. For T1rho, TSLs 

were 0, 10, 20, 30, 40, 50, 60, 70 ms, with a spin-lock frequency of 500Hz. For T2, echo 

times (TEs) were 0, 9.7, 21.3, 32.9, 44.5, 56.1, 67.6, 79.2 ms. For both imaging, matrix size 

was 160×320×8×24 (PE×FE×Contrast×Slice), slice thickness 4mm, FOV 14cm. Individual 

coil images were combined using the sum of squares. In addition, two volunteers (four 

knees) were scanned for prospectively undersampled data collection. The same imaging 

parameters from the retrospective data were used during the acquisition.

For the single-parameter mapping method, 8 datasets were used to train the proposed 

SuperMAP and 2 for testing. For acceleration, only the first and the last contrast images 

(1st and 8th) were selected out of 8. The 2D Poisson disk sampling65 was used to 

undersample the phase and partition directions of the 3D k-space retrospectively for further 

acceleration with an additional acceleration of 2, 3, and 4. For prospective undersampling, 

2D Poisson disk sampling was also used with the closest sample to the center of the 
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k-space collected nearest to the preparation pulse of the MAPSS acquisition. We used a 

Joint Acceleration Factor (J-AF), which is composed of two parts, k-space undersampling 

and contrast-space undersampling (assuming eight parameter-weighted images are needed 

to provide a reasonable quantitative map). The parameter maps were generated with joint 

acceleration factors (J-AF) of 8 (2× acceleration in 1st and 8th), 12 (3× in 1st and 8th), 16 (4× 

in 1st and 8th), 20 (5× acceleration in 1st and 8th), and 24 (6× acceleration in 1st and 8th).

For the joint undersampling and reconstruction method, the 1st, 4th, and 7th contrast 

images were selected. The 1st one was a shared contrast image with both T1rho and T2 

weighting, the 4th was a T1rho-weighted image, and the 7th was a T2-weighted image. 

In addition, these 3 parameter-weighted images were further undersampled in k-space to 

provide additional 2× (J-AF = 10.66), 3× (J-AF = 16), 4× (J-AF = 21.33), 5× (J-AF = 

26.66), and 6× (J-AF = 32) accelerations.

3.2 Data processing

Besides using patches, the training dataset was further augmented using image rotations (90 

degrees) and image flipping (left/right).

3.3 Network training

During training, a reduced number of undersampled parameter-weighted images are fed as 

the inputs and the correspondent reference quantitative maps yi as the targets. Θ is learned 

through loss function L(Θ) = Loss1 + α Loss2 (2), and the balancing factor α depends 

on the patch size and the overlapping rate to guarantee the two losses are on the same 

scale. Loss1 is learned by patch-wise training and Loss 2 is calculated using the entire 

image. Patches are handled independently and do not need to be put back into the image. To 

determine α, for example, for an image size of 320 × 320, patch size 21, and an overlapping 

rate of 67%, there will be approximately 5k patches generated. Then α will be 0.0002 (1 : 

5000) to make the Loss 2 on the same scale as Loss 1. In our experiment, the patches 

are shuffled, which means for a single iteration, the Loss1 and Loss2 do not have to share 

the same slice as in ordinary cyclic loss in the same batch. By doing this, the model will 

gain generalizability and robustness. In addition, small patches will improve the computation 

efficiency (compared to dealing with the entire image).

Euclidean Loss (L2) is used for both losses. The combined loss is minimized by a gradient-

based stochastic optimization algorithm ADAM (adaptive moment estimation) implemented 

in Caffe.66,67

For single-parameter estimation, the network was trained separately for T1rho and T2 maps. 

For the combined method, the network for generating T1rho and T2 maps was trained 

simultaneously. Among the training data, 80 percent were picked as training and the rest 

20 percent as validation.68 After training, the models can reconstruct the quantitative maps 

using newly acquired testing data. It is worth noting that both the spin-lock times (TSLs) and 

echo times need to match between the training and testing data.
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The training was achieved using NVIDIA-P6000 × 2 GPUs, with 24GB memory each. The 

learning ratio was 0.0002 during the first 80 epochs, with 0.9 momentum and decay of 

0.0001. For fine-tuning, the learning ratio was reduced to 0.0001 in the following 20 epochs.

3.4 Comparison

Parameter maps from 8 fully-sampled parameter-weighted images using the exponential 

model fitting were used as the reference maps for comparison. A state-of-the-art deep 

learning method, MANTIS was also used to reconstruct the T1rho and T2 maps from the 

datasets with the same undersampling scheme as SuperMAP.

3.5 Evaluation metrics

NMSE (normalized mean squared error), PSNR (peak signal to noise ratio), and 

SSIM (structural similarity index)69 are used to quantify the performance of different 

methods. Furthermore, coefficient of variations (CV) was calculated for the knee cartilage 

compartments to evaluate the correlations between the reconstructed T1rho/T2 relaxation 

times and the references.

4. RESULTS

The training took approximately 10 hours, but only 1 second was needed to generate a 

complete set of T1rho and T2 maps using the learned network, which is in contrast to the ~3 

min processing time for the conventional exponential decay model fitting. The convergence 

curves for training T1rho, T2, and the joint maps for the J-AF of 16 can be found in Figure 

S1 (see Supporting Information).

4.1 Single-parameter mapping

Figure 3 shows the T1rho maps from a total of 2 contrast images generated using the 

proposed SuperMAP and MANTIS. 2D Poisson disk sampling patterns with 2×, 3×, 4×, 

5×, and 6× accelerations were used in k-space undersampling within these 2 images. The 

J-AFs were 8, 12, 16, 20, and 24. MANTIS was used for the J-AF of 16 with the same 

undersampling scheme for comparison. It shows that the T1rho maps reconstructed by 

SuperMAP models are closer to the reference and have fewer structured errors than the 

MANTIS reconstruction, especially in the cartilage region.

Figure 4 shows the T2 maps generated using SuperMAP and MANTIS. Same J-AFs as 

T1rho were used for T2 mapping. Similar observations can be made that SuperMAP is 

closer to the reference than MANTIS.

4.2 Joint T1rho and T2 mapping

Figure 5 reveals the simultaneous T1rho and T2 maps using the combined method from 

a total of 3 contrast images. 2D Poisson random sampling patterns with 2×, 3×, 4×, 5×, 

and 6× accelerations were used to undersample the k-space of these 3 contrast images. The 

J-AFs were 10.66,16, 21.33, 26.66, and 32. The quantitative maps generated by SuperMAP 

were close to the ground truth T1rho and T2 maps, even with only 3 undersampled contrast 
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images. For both single and joint parameter mappings, the PSNRs and SSIMs were shown 

on the bottom of the reconstructed maps and NMSEs on the bottom of the error maps.

4.3 Generalizability test using prospective data

Figure 6 shows the T1rho and T2 maps reconstructed from prospectively undersampled data 

using SuperMAP with 2 contrast images for single-parameter mapping, and simultaneous 

T1rho and T2 maps using the combined method from a total of 3 contrast images. 

Poisson random sampling patterns with 4× accelerations were used to scan. The J-AFs 

were 16 for the single-parameter mapping method and 21.33 for the joint mapping method. 

The deep learning models were trained through retrospective experiments with the same 

undersampling factor and directly evaluated with the prospective data. It can be seen that at 

slightly lower reduction factors than the retrospective case, the quantitative maps generated 

by SuperMAP were still close to the ground truth T1rho and T2 maps, further verifying the 

generalizability of the network.

4.4 Statistical analyses

One of the test sets was used to evaluate the performance of SuperMAP for T1rho and T2 

map estimation with different J-AFs. Quantitative statistics of averaged PSNR, NMSE, and 

SSIM were summarized in Table 1. The compartment-wise and averaged mean values with 

standard deviations and the CVs of the independent and joint reconstructions of T1rho and 

T2 were summarized in Table S1 and S2, respectively. Six cartilage compartments were 

evaluated, namely, the MFC (medial femoral condyle), the LFC (lateral femoral condyle), 

the TRO (trochlea), the MTP (medial tibial plateau), the LTP (lateral tibial plateau), and 

the PAT (patella). The averaged CVs over these six compartments were all below 5% for 

independent and joint SuperMAP reconstructions with different acceleration factors (except 

for joint SuperMAP with J-AF of 32). Moreover, SuperMAP outperformed MANTIS at the 

acceleration factor of 16. Figures S2–S5 depicted the pixel-wise Bland-Altman plots for the 

proposed SuperMAP methods and the MANTIS method with different acceleration factors. 

No significant biases were observed in SuperMAP methods.

4.5 Robustness to noise

In practice, the exponential fitting process in parameter mapping needs to be overdetermined 

to overcome the uncertainty introduced by noise contamination, signal destabilization, 

hardware imperfections, etc.46,47 To test the noise robustness, Rician noise (30dB) was 

added to each parameter-weighted image. As demonstrated in Figure 7, the conventional 

exponential fitting failed to generate clean T1rho and T2 maps even using all 8 fully-

sampled contrast images, as noted in the literature.46,47,70 On the contrary, SuperMAP 

can generate accurate maps from 2 noisy undersampled parameter-weighted images, even 

though the neural network was trained by clean images. The results further demonstrate the 

advantage of avoiding the model fitting process.
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5 DISCUSSION

5.1 Contrast selection

With reduced contrast images, different parameter weightings may lead to different maps. 

Quantitative assessments are summarized in Table 2 for different combinations of 2 

TSLs/TEs for T1rho mapping. It reveals that later TSLs/TEs will provide better performance 

for both T1rho and T2 mapping using our proposed framework. Then we take the 

combination of the 1st and 8th TSLs/TEs as the choice for our experiment. Later TSLs/TEs 

(corresponds to the 4th and the 7th) were also selected for simultaneous T1rho/T2 mapping 

scenarios. Acquiring 3 TSLs could improve the SNRs and NMSEs, as reported in the 

conference abstract,62 but at the expense of a longer scanner time.

5.2 Training size

The training size was gradually reduced to evaluate the T1rho map reconstructed by 

SuperMAP with 2 TSLs and a J-AF of 16. As shown in Table 3, both NMSEs and PSNRs 

remain almost the same until only 1 dataset is used. This result further demonstrates the 

benefits of overlapping patches.

Table 3 indicates that not many training sets are required to train the proposed network. The 

8 training sets used in the study are empirically shown to be sufficient to avoid overfitting 

and ensure robustness.

5.3 Performance

The results of PSNR, NMSE, and SSIM have demonstrated the superior performance of 

SuperMAP. In addition, CVs, as another widely adopted metric to measure the dispersion 

of data from the mean of two methods, have also suggested the clinical applicability of 

SuperMAP. For instance, Kim et al.71 recently employed CVs to assess the intra-site 

repeatability and inter-site inter-vendor reproducibility of a 3D T1rho and T2 imaging 

sequence on systems from multiple MR vendors. They obtained excellent intra-site CVs 

ranging from 1.60–3.93% for T1rho and 1.44–4.08% for T2 in human subject knee 

cartilage.71 The CVs of the proposed SuperMAP with different acceleration factors fell 

into the same range, showing promising potential for clinical applications such as the study 

of osteoarthritis.

6 CONCLUSION

A novel deep learning framework SuperMAP is proposed and evaluated for superfast MR 

quantitative imaging by undersampling in both k-space and parametric direction. This 

network incorporates patchwise training with the entire image as the backward cycle 

(model-data) for consistency. We also present a combined method using SuperMAP to 

obtain simultaneous T1rho and T2 maps within one scan. For single-parameter mapping, 

our method can generate T1rho and T2 mapping from as few as 2 undersampled parameter-

weighted images. For joint mapping, the T1rho and T2 maps can be simultaneously 

generated from only 3 undersampled parameter-weighted images. With a scan time of 

fewer than 1 minute, we can obtain a complete set of T1rho and T2 maps. Optimized 
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undersampling mask, generalizability to different scanners/protocols/patients, and robustness 

to motion will be explored in future studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Flowchart of the training process for SuperMAP. The 8 fully-sampled parameter-weighted 

images are used to generate the training data. SuperMAP network comprises several skip 

connections to master the residual between input/output. Inside the block, n64k3s1p(p’)1 

denotes 64 filters with kernel dimension of 3, stride of 1, and padding (truncation) of 1. 

The network training uses two losses: Loss1 for the parametric maps and Loss2 for data 

consistency with the measurement.
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FIGURE 2. 
Flowchart of joint parametric mapping using SuperMAP.
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FIGURE 3. 
T1rho maps reconstructed from 2 contrast images using SuperMAP with J-AFs of 8 (a), 12 

(b), 16 (c), 20 (e), and 24 (f), MANTIS with a J-AF of 16 (d), the corresponding error maps 

(h)-(m), and reference T1 map (g) from 8 fully-sampled parameter-weighted images.
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FIGURE 4. 
T2 maps reconstructed from 2 contrast images using SuperMAP with J-AFs of 8 (a), 12 (b), 

16 (c), 20 (e), and 24 (f), MANTIS with a J-AF of 16 (d), the corresponding error maps 

(h)-(m), and reference T2 map (g) from 8 fully-sampled parameter-weighted images.
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FIGURE 5. 
Joint T1rho (top) and T2 (bottom) maps reconstructed from a total of 3 contrast images 

using SuperMAP with J-AFs of 10.66 (a)(l), 16 (b)(m), 21.33 (c)(n), 26.66 (d)(o), and 32 (e)

(p), the corresponding error maps (g-k) (r-v), and reference maps (f)(q) from 8 fully-sampled 

parameter-weighted images.
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FIGURE 6. 
T1rho and T2 maps reconstructed from prospectively undersampled data using SuperMAP 

with 2 contrast images for single-parameter mapping and 3 contrast images for joint 

mapping. T1rho (a), Joint T1rho (b), T2 (d), Joint T2 (e), reference maps(c)(f), and 

corresponding error maps (g-h) (i-j).
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FIGURE 7. 
T1rho maps (top) and T2 maps (bottom) reconstructed using SuperMAP from 2 noisy 

contrast images with additional 4× k-space undersampling (J-AF = 16) (a)(f), from 8 fully 

sampled noisy data using the exponential model fitting (b)(g), the corresponding error maps 

(d)(e)(i)(j), respectively, and the reference (c)(h).
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TABLE 1

Quantitative Assessment of Separate (SEP) T1rho, T2, and Joint maps using J-AFs

Methods SEP
JAF8

SEP
JAF12

SEP
JAF16

MANTIS
JAF16

SEP
JAF20

SEP
JAF24

Joint
JAF10.66

Joint
JAF16

Joint
JAF21.33

Joint
JAF26.66

Joint
JAF32

T1rho

PSNR 41.12 38.95 38.53 32.03 36.55 35.69 41.43 37.70 36.79 35.22 34.16

NMSE 0.005 0.009 0.011 0.062 0.017 0.021 0.004 0.012 0.016 0.021 0.022

SSIM 0.99 0.98 0.98 0.93 0.97 0.97 0.99 0.98 0.97 0.97 0.96

T2

PSNR 37.96 37.89 37.30 34.14 37.10 35.17 37.34 36.09 36.08 36.00 35.44

NMSE 0.016 0.017 0.019 0.057 0.022 0.027 0.019 0.022 0.024 0.026 0.028

SSIM 0.99 0.98 0.98 0.95 0.97 0.97 0.99 0.98 0.97 0.97 0.96
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TABLE 2

Quantitative Assessment of T1rho map using different contrast times

TSLs/TEs 1&2 1&3 1&4 1&5 1&6 1&7 1&8

T1rho

PSNR 32.02 33.14 34.22 35.32 36.71 37.17 38.53

NMSE 0.121 0.101 0.081 0.076 0.045 0.022 0.011

SSIM 0.94 0.94 0.94 0.96 0.97 0.98 0.98

T2

PSNR 31.32 32.28 33.78 35.02 36.10 37.02 37.30

NMSE 0.142 0.122 0.095 0.081 0.048 0.024 0.019

SSIM 0.93 0.94 0.94 0.96 0.97 0.98 0.98
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TABLE 3

Examination of T1rho map reconstructed by SuperMAP using different training sizes

# of datasets 8 7 6 5 4 3 2 1

T1rho
PSNR 38.53 38.47 38.55 38.42 38.52 38.24 38.11 37.74

SSIM 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97

Magn Reson Med. Author manuscript; available in PMC 2024 January 01.


	Abstract
	INTRODUCTION
	THEORY
	SuperMAP for single-parameter estimation
	SuperMAP for joint parameter estimation
	Patch-based processing

	METHODS
	Data acquisition
	Data processing
	Network training
	Comparison
	Evaluation metrics

	RESULTS
	Single-parameter mapping
	Joint T1rho and T2 mapping
	Generalizability test using prospective data
	Statistical analyses
	Robustness to noise

	DISCUSSION
	Contrast selection
	Training size
	Performance

	CONCLUSION
	References
	FIGURE 1
	FIGURE 2
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	TABLE 1
	TABLE 2
	TABLE 3

