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Abstract
Elliptic boundary value problemswhich are posed on a random domain can bemapped
to a fixed, nominal domain. The randomness is thus transferred to the diffusion matrix
and the loading. While this domain mapping method is quite efficient for theory and
practice, since only a single domain discretisation is needed, it also requires the knowl-
edge of the domain mapping. However, in certain applications, the random domain is
only described by its random boundary, while the quantity of interest is defined on a
fixed, deterministic subdomain. In this setting, it thus becomes necessary to compute
a random domain mapping on the whole domain, such that the domain mapping is the
identity on the fixed subdomain and maps the boundary of the chosen fixed, nominal
domain on to the random boundary. To overcome the necessity of computing such
a mapping, we therefore couple the finite element method on the fixed subdomain
with the boundary element method on the random boundary. We verify on one hand
the regularity of the solution with respect to the random domain mapping required
for many multilevel quadrature methods, such as the multilevel quasi-Monte Carlo
quadrature using Halton points, the multilevel sparse anisotropic Gauss–Legendre
and Clenshaw–Curtis quadratures and multilevel interlaced polynomial lattice rules.
On the other hand, we derive the coupling formulation and show by numerical results
that the approach is feasible.
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1 Introduction

Many practical problems in science and engineering lead to elliptic boundary value
problems for an unknown function. Their numerical treatment by e.g. finite difference
or finite element methods is in general well understood provided that the input param-
eters are given exactly. This, however, is often not the case in practical applications.

If a statistical description of the input data is available, one can mathematically
describe data and solutions as random fields and aim at the computation of corre-
sponding deterministic statistics of the unknown random solution. The present article
is dedicated to the treatment of uncertainties in the description of the computa-
tional domain. Applications are, besides traditional engineering, for example uncertain
domains which are derived from inverse methods such as tomography. In recent years,
this situation has become of growing interest: In [44] the so-called domain mapping
method was introduced as an approach to describe and solve boundary value prob-
lems on random domains; this was extended in [42], where the same authors used
the domain mapping method to consider an advection-diffusion equation on a random
tube shaped domain. Recently, the domain mapping method has also been consid-
ered for partial differential equations on random bulk and surface domains in [6].
The domain mapping method was rigorously analysed for elliptic partial differential
equations on random domains in [5,28] and for acoustic scattering problems in [35],
where analytic dependency of the solution on the random domainmappingwith regard
to the energy norm has been verified. Moreover, the use of Multilevel Monte Carlo
quadrature together with the domain mapping approach has been considered in [40].

Apart from the domain mapping method, other methods of describing and solv-
ing boundary value problems on random domains have also been considered; by the
necessity of being domain mapping free, they can only be directly posed and solved
on realisations of the random domain or its boundary. In [4] for example, a fictious
domain formulation is used, enabling the prescription of boundary data for the Poisson
problem at a random boundary inside the domain of computation yielding a random
domain. An approach based on describing a random domain as a random mesh with
deterministic connectivity was considered in [39]. While in [38] a random domain is
described by randomly perturbing the boundary, which suffices since a surface inte-
gral equation formulation is used. More recently, a kind of boundary mapping method
based on Jordan curves for a boundary integral equation formulation of the Lapla-
cian on simply connected random domains in R

2 was considered in [33], where it is
shown that the solution of the boundary integral equation depends analytically on the
boundary mapping.

A further alternative approach based on shape calculus is considered in [29,31]
for elliptic boundary value problems. Describing the random domain by a random
perturbation of a fixed domains boundary one arrives at a shape Taylor expansion, with
which approximations of the expectation and correlation of the solution are computed
requiring the solving of tensor produt boundary value problems.

In this article, we are going to focus on the domain mapping method. Given enough
spatial regularity of the random domain mapping, we first prove that the solution is
analytically dependent on the random domain mapping also in the H τ+1(D)-norm
for τ ∈ N. The key idea of the domain mapping method is to map the boundary value
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problem

− �xu[ω] = f in D[ω], u[ω] = 0 on ∂D[ω], (1)

which is posed on a random domain

D[ω] := V[ω](D) ⊂ R
d

defined by the random domain mappingV[ω] : D → R
d , on a fixed, nominal reference

domain D ⊂ R
d , back onto that fixed reference domain D. Thus, the randomness is

transferred to the diffusion matrix and the loading of the boundary value problem

− divx
(
Â[ω]∇xû[ω]) = f̂ [ω] in D, û[ω] = 0 on ∂ D. (2)

Herein, it holds

Â[ω] := (
J[ω]TJ[ω])−1 det J[ω] and f̂ [ω] := (

f ◦ V[ω]) det J[ω], (3)

where J[ω] denotes the Jacobian of the field V[ω] : D → D[ω]

J[ω](x) := Dx V[ω](x). (4)

and û[ω] is connected to u[ω] by û[ω] := u[ω] ◦ V[ω].1 As one arrives at a formula-
tion of a boundary value problem with random data for the diffusion matrix and the
loading, the result that the solution in the H τ+1(D)-norm is analytically dependent
on the random data for the diffusion matrix and the loading follows essentially from
[30]. Therefore, we have to verify that the diffusion matrix and the loading depend
analytically on the domain mapping with respect to appropriate norms. This analytical
dependence is then sufficient to justify using multilevel versions of many quadrature
methods to evaluate quantity of interest expressions of the form

QoI(u) =
∫

Ω

F(
û[ω]) dP[ω],

where F : Hσ (D) → X is a smooth, possibly non-linear, operator into some Banach
spaceX , with σ ≤ 1,2 and the integral is over the probability space with sample space
Ω and measure P, cf. [27].

Indeed, when the random domain mapping is given in a parametric form

V : � → (D → R
d), y �→ V[y],

1 We use the function composition ‘◦’ as usual. Moreover, we will only use it for composition in the spatial
variable. For example, û[ω] := u[ω] ◦ V[ω], expands to û[ω](x) = u[ω](V[ω](x)).
2 The upper bound on σ accounts for the energy space of û.
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where y ∈ � = [− 1
2 ,

1
2

]N∗
is a sequence of independent and identically uniformly

distributed random variables with its pushforwardmeasure denoted byPy, the quantity
of interest expression may be written as an infinite-dimensional integral,

QoI(u) =
∫

�
F(

û[y]) dPy.

Then, bounds on the partial derivative of û of the form

∥∥∂α
y û[y]∥∥Hσ (D)

≤ ∣∣α
∣∣!c|α|+1γ α,

where γ ∈ �1(N) is a sequence relating to the decay of the importance of the sequence
of parameters y with respect to the domain mapping V, imply similar estimates for
the integrand F(

u[y]).
Given that these estimates hold for all finitely supported multi-indices with a

sufficiently fast decaying γ , this justifies approximating a truncation of the infinite-
dimensional integral with the quasi-Monte Carlo quadrature with Halton points, see
e.g. [22,28,43] and the sparse anisotropic Gauss–Legendre and Clenshaw–Curtis
quadratures, see e.g. [18,21], yielding provable error rates. Similarly, if these esti-
mates only hold for all finitely supported multi-indices α ∈ {0, 1, . . . , s}N∗

for some
s ≥ 1 with a sufficiently fast decaying γ , one may instead consider higher-order
quasi-Monte Carlo quadratures, such as interlaced polynomial lattice rules, see e.g.
[10,11]. In general, these types of bounds on the partial derivative of û will require an
analytic dependence of the solution in the Hσ (D)-norm on the domain mapping, as
they all include bounds for mixed derivatives of û in the integration variables.

When one wants to consider the multilevel versions of the previously mentioned
quadratures, one is considering a sparse grid combination technique of the quadrature
methods and the spatial discretisation. This requires mixed smoothness between the
smoothness in the integration variables and the spatial smoothness, see e.g. [18,19,27],
which means bounds of the form

∥∥∂α
y û[y]∥∥H τ+1(D)

≤ ∣∣α
∣∣!c|α|+1γ α.

This type of mixed smoothness follows, when the solution in the H τ+1(D)-norm is
analytically dependent on the domain mapping.

However, while the random domainmapping approach is mathematically natural, it
is not necessarily the setting that is directly encountered in practical applications. This
mainly stems from the fact that the random domain mapping does not only describe
the random domains themselves but also includes a specific point correspondence
between the domain realisations. In applications often only a description of the random
boundary might be known, however in such cases the quantity of interest

QoI(u) =
∫

Ω

F(
u[ω]|B

)
dP[ω] (5)
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is generally sought on a deterministic subdomain, B, which almost surely is a subset
of the domain realisations, where F : Hσ (B) → X is a smooth, possibly non-linear,
operator into some Banach space X .3 Therefore, it is then necessary to be able to
transform the description of the random domains given by a description of the random
boundary and the specification of the subdomain into the form of a random domain
mapping. To be able to justify the use of the multilevel versions of the above men-
tioned quadrature methods, we therefore require that the method for transforming the
description of the random boundary into a random domain mapping is an analytic map
from boundary descriptions to domain mappings. This then implies that the solution
in the H τ+1(D)-norm is also analytically dependent on the description of the random
boundary. In [44], the authors consider using the vector-valued Laplace equation to
compute such a random domainmapping. If more structure is given, for example when
the random domains are described by star-shaped boundaries or more generally when
they are directly given by a boundary mapping from a nominal boundary, one may
also consider other approaches, such as transfinite interpolation techniques, see e.g.
[14–16], to extend the mapping onto the whole reference domain.

To overcome the necessity of computing such a random domain mapping in this
setting, we propose to compute the quantity of interest by performing the calculations
on the realisations of the random domains. However, in our setting, care then must
be taken that the discretisation chosen is regular enough to ensure that the spatially
discretised problems inherit sufficient regularity with respect to their dependence on
the boundary description, such that the multilevel quadrature method stays viable.
Therefore, we choose to sidestep the generation of a mesh on the random part of the
domainD[ω]\ B completely by coupling the finite element method with the boundary
element method for the spatial approximation as follows: we apply finite elements on
the subdomain B and treat the rest of the domain by a boundary element method. This
is also advantageous, since large domain deformations on coarse discretisations can
be handled more easily, as we do not need to mesh the random part of the domain but
only its boundary. Moreover, such an approach may also be useful when computing
on an unbounded domain.

The contribution of this article is thus twofold:

• First, we extend results regarding the regularity of the domain mappingmethod for
elliptic partial differential equations on random domains from [5,28] to allow for
higher spatial smoothness, which justifies many multilevel quadrature methods.

• Second, we propose and discuss using a coupling of the finite element method and
the boundary elementmethod as the spatial discretisation in amultilevel quadrature
method. This yields an efficient method that only requires a domain mapping to
exist, but does neither need to know it nor need to compute it. Thus, it is very
applicable to practical problems, where only knowledge of a random boundary
description is available, for example, from nondestructive measurements.

The rest of this article is organised as follows. Section2 is dedicated to themathematical
formulation of the problem under consideration. The problem’s regularity is studied
in Sect. 3. Here, we provide estimates in stronger spatial norms which are needed for

3 We denote the usual restriction operator, continuously extended by density arguments to the Sobolev
spaces, by ·|B : f �→ f |B .
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many multilevel accelerated quadrature methods. The coupling of finite elements and
boundary elements is the topic of Sect. 4. The multilevel quadrature method for the
approximation of quantities of interest of the solution of the boundary value problem
on random domains is then discussed in Sect. 5. Numerical experiments are carried
out in Sect. 6. Finally, we state concluding remarks in Sect. 7.

2 Notation andmodel problem

Before we complete the mathematical setting of our model problem, we will introduce
the notations used throughout the rest of the article. Especially, for the regularity
considerations in Sect. 3 some of the notation—and the choice of a certain weighting
in the Sobolev–Bochner norms—helps keep formulas somewhat more concise and
compact.

2.1 Notation and precursory remarks

We use N to denote the natural numbers including 0 and N
∗ when excluding 0. For

a sequence of natural numbers, α = {
αn
}

n∈N∗ ∈ N
N

∗
, we define the support of the

sequence as

suppα = {
n ∈ N

∗ | αn �= 0
}

and say that α is finitely supported, if suppα is of finite cardinality. Then, N
N

∗
f

denotes the set of finitely supported sequences of natural numbers and we refer to
its elements as multi–indices. Furthermore, for all m ∈ N

∗ we will identify the
elements α = (

α1, . . . , αm
) ∈ N

m with their extension by zero into N
N

∗
f , that is

α = (
α1, . . . , αm, 0, . . .

)
. Thus, by this identification, all notations defined for ele-

ments of N
N

∗
f also carry over to the elements of N

m and we also refer to elements of
N

m as multi–indices.
For multi-indices α = {

αn
}

n∈N∗ ,β = {
βn
}

n∈N∗ ∈ N
N

∗
f and a sequence of real

numbers γ = {
γn
}

n∈N∗ ∈ R
N

∗
, we use the following common notations:

∣∣α
∣∣ :=

∑

n∈suppα

αn, α! :=
∏

n∈suppα

αn !,
(

α

β

)
:=

∏

n∈suppα∪suppβ

(
αn

βn

)
, γ α :=

∏

n∈suppα

γ αn
n .

Furthermore,we say thatα ≤ β holds,whenα j ≤ β j holds for all j ∈ suppα∪suppβ,
and α < β, when α ≤ β and α �= β hold.

Subsequently,wewill always equipR
m with the norm

∥∥·∥∥2 induced by the canonical
inner product 〈·, ·〉 andR

m×m with the inducednorm
∥∥·∥∥2.Moreover,when considering

R
m itself or an open domain D ⊂ R

m as a measure space we always equip it with the
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Lebesgue measure. Similarly, we always equip N and N
∗ with the counting measure,

when considering them as measure spaces.
Let X , X1, . . . ,Xr and Y be Banach spaces, then we denote the Banach space of

bounded, linear maps from X to Y as B(X ;Y); furthermore, we recursively define

B0(X ;Y) := Y and Br+1(X ;Y) := B(X ;Br (X ;Y)
)
.

For T ∈ Br (X ;Y) and v j ∈ X we use the shorthand notation

Tv1 · · · vr := T(v1, . . . , vr ) ∈ Y .

For a given Banach space X and a complete measure space M with measure μ

the space L p
μ(M;X ) for 1 ≤ p ≤ ∞ denotes the Bochner space, see [34], which

contains all equivalence classes of strongly measurable functions v : M → X with
finite norm

∥∥v
∥∥

p,M;X := ∥∥v
∥∥

L p
μ(M;X )

:=

⎧
⎪⎪⎨

⎪⎪⎩

[∫

M

∥∥v(x)
∥∥p
X d μ(x)

]1/p

, p < ∞,

ess sup
x∈M

∥∥v(x)
∥∥X , p = ∞.

A function v : M → X is stronglymeasurable if there exists a sequence of countably–
valued measurable functions vn : M → X , such that for almost every m ∈ M we
have limn→∞ vn(m) = v(m). Note that, for finite measures μ, we also have the usual
inclusion L p

μ(M;X ) ⊃ Lq
μ(M;X ) for 1 ≤ p < q ≤ ∞.

For a given Banach space X and an open domain D ⊂ R
d , with d ∈ N

∗, the space
W η,p(D;X ) for η ∈ N and 1 ≤ p ≤ ∞ denotes the Sobolev–Bochner space, which
contains all equivalence classes of strongly measurable functions v : D → X , such
that the function itself and all weak derivatives up to total order η are in L p(D;X )

with the norm

∥∥v
∥∥

η,p,D;X := ∥∥v
∥∥

W η,p(D;X )
:=

∑

|α|≤η

1

α!
∥∥∂α

x v
∥∥

p,D;X .

Moreover, W η,p
0 (D;X ) denotes the closure of the linear subspace of smooth functions

with compact support, C∞
c (D;X ), in W η,p(D;X ) and we also define Hη(D;X ) :=

W η,2(D;X ) and Hη
0 (D;X ) := W η,2

0 (D;X ). As usual, we use Cω(D;X ) to denote
the real analytic functions4 fromD toX and Ck,s(D;X ) to denote the Hölder spaces.

4 Care should be taken to not confuse theω inCω , which should be considered pure notation, with a sample
of the probability space ω ∈ Ω .
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For a bi-Lipschitz function v : D → X we denote its bi-Lipschitz constants by

∣
∣v
∣
∣
Lip(D;X )

:= ess inf
x,z∈D, x �=z

∥∥v(x) − v(z)
∥∥X∥∥x − y

∥∥ ,

∣
∣v
∣
∣
Lip(D;X )

:= ess sup
x,z∈D, x �=z

∥∥v(x) − v(z)
∥∥X∥∥x − y

∥∥ .

In the notation for the Bochner, Sobolev–Bochner and Hölder spaces, we may
omit specifying the Banach space X when X = R. Especially, H−η(D) denotes the
topological dual space of Hη

0 (D). Moreover, if the X we are considering is itself a
Bochner or Sobolev–Bochner space, then we replace the X in the subscript of the
norm with the subscripts of its norm, for example

∥∥v
∥∥

p,M;η,q,D;Y = ∥∥v
∥∥

p,M;W η,q (D;Y)
= ∥∥v

∥∥
L p

μ(M;W η,q (D;Y))
.

Further, for computational complexity estimates we will make use of the Big Theta
notation, that is f = Θ(g) means that f = O(g) and g = O( f ). Lastly, to avoid the
use of generic but unspecified constants in certain formulas, we use c � d to mean
that c can be bounded by a multiple of d, independently of parameters which c and d
may depend on. Obviously, c � d is defined as d � c and we write c � d if c � d
and c � d.

2.2 Model problem

Let τ ∈ N and d ∈ N
∗; D ⊂ R

d denote the reference domain with boundary ∂ D
that is of class Cτ+1—when τ = 1 then we also consider the case where D is a
bounded and convex domain with Lipschitz continuous boundary—and (Ω,F , P) be
a separable, complete probability space with σ -fieldF ⊂ 2Ω and probability measure
P. Furthermore, let

V ∈ L∞
P

(
Ω; Cτ,1(D; R

d)
)

be the random domain mapping. Moreover, we require that, for P-almost any ω,
V[ω] : D → D[ω] is bi-Lipschitz and fulfils the uniformity condition

σ ≤ ∣∣V[ω]∣∣Lip(D;Rd )
≤ ∣∣V[ω]∣∣Lip(D;Rd )

≤ σ

for 0 < σ ≤ σ < ∞ independent of ω. Finally, we require that the we have a
hold-all domain D that satisfies D[ω] ⊂ D for P-almost any ω ∈ Ω , a deterministic
subdomain B that satisfies dist

{
B, ∂D[ω]} > δ for P-almost any ω ∈ Ω with a δ > 0

and consider f ∈ Cω(D).
While, by definition,we know thatV[ω] is aC0,1-diffeomorphism from D → D[ω]

for P-almost any ω ∈ Ω , we also have the following stronger result.
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Proposition 1 For P-almost any ω ∈ Ω , V[ω] is a Cτ,1-diffeomorphism from D to
D[ω].
Proof The fact that V[ω] is a Cτ -diffeomorphism follows directly from the inverse
funtion theorem. Then, with the explicit formula for the τ -th derivative ofV[ω]−1 from
the inverse funtion theorem, one can bound

∣∣Dτ V[ω]−1
∣∣
Lip(D;Rd )

independently of
ω. ��

Now, since for P-almost any ω ∈ Ω we have a Cτ,1-diffeomorphism from D →
D[ω] we can use the one-to-one correspondence to pull back the model problem onto
the reference domain D instead of considering it on the actual domain realisations
D[ω]. According to the chain rule, we then have for v ∈ H1(D[ω]) that v ◦ V[ω] ∈
H1(D) and

(∇xv) ◦ V[ω] = (
J[ω])−T∇x

(
v ◦ V[ω]).

Now, with (3) this leads us to the following formulation of our model problem (2)
on the reference domain, cf. [28]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find û ∈ L∞
P

(
Ω; H1

0 (D)
)
such that

∫

D

〈
Â[ω](x)∇xû[ω](x),∇xv̂(x)

〉
dx =

∫

D
f̂ [ω](x)v̂(x) dx

for P-almost every ω ∈ Ω and all v̂ ∈ H1
0 (D).

(6)

Note, especially, that by the uniformity condition we have that

σ d

σ 2 ≤ ess inf
ω∈Ω

ess inf
x∈D

λmin
(
Â[ω](x)) ≤ ess sup

ω∈Ω

ess sup
x∈D

λmax
(
Â[ω](x)) ≤ σ d

σ 2 . (7)

Without loss of generality, we assume σ ≤ 1 ≤ σ .
From here on, we assume that the spatial variable x and the stochastic parameter

ω of the random field have been separated by the Karhunen–Loève expansion of V
coming from the mean field E[V] and the covariance Cov[V] yielding a parametrised
expansion

V[y](x) = E[V](x) +
∞∑

k=1

σkψk(x)yk, (8)

where y = (yk)k∈N∗ ∈ R
N

∗
is a sequence of uncorrelated random variables, see e.g.

[28]. We now impose some common assumptions, which make the Karhunen–Loève
expansion computationally feasible.

Assumption 1 (1) The random variables (yk)k∈N∗ are independent and identically
distributed. Moreover, they are uniformly distributed on

[− 1
2 ,

1
2

]
.
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(2) We assume that the ψk are elements of Cτ,1(D; R
d) and that the sequence γ =(

γk
)

k∈N, given by

γk := ∥∥σkψk

∥∥
Cτ,1(D;Rd )

,

is at least in �1(N), where we have definedψ0 := E[V] and σ0 := 1. Furthermore,
we define

cγ = max
{∥∥γ

∥∥
�1(N)

, 1
}
.

Therefore, we now can restrict y to be in � := [− 1
2 ,

1
2

]N∗
and introduce the pushfor-

ward measure of P onto � as Py. We then view all randomness as being parametrised
by y, i.e. from the next section onwards ω, Ω and P are considered to have been
replaced by y, � and Py.

Remark 1 Note that while we restrict ourselves to the stated model problem here to
simplify the analysis, the regularity result can be extended. For example, it is not
necessary thatV has an affine dependence on y as in (8), as long as a weakend version
of Lemma 2 with bounds of the form

∣∣α
∣∣!kVJc|α|

VJγ
α stays true. Moreover, it is also

possible to consider the partial differential equation

− divx A(x)∇xu[ω] = f in D[ω],

instead of the one in (1) for anA ∈ Cω(D; R
d×d
symm) withA fulfilling an ellipticity con-

dition, that is to prescribe a deterministic diffusion coefficient in Eulerian coordinates;
or to consider

− divx A[ω](V[ω]−1(x)
)∇xu[ω] = f [ω](V[ω]−1(x)

)
in D[ω],

for an A ∈ L∞
P

(
Ω; Cτ−1,1(D; R

d×d
symm)

)
and f ∈ L∞

P

(
Ω; H τ−1(D)

)
with A fulfill-

ing an ellipticity condition almost surely almost everywhere, that is to prescribe a
stochastic diffusion coefficient and loading in Lagrangian coordinates.

3 Regularity

Our aim is to consider quantities of interest that are of the form

QoI(u) =
∫

�
F(

u[y]|B
)
dPy,

where F is a smooth operator into a Banach space X , that is F : Hσ (B) → X
is analytic for σ ≤ τ . However, since we will require our domain mapping to fulfil5

5 The results of this section themselves howeever do not require that the domain mapping fulfils V[y]|B =
IdB .
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V[y]|B = IdB , we will be able to use the fact that û[y]|B = u[y]|B . Therefore, we now
discuss the regularity of the mapping û : � → H τ+1(D), as that then directly implies
the regularity of the mapping u|B : � → H τ+1(B). Showing that the mapping is
analytic justifies considering many discretisations for the computation of the integral.
However, having that smoothness with regard to the space H τ+1(B) instead of only
Hσ (B) justifies the use of their respective multilevel version, see for example [27].

To prove the analyticity of the mapping û : � → H τ+1(D), we first investigate
the analyticity of the mappings Â : � → W τ,∞(D; R

d×d
symm) and f̂ : � → H τ−1(D).

Based on that analyticity we then can essentially leverage results from [30] to arrive at
the analyticity for û. Indeed, the whole section relies heavily on the regularity results
from [30] and uses the same notations: Note especially, that the weighting in the
Sobolev–Bochner norms makes them submultiplicative and that to make the notation
less cumbersome, since we are considering the norm of spaces of the form L∞

Py

(
�;X )

,
we use the shorthand notation

∣∣∣∣∣∣v
∣∣∣∣∣∣X := ∥∥v

∥∥∞,�;X .

As we mainly make use it for spaces of the form L∞
Py

(
�; W η,p(D;X )

)
, this then

becomes
∣∣∣∣∣∣v

∣∣∣∣∣∣
η,p,D;X = ∥∥v

∥∥∞,�;η,p,D;X .

3.1 A combinatorial lemma

In the following subsection we will derive the bounds on the derivatives of the diffu-
sion coefficient and the loading piece by piece by using addition, multiplication and
composition of functions with bounds of the form

∥
∥Dr ·∥∥ ≤ r !kcr

and using [30, Lemma 2, 3 and 4]. To be able to combine bounds on the derivatives
of functions combined by composition with the bounds of the inner function being of
the form

∥∥∂α · ∥∥ ≤ ∣∣α
∣∣!kc|α|γ α

we will use [30, Lemma 8] together with the following combinatorial lemma.

Lemma 1 Let α ∈ N
N

∗
f be a multi–index with α �= 0 and r ∈ N

∗ with r ≤ ∣∣α
∣∣. Then,

we have

α!
∑

C(α,r)

r∏

j=1

∣
∣β j

∣
∣!

β j !
= [α]!

(∣∣α
∣
∣ − 1

r − 1

)
.
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where C(α, r) is the set of all compositions of the multi-index α into r non-vanishing
multi-indices β1, . . . ,βr ,

C(α, r) :=
{(

β1, . . . ,βr
) ∈ (

N
N

∗
f

)r :
r∑

j=1

β j = α and β j �= 0 for all 1 ≤ j ≤ r

}
.

Proof For convenience, we introduce the following notation for this proof: For a
multi-index β ∈ N

N
∗

f with β �= 0 we say that s ∈ N
|β| is a serialisation of β if for any

n ∈ suppβ there exist exactly βn different j ∈ {
1, . . . ,

∣∣β
∣∣} such that s j = n.

Now, as the expression

∣∣β
∣∣!

β!
is just a compact notation for the multinomial, it is equal to the cardinality of the set
containing all serialisations of β. Therefore, for any

(
β1, . . . ,βr

) ∈ C(α, r),

r∏

j=1

∣∣β j

∣∣!
β j !

is the cardinality of the set

{(
s1, . . . , sr

) ∈ N
|β1| × · · · × N

|βr | : s j is a serialisation of β j for all 1 ≤ j ≤ r

}
.

Thus, the expression

∑

C(α,r)

r∏

j=1

∣∣β j

∣∣!
β j !

gives the cardinality of the set

{(
s1, . . . , sr

) ∈ N
k1 × · · · × N

kr :
r∑

j=1

k j = ∣
∣α
∣
∣ and k j ∈ N

∗ for all 1 ≤ j ≤ r

and the concatenation of the s j is a serialisation of α

}
,

which may also be seen as the set giving all the ways to cut all the serialisations of α

into r non-empty blocks. The cardinality is thus also given by the expression

∣∣α
∣∣!

α!
(∣∣α

∣∣ − 1

r − 1

)
,
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as the first factor counts the serialisations ofα and the second theways to cut a sequence
of length

∣∣α
∣∣ into r non-empty blocks, which yields the desired assertion

∑

C(α,r)

r∏

j=1

∣∣β j

∣∣!
β j !

=
∣
∣α
∣
∣!

α!
(∣∣α

∣∣ − 1

r − 1

)
.

��

Remark 2 We will use this combinatorial lemma to give the following bound

α!
∑

C(α,r)

r∏

j=1

1

β j !
≤ α!

∑

C(α,r)

r∏

j=1

∣∣β j

∣∣!
β j !

= ∣∣α
∣∣!
(∣∣α

∣∣ − 1

r − 1

)
. (9)

We note that this bound can be improved by using the identity

α!
∑

C(α,r)

r∏

j=1

1

β j !
= r !S|α|,r

with Sn,r denoting the Stirling numbers of the second kind and bounding this, as is
done, for example, in [30], which will yield smaller constants kÂ, cÂ, k f̂ , c f̂ in Theo-
rems 1 and 2. However, using this identity is more restrictive as it requires Lemma 2 to
hold as stated, whereas, by the bound (9), we actually only require a weakend version
of Lemma 2, as noted in Remark 1.

3.2 Parametric regularity of the diffusion coefficient and the loading

To provide regularity estimates for the diffusion coefficient Â and the right hand side
f̂ , that are based on the decay of the expansion of V as per Assumption 1, we first
note that we can write6

Â[y](x) = T
(
V[y](x), J[y](x)) and f̂ [y](x) = s

(
V[y](x), J[y](x)) (10)

with

T : D × R
d×d
σ ,σ → R

d×d
symm, (x,M) �→ (MTM)−1 detM (11)

s : D × R
d×d
σ ,σ → R, (x,M) �→ f (x) detM, (12)

6 It is obviously possible to define T such that it does not depend on x. Nevertheless, we include it here so
that we can compose both T and s directly with (V, J). Moreover, in general, such when working with an
analytic determinstic diffusion coeffcient, cf. Remark 1, it may be necessary to include it.
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where R
d×d
σ ,σ

:=
{
M ∈ R

d×d : σ ≤ σmin(M) ≤ σmax(M) ≤ σ

}
. Therefore, we first

discuss the regularity of the combined mapping

(V, J) : � → (
D → D × R

d×d
σ ,σ

)
, y �→ (

x �→ (
V[y](x), J[y](x))),

for which we have the following result.7

Lemma 2 We have for all α ∈ N
N

∗
f that

∣∣∣∣∣∣∂α
y (V, J)

∣∣∣∣∣∣
τ,∞,D ≤ kVJγ

α,

where kVJ := [1 + (τ + 1)d]cτ cγ . Here, cτ denotes the constant coming from the
embedding Cτ,1(D; R

d) ↪→ W τ+1,∞(D; R
d).

Proof By definition we have that J[y] = Dx V[y] and so it follows that

V[y] = σ0ψ0 +
∞∑

k=1

σkψk yk and J[y] = σ0 Dx ψ0 +
∞∑

k=1

σk Dx ψk yk .

From this we can derive that first order derivatives are given by

∂yiV[y] = σiψ i and ∂yi J[y] = σi Dx ψ i

for i ∈ N
∗ and all higher derivatives vanish. Clearly, this affine dependence on y

implies the bounds. ��
Next, we supply bounds on the derivatives of the mappings T and s.

Lemma 3 The mapping T is infinitely Fréchet differentiable with

∥∥Dr T(x,M)
∥∥Br (Rd×Rd×d ;Rd×d

symm)
≤ r !kTcr

T

for all r ∈ N and (x,M) ∈ D× R
d×d
σ ,σ with kT = σ−2(2σ)d and cT = 4(σ−2σ 2 + 1).

Proof We start with the mappings

T1 : D × R
d×d
σ ,σ → R

d×d
σ ,σ , (x,M) �→ M and

T2 : D × R
d×d
σ ,σ → R

d×d
σ ,σ , (x,M) �→ MT,

which are infinitely Fréchet differentiable with

∥∥Dr Ti (x,M)
∥∥Br (Rd×Rd×d ;Rd×d )

≤ r !ki c
r
i

7 The bound we give here could be reduced to 0 when
∣
∣α
∣
∣ > 1, which possibly can be used to derive

smaller bounds in some of the subsequent results, see Remark 2. However, we choose to use it as is, as any
tightening of the bound makes it loose this structure, which is also found for more general models of V, cf.
Remark 1.
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for all (x,M) ∈ D × R
d×d
σ ,σ , i = 1, 2 and k1 = k2 = σ , c1 = c2 = 1. Then, using [30,

Lemma 3], we see that the mapping

T3 : D × R
d×d
σ ,σ → R

d×d
σ 2,σ 2 , (x,M) �→ MTM

is infinitely Fréchet differentiable with

∥∥Dr T3(x,M)
∥∥Br (Rd×Rd×d ;Rd×d )

≤ r !k3cr
3

for all (x,M) ∈ D × R
d×d
σ ,σ , and k3 = σ 2, c3 = 2.

Next, we consider the mapping

inv : R
d×d
σ 2,σ 2 → R

d×d
σ−2,σ−2 , M �→ M−1.

Clearly, the r -th Fréchet derivative of inv at the pointM ∈ R
d×d
σ 2,σ 2 in the directions of

H1, . . . ,Hr ∈ R
d×d is given by

Dr inv(M)H1 · · ·Hr = (−1)r
∑

σ∈Sr

M−1
r∏

j=1

(
Hσ( j)M−1)

= (−1)r
∑

σ∈Sr

inv(M)

r∏

j=1

(
Hσ( j)inv(M)

)
,

where Sr is the set of all bijections on the set
{
1, 2, · · · , r

}
. Thus, we have

∥∥Dr inv(M)
∥∥Br (Rd×d ;Rd×d )

≤ r !∥∥inv(M)
∥∥r+1
2 ≤ r !kinvcr

inv

for all M ∈ R
d×d
σ 2,σ 2 → R

d×d
σ−2,σ−2 with kinv = cinv = σ−2. Therefore, we can use [30,

Lemma 4] to see that the mapping

T4 : D × R
d×d
σ ,σ → R

d×d
σ−2,σ−2 , (x,M) �→ inv

(
T3(x,M)

) = (MTM)−1

is infinitely Fréchet differentiable with

∥∥Dr T4(x,M)
∥∥Br (Rd×Rd×d ;Rd×d )

≤ r !k4cr
4

for all (x,M) ∈ D × R
d×d
σ ,σ , and k4 = σ−2, c4 = (σ−2σ 2 + 1)2.

Finally, we consider the mapping

det : R
d×d
σ ,σ → R, M �→ detM,
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which has the r -th Fréchet derivative of det given by8

Dr det(M)H1 · · ·Hr =
∑

1≤i1,...,ir ≤d
p.w. inequal

det
(
M[i1,H1],...,[ir ,Hr ]

)
,

where M[i1,H1],...,[ir ,Hr ] denotes the matrix M whose ik-th column is replaced by the
ik-th column of the matrix Hk for all k from 1 to r . Now, since we can bound the
determinant of a matrix by the product of the norms of its columns, i.e.

∣∣∣∣ det
([
z1 · · · zd

])
∣∣∣∣ ≤

d∏

j=1

∥∥z j
∥∥,

and since we know that

∥∥z j
∥∥ ≤ ∥∥ [z1 · · · zd

] ∥∥.

it follows that,

∥∥Dr det(M)
∥∥Br (Rd×d ;R)

≤ d!
(d − r)!

∥∥M
∥∥d−r ≤ r !

(
d

r

)
σ d ≤ r !kdetcr

det,

with kdet = (2σ)d and cdet = 1. As before, we can use [30, Lemma 4] to see that the
mapping

T5 : D × R
d×d
σ ,σ → R, (x,M) �→ det

(
T1(x,M)

) = detM

is infinitely Fréchet differentiable with

∥∥Dr T5(x,M)
∥∥Br (Rd×Rd×d ;R)

≤ r !k5cr
5

for all (x,M) ∈ D × R
d×d
σ ,σ , and k5 = (2σ)d , c5 = σ + 1.

Finally, the use of [30, Lemma 3] yields the assertion, as T(x,M) = T5(x,M)T4
(x,M). ��
Lemma 4 The mapping s is infinitely Fréchet differentiable with

∥∥Dr s(x,M)
∥∥Br (Rd×Rd×d ;R)

≤ r !kscr
s

for all (x,M) ∈ D× R
d×d
σ,σ with ks = (2σ)dk f and cs = 2max

{
c f max

x∈D
∥∥x
∥∥, σ

}+ 2,

where k f , c f are constants such that
∥∥Dr f (x)

∥∥Br (Rd ;R)
≤ r !k f cr

f holds for all
x ∈ D.

8 The formula follows directly from the fact that the determinant function is a polynomial over the entries
of the matrix given by the Leibniz formula. Especially, the formula yields an empty sum (of value 0) for
r > d.
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Proof We start with the mapping

s1 : D × R
d×d
σ ,σ → D, (x,M) �→ x,

which is infinitely Fréchet differentiable with

∥∥Dr s1(x,M)
∥∥Br (Rd×Rd×d ;Rd )

≤ r !k1cr
1

for all (x,M) ∈ D × R
d×d
σ ,σ , and k1 = max

x∈D
∥∥x
∥∥, c1 = 1. Then, using [30, Lemma 4],

we see that the mapping

s2 : D × R
d×d
σ ,σ → R, (x,M) �→ f

(
s1(x,M)

) = f (x)

is infinitely Fréchet differentiable with

∥∥Dr s2(x,M)
∥∥Br (Rd×Rd×d ;R)

≤ r !k2cr
2

for all (x,M) ∈ D × R
d×d
σ ,σ , and k2 = k f , c2 = c f max

x∈D
∥∥x
∥∥ + 1.

Moreover, as shown in the previous proof we also have that

s3 : D × R
d×d
σ ,σ → R, (x,M) �→ detM

is infinitely Fréchet differentiable with

∥
∥Dr s3(x,M)

∥
∥Br (Rd×Rd×d ;R)

≤ r !k3cr
3

for all (x,M) ∈ D × R
d×d
σ ,σ , and k3 = (2σ)d , c3 = σ + 1. Lastly, the use of [30,

Lemma 3] yields the assertion, as s(x,M) = s2(x,M)s3(x,M). ��
Now, these results enable us to show the following regularity estimates for the

diffusion coefficient Â and the right hand side f̂ .

Theorem 1 We know for all α ∈ N
N

∗
f that

∣∣∣∣∣∣∂α
y Â

∣∣∣∣∣∣
τ,∞,D;Rd×d

symm
≤ ∣∣α

∣∣!kÂc|α|
Â

γ α and
∣∣∣∣∣∣∂α

y f̂
∣∣∣∣∣∣

τ−1,2,D;R ≤ ∣∣α
∣∣!k f̂ c|α|

f̂
γ α,

where

kÂ := kT

τ∑

r=0

2r cr
Tkr

VJ , cÂ := 2cTkVJ + 1 ,

k f̂ :=
√∣∣D∣∣

σ d
ks

τ∑

r=0

2r cr
s kr

VJ and c f̂ := 2cskVJ + 1.
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Proof Because Â = T ◦ (V, J), we can employ [30, Lemma 8] to arrive at

∣∣∣∣∣∣Â
∣∣∣∣∣∣

τ,∞,D;Rd×d
symm

≤
τ∑

r=0

1

r !
∣
∣
∣
∣
∣
∣Dr T ◦ (V, J)

∣
∣
∣
∣
∣
∣∞,D;Br (Rd×Rd×d ;Rd×d

symm))

∣
∣
∣
∣
∣
∣(V, J)

∣
∣
∣
∣
∣
∣r
η,τ,D;Rd×Rd×d

≤ kT

τ∑

r=0

cr
Tkr

VJ ≤ kÂ

as well as, for α �= 0,

∣∣∣∣∣∣∂α
y Â

∣∣∣∣∣∣
τ,∞,D;Rd×d

symm

≤ α!
|α|∑

s=1

1

s!
( τ∑

r=0

1

r !
∣∣∣∣∣∣Dr+s T ◦ (V, J)

∣∣∣∣∣∣∞,D;Br+s (Rd×Rd×d ;Rd×d
symm)

∣∣∣∣∣∣(V, J)
∣∣∣∣∣∣r

τ,∞,D;Rd×Rd×d

)

∑

C(α,s)

s∏

j=1

1

β j !
∣∣∣∣∣∣∂

β j
y (V, J)

∣∣∣∣∣∣
τ,∞,D;Rd×Rd×d

≤ α!
|α|∑

s=1

1

s!
( τ∑

r=0

1

r ! (r + s)!kTcr+s
T kr

VJ

) ∑

C(α,s)

s∏

j=1

1

β j !
kVJγ

β j

≤ γ αkT

( τ∑

r=0

2r cr
Tkr

VJ

) |α|∑

s=1

2scs
Tks

VJα!
∑

C(α,s)

s∏

j=1

1

β j !

≤ γ α
∣
∣α
∣
∣!kT

( τ∑

r=0

2r cr
Tkr

VJ

) |α|∑

s=1

2scs
Tks

VJ

(|α| − 1

s − 1

)

≤ γ α
∣∣α
∣∣!kT

( τ∑

r=0

2r cr
Tkr

VJ

)
(2cTkVJ + 1)|α|,

where we make use of the combinatorial identity shown in Lemma 1 yielding the
bound (9).
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This proves the assertion for Â, while the assertion for f̂ follows analogously after
remarking that

∣∣∣∣∣∣Dr s ◦ (V, J)
∣∣∣∣∣∣
2,D;Br (Rd×Rd×d ;R)

= ess sup
y∈�

∥∥Dr s ◦ (V[y], J[y])∥∥2,D;Br (Rd×Rd×d ;R)

≤ ess sup
y∈�

∥∥Dr s
∥∥
2,D[y];Br (Rd×Rd×d ;R)

√
σ−d

≤ ess sup
y∈�

∥∥Dr s
∥∥∞,D[y];Br (Rd×Rd×d ;R)

√∣∣D[y]∣∣σ−d

≤ ∥∥Dr s
∥∥∞,D;Br (Rd×Rd×d ;R)

√∣∣D∣∣σ−d

≤ r !
√∣
∣D∣∣σ−dkscr

s .

��

3.3 Parametric regularity of the solution

It follows from [20, Propositions 3.2.1.2 and 3.1.3.1], when τ = 1 and D is convex
and bounded, or from [13, Theorem 8.13], when D is of class Cτ+1, that for almost
any y ∈ � we have û[y] ∈ H τ+1(D) with

∥∥û[y]∥∥
τ+1,2,D ≤ Cer

∥∥ f̂ [y]∥∥
τ−1,2,D,

where Cer only depends on D, σ , σ , τ and cγ . This obviously directly implies the
following result.

Lemma 5 The unique solution û ∈ L∞
Py

(
�; H1

0 (D)
)

of (6) indeed also fulfils û ∈
L∞
Py

(
�; H τ+1(D)

)
, with

∣∣∣∣∣∣û
∣∣∣∣∣∣

τ+1,2,D ≤ Cer
∣∣∣∣∣∣ f̂

∣∣∣∣∣∣
τ−1,2,D .

Moreover, this higher spatial regularity also carries over to the derivates ∂α
y û.9

Theorem 2 The derivatives of the solution û of (6) satisfy

∣
∣
∣
∣
∣
∣∂α

y û
∣
∣
∣
∣
∣
∣
τ+1,2,D ≤ ∣

∣α
∣
∣!c|α|+1γ α,

where c := max
{
2, 3Cerτ

2d2kÂ, 3Cer k f̂

}
max

{
c f̂ , cÂ

}
.

9 We omit the proof, as it is essentially identical to the proof of [30, Theorem 3], apart from the fact that
one has to also account for the depenence of f̂ on y, which poses no problems.
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4 The coupling of FEM and BEM

While the results in the previous subsections are valid for general random domain
mappings, we will now restrict them according to the remarks made in the introduc-
tion. That is, we assume for the rest of the article that we are given a random boundary
description, Γ [y], and the fixed, deterministic subdomain B, which describe our ran-
dom domain, compare Fig. 1 when Γ = Γ [y].

Wewill assume that there is a random domainmappingVwhich fulfils theAssump-
tion 1 as well as fulfilling V[y]|B = IdB and V[y](∂ D) = Γ [y] for almost any y.
Then, we know from the previous section that û : � → H τ+1(D) is analytic which
also implies that F ◦ u|B : � → X is analytic.

So, to be able to use multilevel quadrature to compute the quantity of interest
efficiently, we consider a formulation here, that enables us to compute the Galerkin
solution uh[y] ∈ H1(B) with a mesh on B but without needing a mesh on D[y] \ B
or needing the knowledge of the random domain mapping. Similiar to the approach in
[12], one arrives at such a formulation by reformulating the boundary value problem
as two coupled problems involving only boundary integral equations on the random
boundary Γ [y], see for example [8,23], and then discretising the variational formula-
tion of that formulation with a Galerkin approach, along the lines of [25].

4.1 Newton potential

For sake of simplicity in representation, we shall restrict ourselves in this and the
following subsections to the deterministic boundary value problem

− �u = f in D, u = 0 on Γ := ∂ D, (13)

i.e., the domain D is assumed to be fixed. Of course, when applying a sampling
method for (1), the underlying domains are always different. In order to resolve the
inhomogeneity in (13), we introduce a Newton potential N f which satisfies

− �N f = f in D̃. (14)

Here, D̃ is a sufficiently large domain containing D[y] almost surely.
The Newton potential is supposed to be explicitly known like in our numerical

example (see Sect. 6) or computed with sufficiently high accuracy. Especially, since
the domain D̃ can be chosen fairly simple, one can apply finite elements based on
tensor products of higher order spline functions (in [−R, R]d ) or dual reciprocity
methods. Notice that the Newton potential has to be computed only once in advance.

By making the ansatz

u = N f + ũ (15)
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B

Σ

Γ

Fig. 1 The domain D, the subdomain B, and the boundaries Γ = ∂ D and Σ = ∂ B

and setting g̃ := −N f , we arrive at the problem of seeking a harmonic function ũ
which solves the following Dirichlet problem for the Laplacian

�ũ = 0 in D, ũ = g̃ on Γ . (16)

Now, we are able to apply the coupling of finite elements and boundary elements.

4.2 Reformulation as a coupled problem

For the subdomain B ⊂ D, we set Σ := ∂ B, see Fig. 1 for an illustration. The normal
vectors n at Γ and Σ are assumed to point into D \ B. We shall split (16) in two
coupled boundary value problems in accordance with

�ũ = 0 in B,

�ũ = 0 in D \ B,

lim
B�z→x

ũ(z) = lim
D\B�z→x

ũ(z) for all x ∈ Σ,

lim
B�z→x

∂ ũ

∂n
(z) = lim

D\B�z→x

∂ ũ

∂n
(z) for all x ∈ Σ,

ũ = g̃ on Γ .

(17)

In order to derive suitable boundary integral equations for the problem in D \ B, we
define the single layer operator VΦΨ , the double layer operator KΦΨ and its adjoint
K�

Ψ Φ , and the hypersingular operator WΦΨ with respect to the boundaries Φ,Ψ ∈
{Γ ,Σ} by

(VΦΨ v)(x) :=
∫

Φ

G(x, z)v(z) dσz,

(KΦΨ v)(x) :=
∫

Φ

∂G(x, z)
∂n(z)

v(z) dσz,

(K�
ΦΨ v)(x) :=

∫

Φ

∂

∂n(x)
G(x, z)v(z) dσz,

(WΦΨ v)(x) := − ∂

∂n(x)

∫

Φ

∂G(x, z)
∂n(z)

v(z) dσz,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

x ∈ Ψ .
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Here, G(x, z) denotes the fundamental solution of the Laplacian which is given by

G(x, z) =
{

− 1
2π log

∥
∥x − z

∥
∥, d = 2,

1
4π log ‖x−z‖ , d = 3.

By introducing the variables σΣ := (∂ ũ/∂n)|Σ and σΓ := (∂ ũ/∂n)|Γ , the coupled
system (17) yields the following nonlocal boundary value problem: Find (ũ, σΣ, σΓ )

such that

�ũ = 0 in B,

WΣΣ ũ + σΣ +
(
K�

ΣΣ − 1

2

)
σΣ + K�

Γ ΣσΓ = −WΓ Σ g̃ on Σ,

(1
2

− KΣΣ

)
ũ + VΣΣσΣ + VΓ ΣσΓ = KΓ Σ g̃ on Σ,

−KΣΓ ũ + VΣΓ σΣ + VΓ Γ σΓ =
(
KΓ Γ − 1

2

)
g̃ on Γ .

This system is the so-called two integral formulation,which is equivalent to our original
model problem (16), see for example [8,23].

4.3 Variational formulation

Wenext introduce the product spaceH := H1(B)×H−1/2(Σ)×H−1/2(Γ ), equipped
by the product norm

∥∥(v, σΣ, σΓ )
∥∥2H := ∥∥v

∥∥2
H1(B)

+ ∥∥σΣ

∥∥2
H−1/2(Σ)

+ ∥∥σΓ

∥∥2
H−1/2(Γ )

.

Further, let a : H × H → R, be the bilinear form defined by

a

(
(v, σΣ, σΓ ), (w, λΣ, λΓ )

)
= (∇w,∇v)L2(B)

+
⎛

⎝

⎡

⎣
w

λΣ

λΓ

⎤

⎦ ,

⎡

⎣
WΣΣ K�

ΣΣ − 1/2 K�
Γ Σ

1/2 − KΣΣ VΣΣ VΓ Σ

−KΣΓ VΣΓ VΓ Γ

⎤

⎦

⎡

⎣
v

σΣ

σΓ

⎤

⎦

⎞

⎠

L
,

where L := L2(Σ) × L2(Σ) × L2(Γ ). For sake of simplicity in representation, we
omitted the trace operator in expressions like (w,WΣΣv)L2(Σ) etc.

Introducing the linear functional F : H → R,

F(w, λΣ, λΓ ) =
⎛

⎝

⎡

⎣
w

λΣ

λΓ

⎤

⎦ ,

⎡

⎣
−WΓ Σ

KΓ Σ

KΓ Γ − 1/2

⎤

⎦ g̃

⎞

⎠

L
,
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the variational formulation is given by: Seek (ũ, σΣ, σΓ ) ∈ H such that

a
(
(ũ, σΣ, σΓ ), (w, λΣ, λΓ )

) = F(w, λΣ, λΓ ) (18)

for all (w, λΣ, λΓ ) ∈ H. In accordance with [12, Theorem 4.1], the variational for-
mulation (18) admits a unique solution (ũ, σΣ, σΓ ) ∈ H for all F ∈ H′, provided that
D has a conformal radius which is smaller than one if d = 2.

4.4 Galerkin discretisation

Since the variational formulation is stablewithout further restrictions, the discretisation
is along the lines of [25]. We first introduce a uniform triangulation of B which in turn
induces a uniform triangulation ofΣ . Moreover, we introduce a uniform triangulation
of the boundary Γ . Note, that the precise approach used to mesh Γ in applications will
depend on which description of the random boundary is given. However, as some form
of description of the random boundary must be available, it generally will be easier
to mesh it, as opposed to meshing the whole domain, cf. for example [24]. Indeed, if
the random boundary is given as a star-shaped parametrisation or if it is given by a
randomboundarymapping, amesh on the d-sphere or reference boundarymay be used
to construct triangulations on all sampled boundaries. On the other hand, if the random
boundary is described by some (parametric or geometric) surface mesh, coming for
example from some computer assisted design system, which is perturbed by moving
control points or mesh vertices, then this immeadiately supplies triangulations on all
sampled boundaries.

We define themaximumdiameter of all elements of the triangulation of B and of the
surface triangulation of Γ by h. For the FEM part, we consider continuous, piecewise
linear ansatz functions {ϕB

1 , . . . , ϕB
nB
dof

}with respect to the given domain mesh. For the

BEM part, we employ piecewise constant ansatz functions {ψΦ
1 , . . . , ψΦ

mΦ
dof

} on the

respective triangulations of the boundaries Φ ∈ {Σ,Γ }.
For sake of simplicity in representation, we set ϕΣ

k := ϕB
k |Σ for all k = 1, . . . , nB

dof.
Note that most of these functions vanish except for those with nonzero trace which
coincide with continuous, piecewise linear ansatz functions on Σ . Finally, we shall
introduce the set of continuous, piecewise linear ansatz functions on the triangulation
of Γ , which we denote by {ϕΓ

1 , . . . , ϕΓ

mΓ
dof

}, where we have mΓ
dof ∼ nΓ

dof.

Then, introducing the system matrices

A = [
(∇ϕB

k′ ,∇ϕB
k )L2(B)

]
k,k′ , WΦΨ = [

(WΦΨ ϕΦ
k′ , ϕΨ

k )L2(Ψ )

]
k,k′ ,

BΦ = [ 1
2 (ϕ

Φ
k′ , ψΦ

k )L2(Φ)

]
k,k′ , KΦΨ = [

(KΦΨ ϕΦ
k′ , ψΨ

k )L2(Ψ )

]
k,k′ ,

GΦ = [
(ϕΦ

k′ , ϕΦ
k )L2(Φ)

]
k,k′ , VΦΨ = [

(VΦΨ ψΦ
k′ , ψΨ

k )L2(Ψ )

]
k,k′ ,

where again Φ,Ψ ∈ {Σ,Γ }, and the data vector

g = [
(g̃, ϕΓ

k )L2(Γ )

]
k ,
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we obtain the following linear system of equations

⎡

⎣
A + WΣΣ KT

ΣΣ − BT
Σ KT

ΣΓ

BΣ − KΣΣ VΣΣ VΓ Σ

−KΣΓ VΣΓ VΓ Γ

⎤

⎦

⎡

⎣
u

σΣ

σΓ

⎤

⎦ =
⎡

⎣
−WΓ Σ

KΓ Σ

KΓ Γ − BΓ

⎤

⎦G−1
Γ g. (19)

We mention that G−1
Γ g corresponds to the L2(Γ )-orthogonal projection of the given

Dirichlet data g̃ ∈ H1/2(Γ ) onto the space of the continuous, piecewise linear ansatz
functions on Γ . That way, we can also apply fast boundary element techniques to
the boundary integral operators on the right hand side of the system (19) of linear
equations.

By applying standard error estimates for the Galerkin scheme and possibly also the
Aubin–Nitsche trick, see for example [12, Proposition 4.1], the present discretisation
now yields the following error estimate.10

Proposition 2 We denote the solution of (18) by (ũ, σΣ, σΓ ) and the Galerkin solution
by (ũh, σΣ,h, σΓ ,h), respectively. Then, we have the error estimates

∥∥(ũ, σΣ, σΓ ) − (ũh, σΣ,h, σΓ ,h)
∥∥

H1(B)×H−1/2(Σ)×H−1/2(Γ )

� h
∥∥(ũ, σΣ, σΓ )

∥∥
H2(B)×H1/2(Σ)×H1/2(Γ )

and

∥
∥(ũ, σΣ, σΓ ) − (ũh, σΣ,h, σΓ ,h)

∥
∥

L2(B)×H−3/2(Σ)×H−3/2(Γ )

� h2
∥∥(ũ, σΣ, σΓ )

∥∥
H2(B)×H1/2(Σ)×H1/2(Γ )

uniformly in h.

4.5 Multigrid based solver for the coupling formulation

To arrive at an efficient solver for the linear system (19) of equations some issues need
to be addressed. As we will require a hierarchy of discretisations for the use of the
multilevel quadrature method, we introduce a hierarchy of uniform triangulations of
B and of uniform triangulations of the boundary Γ yielded by uniformly refining a
given coarse triangulation of B and a given coarse triangulation of the boundary Γ

and enumerated by the level of refinement � ∈ N. With this at hand, we consider how
to solve the linear system (19) of equations for the �-th triangulations of B and Γ in
that hierarchy of triangulations.

The complexity is governed by the BEM part since the boundary element matrices
are densely populated. Following [25,26], we apply wavelet matrix compression to
reduce this complexity such that the over-all complexity is governed by the FEM part.
On the other hand, according to [26,32], the Bramble–Pasciak–CG (see [2]) provides

10 While the orders chosen for the elements are well-suited when τ = 1, higher order elements should be
chosen for τ > 1 to reach higher algebraic convergence rates for this error estimate.
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an efficient and robust iterative solver for the above saddle point system. Combining a
nested iteration with the BPX preconditioner (see [3]) for the FEM part and a wavelet
preconditioning (see [9,41]) for the BEM part, we derive an asymptotical optimal
solver for the above system, see [26] for the details. We refer the reader to [26] for the
details of the implementation of a similar coupling formulation.

5 Multilevel quadraturemethod

The crucial idea of the multilevel quadrature to compute the quantity of interest (5) is
to combine an appropriate sequence of quadrature rules for the stochastic variable with
a sequence of multilevel discretisations in the spatial variable, for a detailed treaty we
refer to [27].

For the spatial approximation, we shall use the hierarchy of triangulations intro-
duced in Subsect. 4.5 to compute the Galerkin solution u� ∈ H1(B) on the level �

triangulations as described there. The Galerkin solution on these triangulations, which
by uniform refining have a mesh size h� � 2−�, thus yield the approximate decompo-
sition

F(u|B) ≈ F(u1) +
L−1∑

�=1

(F(u�+1) − F(u�)
)
.

Next, we consider a general sequence of quadrature formulas Q� of the form

∫

�
v[y] dPy ≈ Q�v =

N�∑

i=1

ρ�,iv[ξ �,i ]

with nodes ξ �,i and weights ρ�,i for the approximation of the integration over the
stochastic variable in its parametrised form y.Wewill assume that the number of points
N� of the quadrature formula Q� is chosen such that the corresponding accuracy11 is

ε� � 2−�, � = 1, . . . , L. (20)

Consequently, since we can state the quantity of interest as

QoI(u) =
∫

�
F(

u[y]|B
)
dPy

based on the expansion (8), we may approximate it by the multilevel quadrature

QoIml
L := QL

(F(u1)
) +

L−1∑

�=1

QL−�

(F(u�+1) − F(u�)
)

(21)

11 This choice of accuracy rate is based on the H1(B)-error estimate from the FEM-BEM discretisation,
with h� � 2−�.
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as opposed to considering the single-level quadrature

QoIslL := QL
(F(uL)

)
. (22)

Since the multilevel quadrature can be interpreted as a sparse grid approximation,
cf. [27], it is known that mixed regularity results of the integrand have to be provided as
derived in Section 3, compare [10,18,27,37] for example. Since the mapping u : � →
H τ+1(B) is analytic, we can especially apply the quasi-Monte Carlo method, the
Gaussian quadrature, or the sparse grid quadrature, see e.g. [18,21,36,43]. Especially,
in case of H2-regularity (τ = 1) and F = IdH1(B), i.e., QoI(u) = E(u|B), we then
obtain the error estimate, see [27],

∥∥E(u|B) − QoIml
L

∥∥
H1(B)

= O(L2−L). (23)

As the spatial discretisations employ the hierarchy of triangulations introduced
in Subsect. 4.5, which are yielded by uniform refining, the number of degrees of
freedom in the linear system (19) for the level � triangulations areΘ

(
(2�)d

)
. Thus, the

linear complexity solver also hasΘ
(
(2�)d

)
complexity for one level � system to solve,

compare [26]. The quadrature formulaQ� obviously has a complexity ofΘ(N�). Now,
in view of Theorem 2, we can consider some examples of quadrature methods and
explicitly state how N� may be choosen to satisfy the accuracy required in (20).

• If, for example, we assume that there is an ε > 0 such that γk � k−3−ε holds
and we consider the quasi-Monte Carlo quadrature based on the Halton sequence,
then, we use [28, Lemma 7], a consequence of [43], to see that we may choose

N� � (2�)
1

1−δ (24)

for any δ > 0.
• Similarily, if we assume that there is a r > 1 such that γk � k−r holds and we
consider the anisotropic sparse grid Gauss–Legendre quadrature, then, we use [21,
Theorem 5.7] to see that we may choose

N� � (2�)
2

s−1

for any s < r .

As these quadrature method examples use N� � (2�)r for some r > 0, we will assume
this algebraic computational complexity from here on. Thus, the standard single-level
quadrature method (22) shows a computational complexity of

Θ
(
(2L)r )Θ

(
(2L)d) = Θ

(
(2L)r+d),
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while the computational complexity of the multilevel quadrature (21) as a sparse grid
combination is given by

L−1∑

�=0

Θ
(
(2L−�)r )Θ

(
(2�+1)d) =

{
Θ
(
(2L)max(r ,d)

)
, if r �= d,

Θ
(
L(2L)d

)
, when r = d,

see e.g. [17]. That is, the computational complexity of the multilevel quadrature (21) is
considerably reduced compared to the standard single-level quadrature method (22),
which has the same accuracy, see also [1,7,27] for example. This is also visible in the
numerical example shown in Fig. 3.

Remark 3 By choosing the accuracy of the quadrature in accordance with ε� � 4−�

for � = 1, . . . , L instead of (20), the application of the Aubin–Nitsche trick in Propo-
sition 2 implies the L2-error estimate

∥∥E(u|B) − QoIml
L

∥∥
L2(B)

= O(L4−L), (25)

when using the same hierarchy of uniform refined triangulations with mesh size h� �
2−�. To achieve this increased accuracy, (24) must be replaced by

N� = (4�)
1

1−δ (26)

for any δ > 0, and, where applicable, subsequent equations also be modified accord-
ingly. Lastly, we note that the computational complexity of the deterministic solver is
not affected when accounting for the L2-error instead of the H1-error.

6 Numerical results

In our numerical example, we consider the reference domain D to be the ellipse with
semi-axis 0.7 and 0.5. We represent its boundary by γref : [0, 2π) → ∂ D in polar
coordinates and perturb this parametrisation in accordance with

γ [y](ϕ) = γref(ϕ) + ε

∞∑

j=0

w j
(
y− j sin( jϕ) + y j cos( jϕ)

)

where y j ∈ [−0.5, 0.5] for all j ∈ Z are independent and identically uniformly
distributed random variables and ε = 0.05. The weights w j are chosen as w j = 1
for all

∣
∣ j
∣
∣ ≤ 5 and w j = ( j − 5)−5.001 for all

∣
∣ j
∣
∣ > 5. Hence, we have the decay

γ j ∼ j−3.001 for the choice τ = 1, which is sufficient for applying the quasi-Monte
Carlo method based on the Halton sequence, see Sect. 5 and the references [28,43]. In
practice, we set allw j to zero if | j | > 64 which corresponds to a dimension truncation
after 129 dimensions. The random parametrisation γ [y] induces the random domain
D[y]. The fixed subset B ⊂ D is given as the ball of radius 0.2, centered in the origin.
For an illustration of six draws, see Fig. 2. We choose f (x) = 1, for which a suitable
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Fig. 2 Six samples of the random domain with finite element triangulation of B on refinement level 2

Newton potential is then analytically given byN f = −(x21 + x22 )/4, and consider the
L2-tracking type functional

QoI(u) = E

[
1

2

∫

B

∣
∣u[y] − u

∣
∣2 dx

]
with u(x) = 2 −

(
x1
0.4

)2

−
(

x2
0.3

)2

as quantity of interest.
The coarse triangulation of B, based on Zlámal’s curved finite elements [45], con-

sists of 14 curved triangles on the coarse grid, which are then uniformly refined to
get the triangulation on the finer grids. The 14 triangles correspond to eight piecewise
linear and constant boundary elements each on the boundary ∂ B. At the boundary
∂ D, we likewise consider eight piecewise linear and constant boundary elements each
on level 0. We then apply successive uniform refinement on the triangulation of B
and the boundary elements yielding the discretisations of level 1 to 10, with mesh size
h� � 2−�. In order to compute the quantity of interest, wewill employ the quasi-Monte
Carlo method based on the Halton sequence, see [22] for example, as the quadrature
method. For this, essentially12 following (24) and (26), we set

N� = 2�−1N1 (27)

and

N� = 4�−1N1, (28)

respectively, with N1 = 10, 20, 40. Thus, N1 is the number of samples the multilevel
quadrature uses on the fine grid L . Since the exact solution is unknown, we use the
quantity of interest computed on level L = 10 with N� = 4�−1N1 and N1 = 40 as a
reference solution.

12 We ignore the fact that δ should fulfil δ > 0 and just use δ = 0.
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Fig. 3 Cost of methods in total number of degrees of freedom (vertical axis) versus maximum level L
(horizontal axis), when using the number of quadrature points (27) (left) and (28) (right) with N1 = 10.

shows the cost of the quadrature, the cost of the FEM-BEM discretisation, the resulting
cost of the single-level and of the multilevel methods
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Fig. 4 Absolute error of the output functional (vertical axis) versus cost in degrees of freedom (horizontal
axis), when using the number of quadrature points (27) (left) and (28) (right). shows the situation
with N1 = 10, with N1 = 20 and with N1 = 40. and show the asymptotic rates
L2−L and L4−L

The computational costs of these choices are shown in Fig. 3, where the cost is
quantified in terms of the total number of degrees of freedom. The FEM-BEM spatial
discretisation shows a cost of Θ(4L), while the quadrature discretisation obviously
shows costs of Θ(2L) and Θ(4L), respectively. In both settings the multilevel com-
bination, given by (21), seems to show up as having a cost of Θ(4L); however when
using the number of quadrature points (28) there is an additional logarithmic factor in
the cost, i.e. the cost is Θ(L4L). For comparison purposes the cost of the single-level
approach, as given by (22), is also shown, demonstrating the expected costs of Θ(6L)

and Θ(8L), respectively.
As it is seen in Fig. 4, we observe the essentially quadratic convergence rate, when

using the number of quadrature points (27). This is in accordance with (25). The situ-
ation, when using the number of quadrature points (27), is less clear. The convergence
rate is first seemingly quadratic and only then flattens out to be essentially linear, which
is what is in accordancewith (23). This faster convergence in the preasymptotic regime
may be caused by having a spatial discretisation error, which is significantly larger
on the coarse triangulations than the error of the coarse quadratures of the quadrature
discretisation.
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7 Conclusion

We provided regularity estimates of the solution to elliptic problems on random
domains which allow for the application of many multilevel quadrature methods.
In order to avoid the need to compute either a random domain mapping or to generate
meshes for every domain sample, we couple finite elements with boundary elements.
It has been shown by numerical experiments that this approach is indeed able to exploit
the additional regularity we have in the underlying problemwithout causing numerical
problems on too coarse grids.
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