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Background: Although epidermal growth factor (EGF) controls many crucial processes in the human body, it can increase 
the risk of developing cancer when overexpresses. 
Objectives: This study focused on detecting cancer-associated genes that are dysregulated by EGF overexpression. 
Materials and Methods: To identify differentially expressed genes (DEGs), two independent meta-analyses with nor-
mal and cancer RNA-Seq samples treated by EGF were conducted. The new DEGs detected only via two meta-analyses 
were used in all downstream analyses. To reach count data, the tools of FastQC, Trimmomatic, HISAT2, SAMtools, and 
HTSeq-count were employed. DEGs in each individual RNA-Seq study and the meta-analysis of RNA-Seq studies were 
identified using DESeq2 and metaSeq R package, respectively. MCODE detected densely interconnected top clusters in 
the protein-protein interaction (PPI) network of DEGs obtained from normal and cancer datasets. The DEGs were then 
introduced to Enrichr and ClueGO/CluePedia, and terms, pathways, and hub genes enriched in Gene Ontology (GO) and 
KEGG and Reactome were detected. 
Results: The meta-analysis of normal and cancer datasets revealed 990 and 541 new DEGs, all upregulated. A number 
of DEGs were enriched in protein K48-linked deubiquitination, ncRNA processing, ribosomal large subunit binding, and 
protein processing in endoplasmic reticulum. Hub genes overexpression (DHX33, INTS8, NMD3, OTUD4, P4HB, RP-
S3A, SEC13, SKP1, USP34, USP9X, and YOD1) in tumor samples were validated by TCGA and GTEx databases. Over-
all survival and disease-free survival analysis also confirmed worse survival in patients with hub genes overexpression.
Conclusions: The detected hub genes could be used as cancer biomarkers when EGF overexpresses.
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1. Background
Invasive cancer results from various dysregulated genes 
(1). Oncogenic mutations drive targeted genes to up and 
down-regulate or generate dysfunctional proteins (2). 

Since genes and pathways in tumors undergo massive 
changes, extensive research is crucial for detecting in-
volved biomarkers. EGF plays a vital role in numerous 
essential processes, it proliferates many types of cells and 
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cures injuries (3), nevertheless, EGF is known to be im-
plicated in the development of several cancers. In a study, 
EGF-treated various cancer cells showed EGF receptor 
overexpression, dephosphorization, and under-expression 
of focal adhesion kinase, and also an increase in invasion, 
migration, and metastasis of cancer cells (4). Likewise, 
when breast cancer cells were treated with EGF, cell mi-
gration and drug resistance were raised (5). Following 
EGF overexpression, the expression profiles of core genes 
and pathways change, complicated irregular patterns form 
and some cancers emerge. Mining DEGs involved in can-
cer is a perfectly valid method to discover new biomarkers 
(6). Meta-analysis provides researchers with an invaluable 
tool to uncover novel DEGs (7). It enlarges the sample 
size and increases statistical power (8). 

2. Objectives
Nowadays EGF cosmetics and other products are avail-
able in the market, therefore the current study aimed at 
discovering novel EGF-stimulated genes and pathways 
associated with cancer using normal and cancer cell 

lines, obtained from several independent and related 
studies. Two different meta-analyses with normal and 
cancer datasets were conducted, then each of which was 
independently analyzed, and their shared dysfunction-
al DEGs and pathways were discerned. Malfunctioned 
oncogenes in cancer cell lines were also detected. To 
the best of our knowledge, the present study is the first 
to carry out and report the meta-analysis of EGF-stimu-
lated normal and cancer datasets at once.

3. Materials and Methods

3.1. RNA-Seq Data Selection and Analysis 
The NCBI Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) and European Nucleotide 
Archive (https://www.ebi.ac.uk/ena) was mined for 
finding the publicly available RNA-Seq datasets. Two 
independent trials were conducted, the meta-analysis of 
RNA-Seq data obtained from EGF-stimulated normal 
and cancer cell lines. The main features of each study 
are summarized in Table 1. Since studies one and three 

Group Study Accession Cell line     Sample          size Illumina platform

N
or

m
al

1 GSE121697 Mesenchymal stromal cells
Control 3

HiSeq 3000
EGF 3

2 GSE156089 Skin-derived epidermal stem cells
Control 3

NovaSeq 6000
EGF 3

3 GSE124586 HTR-8/SVneo cells
Control 2

HiSeq 2000
EGF 2

C
an

ce
r

1 PRJNA322427

MDA468 Breast Cancer
Control 9

HiSeq 2000

EGF 7

PMC42-ET Breast Cancer
Control 8

EGF 8

PMC42-LA Breast Cancer
Control 9

EGF 8

2 GSE40632 HeLa cells
Control 2

HiSeq 2000
EGF 2

3 GSE85089
A549- Lung - KRAS mutation

Control 2

NextSeq 500
EGF 2

HeLa cervix
Control 4

EGF 4

4 GSE94374 HCT116_WT
Control 2

HiSeq 2500
EGF 2

Table 1. Details of RNA-Seq studies. RNA-Seq data of normal and cancer cell lines were analyzed through two 
independent meta-analyses, studies 1 and 3 in the meta-analysis of cancer datasets with three and two subpopulations, 
respectively, treated as different datasets.
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in the meta-analysis of cancer datasets had three and 
two different cell lines as subpopulations, respectively, 
they were considered different datasets. The meta-
analysis of normal datasets contained three studies with 
8 EGF-stimulated and 8 control samples, whereas the 
meta-analysis of cancer datasets comprised four studies 
with seven subpopulations, and 33 EGF-stimulated and 
36 control samples. If the samples of eligible datasets 
had been stimulated only with EGF and not EGF in 
combination with any other chemicals, they were 
allowed to include in the final selection. Figure 1A 
illustrates the workflow of the present study. Any low-
quality bases, adapters, and other Illumina-specific 
sequences were trimmed off the FASTQ data with 
Trimmomatic v0.39. All reads with an average quality 
of less than 20 were dropped. The quality of reads 
was tested before and after trimming with FASTQC 
v0.11.9. The trimmed reads were aligned to the human 
reference genome, GRCh38.101, by HISAT2 v2-2.2.1. 
The aligned sequences were then post-processed with 
SAMtools v1.11. The uniquely overlapped reads with 
GRCh38.101.gtf were counted with HTSeq v0.12.4. 
All preceding analyses were carried out using the Linux 
terminal, Ubuntu 20.04. After pre-filtering low count 
genes, DEGs between EGF- stimulated and control read 
counts were detected in every single RNA-Seq study by 
DESeq2 v1.31.7 package of R software. Meta-analysis 
of normal and cancer count data was independently 
conducted by the metaSeq v1.3.0 package of R. To 
screen statistically significant DEGs in DESeq2 
and metaSeq analyses, p-values < 0.05 adjusted by 
Benjamini- Hochberg false discovery rate (FDR) was 
chosen. Detected DEGs, in this study, can be classified 
into four groups, 1. Three sets of DEGs were obtained 
from the analysis of three RNA-Seq studies of normal 
cell lines, 2. Seven sets of DEGs were identified by 
the analysis of four (with seven subgroups) RNA-
Seq studies of cancer cell lines, 3. One set of DEGs 
was detected by the meta-analysis of three RNA-Seq 
studies of normal cell lines, and 4. One set of DEGs 
was extracted by the meta-analysis of four (with seven 
subgroups) RNA-Seq studies of cancer cell lines. The 
number of common and different DEGs among various 
comparisons of RNA-Seq studies and the meta-analysis 
of RNA-Seq studies were illustrated by Venn diagram, 
VennDiagram v1.6.20 R package, and chord diagram, 
circlize v0.4.12 R package, for the meta-analysis of 
normal and cancer datasets, respectively. Shared DEGs 

between two meta-analyses were also visualized by 
chordDiagram. In addition, the pheatmap v1.0.12 R 
package was used to plot a heatmap, with hierarchical 
clustering, for the top 250 DEGs identified by metaSeq 
in normal and cancer datasets. 

3.2. Constructing PPI Network for DEGs and Detecting 
Densely Interconnected Clusters
Cytoscape v3.8.2 was used for constructing the PPI net-
work. Using stringApp, a Cytoscape app, the network 
of DEGs was imported from Search Tool for the Re-
trieval of Interacting Genes (STRING v11.0b) database 
into Cytoscape. The minimum confidence (score) cut-
off was adjusted to 0.4, Molecular Complex Detection 
plugin (MCODE v2.0.0), a Cytoscape app, was hired to 
identify thickly interlinked areas.

3.3. Enrichment Analysis of DEGs via Enrichr and 
ClueGO and Identifying Hub Genes

Using Enrichr, term and pathway enrichment in GO, 
KEGG and Reactome were inspected, and hub genes 
were identified. The top terms and pathways, based on 
p-value, enriched in biological process (Bp), molecular 
function (Mf), and cellular component (Cc) of GO, and 
KEGG and Reactome were plotted by ggplot2 v3.3.2 R 
package. To get highly accurate results in enrichment 
analysis and hub genes detection, DEGs found in the 
meta-analysis of normal, and cancer datasets were also 
analyzed with ClueGO v2.5.8/CluePedia v1.5.8, a Cy-
toscape app, with FDR ≤ 0.05.

3.4. Validating Higher Expression of Cancer-Associated 
Hub Genes 
To validate the clinical and prognostic reliability of dis-
covered hub genes, GEPIA2 (http://gepia2.cancer-pku.
cn/) was employed. This web server illustrates statis-
tically significant differences in the expression of nor-
mal and tumor samples using The Cancer Genome At-
las (TCGA) and Genotype-Tissue Expression (GTEx) 
databanks. Box plot and Kaplan–Meier survival plots 
(overall survival, OS, and disease free survival, DFS) 
were hired for verifying higher expression of hub genes 
in various cancers stimulated by EGF overexpression 
and recognizing the connection between hub genes ex-
pression levels and prognostic results. The cutoff of |log-
2FC| > 1 and p-value < 0.05 for box plots and median 50-
50 and logrank p-value < 0.05 for survival plots was set. 
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Figure 1. A) Workflow of the current study. Various comparisons of common and different DEGs among different 
groups are summarized for normal cell lines by Venn diagram, in B), and cancer cell lines by chord diagram in C), 
D) Chord diagram illustrates common and different DEGs between two meta-analyses. 

A)

C)

B)

D)

4. Results
In the current study, expression variations of EGF- 
stimulated normal and cancer cell lines were analyzed. 
In the meta-analysis of normal datasets, 7799 upregu-
lated, and only 2 downregulated DEGs (MT-ND6 and 
AC011603.3) were detected. A total of 315 common 
DEGs between all individual RNA-Seq studies and the 
meta-analysis of normal datasets were recognized. Be-
sides, this meta-analysis identified 990 gained DEGs, 
the DEGs that none of the RNA-Seq studies could de-
tect; all gained DEGs were upregulated (Fig. 1B). The 
meta-analysis of cancer datasets identified 3751 DEGs, 
with 541 gained DEGs; all DEGs were upregulated. 
There were no common DEGs between RNA-Seq stud-
ies and the meta-analysis of cancer datasets (Fig. 1C). 
Further DEGs information is detailed in supplementa-
ry Table 1. Statistically significant DEGs were selected 

at FDR < 0.05. Only gained DEGs identified by the me-
ta-analysis of normal and cancer datasets were included 
in all downstream analyses. To cluster comparable ex-
pression patterns, a heatmap of log2-transformed counts 
for the top 250 DEGs, ranked by adjusted p-value and 
identified by metaSeq in the normal and cancer data-
sets, was plotted. Plotting was done with the pheatmap 
R package, based on hierarchical clustering, Euclidean 
distance (Fig. S1A-B).

4.1. Constructing PPI Network of DEGs 
The PPI subnetworks, composed of 127 nodes and 244 
edges, and 149 nodes and 208 edges, for the DEGs de-
tected by the meta-analysis of normal and cancer data-
sets, respectively, were constructed with Cytoscape 
v3.8.2. (Fig. S2A-B). 
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4.2. Identifying Seed Nodes
To detect very interconnected modules in the PPI net-
works of normal and cancer DEGs via MCODE, sig-
nificant-top seven and four clusters, respectively, with 
scores four and more than four were selected (Figs. S3 - 
4). In the normal PPI network, ASB7, AKAP9, LYRM4, 
ATR, OTUD7B, and ATAD1 received the highest score 
in clusters of one, two, three four, six, and seven, re-
spectively. However, RPL10, EXOSC6, and ASPM in 
clusters one, two, and four were the nodes from which 
the clusters originated in the cancer PPI network. The 
calculated scores were 18.758, 11.93, 6.8, 5.545, 5, 4.5, 
and 4 for the normal PPI network, and 11.5, 6, 4, and 4 
for the cancer PPI network. 

4.3. Enrichment Analysis of GO, KEGG, and Reactome 
and Identifying Hub Genes via Enrichr and ClueGO/
CluePedia 
To detect dysregulated hub genes in GO terms and KEGG 
and Reactome pathways, involved in cancer, Enrichr, an ex-
cellent tool with updated libraries, and ClueGO/CluePedia 
were used. The top Bp, Mf, Cc terms of GO, and KEGG 
and Reactome pathways with enriched DEGs in Enrichr 
and ClueGo/CluePedia are detailed in Figure 2, and sup-
plementary Table 2 and Figure 3 A-D, respectively. 

4.4. Finding Common DEGs between Two Meta-Analy-
ses and Common Upregulated DEGs between All RNA-
Seq Datasets and Two Meta-Analyses
By comparing the DEGs identified only by two me-
ta-analyses, 29 DEGs, all of which upregulated, 
were matched (Fig. 1D). These DEGs are as fol-
lows: RAB21, GSS, KIF2A, TOP2B, ATP6V0B, RP-
S3A, INTS8, CEP295, KLHL15, YIF1A, MAPK6, 
HOMER1, SCOC, BTG3, SEC13, OTUD4, RAD1, 
RARS1, NMD3, POMGNT1, PHIP, H1-10, CEP290, 
RESF1, YOD1, FANCM, AC092614.1, NBPF26, and 
SKP1. A total of 12 DEGs, including HSPA5, NSF, 
ATP6V1D, GSS, KNOP1, PRDM4, PFDN1, EIF2B2, 
EMC4, SERPINE2, LETM2, and SMIM29, with up-
regulating expression profiles, between DEGs of two 
meta-analyses and DEGs of all RNA-Seq studies were 
also detected. The 29 and 12 gene sets had the GSS 
gene in common. 

4.5. Validating Higher Expression of Cancer-Associated 
Hub Genes 
With the help of TCGA and GTEx databases, differ-
ential expression analysis of hub genes via boxplot 
function of GEPIA2 validated the higher expression of 
hub genes (DHX33, INTS8, NMD3, OTUD4, P4HB, 

A) B)

Figure 2. The top ten enriched GO terms, and KEGG and Reactome pathways in the meta-analysis of A) normal 
cell lines and B) cancer cell lines obtained by Enrichr. The Gene count represents the number of DEGs included in 
a term or a pathway, Gene ratio = Gene count / the number of DEGs introduced to Enrichr.
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6 Iran. J. Biotechnol. July 2022;20(3): e3245

RPS3A, SEC13, SKP1, USP34, USP9X, and YOD1) 
in tumor samples versus normal ones (Fig. 4). These 
hub genes were identified by enrichment analysis of 
GO, KEGG, and Reactome using Enrichr and ClueGO/
CluePedia. Surprisingly, nearly all hub genes (except 
for USP9X and YOD1) overexpressed in Lymphoid 
Neoplasm Diffuse Large B-cell Lymphoma (DLBC) 
and Thymoma (THYM). Similarly, in Cholangiocar-
cinoma (CHOL), DHX33, INTS8, OTUD4, RPS3A, 
SKP1, and USP34 had higher expression levels, where-
as NMD3, SEC13, SKP1, USP34, USP9X, and YOD1 
upregulated in Pancreatic adenocarcinoma (PAAD). In 
addition, NMD3, P4HB, RPS3A, and SEC13 in Glio-

A) B)

C) D)

Figure 3. Enrichment network of GO terms (A-B) and KEGG and Reactome pathways (C-D) for top DEGs in the 
meta-analysis of normal and cancer cell lines, respectively, by ClueGO/CluePedia app of Cytoscape. Biological 
processes and Reactome are circular in shape, and molecular functions and KEGG are triangular. The color and 
size of nodes represent category and enrichment significance (p-values < 0.05, adjusted by Benjamini- Hochberg). 
Edge width represents the kappa score.

blastoma multiforme (GBM), NMD3, P4HB, RPS3A, 
and SEC13 in Brain Lower Grade Glioma (LGG), and 
DHX33, P4HB, and RPS3A in Testicular Germ Cell 
Tumors (TGCT) highly expressed. In supplementary 
Table 3 relationship between the overexpression of hub 
genes and cancer type is described in detail. In addi-
tion, to evaluate the prognostic and clinical value of 
hub genes, Kaplan–Meier curves (OS and DFS anal-
yses) were plotted. OS function of GEPIA2 according 
to cancer type confirmed that P4HB gene for Bladder 
Urothelial Carcinoma (BLCA), GBM, Kidney renal 
papillary cell carcinoma (KIRP) and LGG, and DHX33, 
NMD3, and SEC13 genes for Skin Cutaneous Melano-

Garousi Sh et al.
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ma (SKCM), PAAD and Sarcoma (SARC), respective-
ly, are reliable prognostic biomarkers, and those genes 
can identify patients with significantly worse survival 
(Fig. 5). DFS analysis also demonstrated that the over-
expression of the P4HB gene in BLCA, GBM, Kidney 
renal clear cell carcinoma (KIRC), KIRP and LGG, and 
NMD3, SEC13, and YOD1 genes in PAAD, SARC, 
and PADD, respectively, were significantly connected 
to poorer survival (Fig. S5). 

5. Discussion
In the present study, protein K48-linked deubiquitina-
tion (GO:0071108) term of Bp enriched in Enrichr and 
ClueGO. When the systems regulating ubiquitination are 
impaired, associated biological processes change, and 
life-threatening illnesses, especially cancer, manifest (9). 

Figure 4. Overexpression validation of hub genes in tumor samples A) DHX33, B) NMD3, C) OTUD4, 
D) RPS3A, E) SEC13, F) USP9X, G) INTS8, H) UPS34, I) SKP1, J) YOD1, and K) P4HB.

K48-linked polyubiquitin chains target ubiquitinated 
proteins for proteasomal degradation, and they mass 
where DNA has been damaged for degrading react-
ing proteins to damage (10). The results of Enrichr 
and ClueGO revealed that the two meta-analyses had 
OTUD4 and YOD1 DEGs in common. OTUD4, encod-
ing a specific DUB to K48, seems to frustrate protea-
somal degradation proteins that repair DNA. OTUD4 
overexpression profoundly influences many tumor 
types such as breast and glioblastoma through the 
transforming growth factor-β (TGFβ) pathway (11). It 
was reported that OTUD4 overexpression suppressed 
motility, invasion, and overproduction of breast, liver, 
and lung cancer in apoptosis/AKT signaling pathway, 
and so it could be used as a biomarker for many can-
cers (12). 

Garousi Sh et al.
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Figure 5. Overall survival (OS) analysis during hub genes overexpression. OS analysis of A) DHX3 in 
SKCM, B) NMD3 in PAAD, C) P4HB in BLCA, D) P4HB in GBM, E) P4HB in KIRP, F) P4HB in LGG, 
and G) SEC13 in SARC. OS in patients with hub genes overexpression is statistically poor. 

YOD1 is a DUB of the ovarian tumor family (13). 
YOD1 binds to miR-4429 and improves ovarian cancer 
and cancer cells motility (14). In search of valid miR-
NA biomarkers for discriminating prostate cancer from 
benign prostatic hyperplasia, miR-93 and miR-375 
were found suitable; they signifi cantly targeted YOD1 
and fi ve other genes (15).  
Concerning protein K48-linked deubiquitination 
(GO:0071108) term, except for OTUD4 and YOD1, 
only USP34 by Enrichr and USP34 and USP9X by 
ClueGO were found to be differentially expressed in 
the cancer datasets. If USPs undergo genetic modifi ca-
tion or malfunction, in many cases cause cancer. USPs 
are also believed to be connected with p53 regulation in 
carcinogenesis (16).
USP9X reduction or inhibition causes the gathering 
of centrosomal MARCH7, K48/K63 ubiquitination of 
NPHP5, protein degradation, and deprivation of cilia, 
the microtubule-based protrusions. This deprivation is 
responsible for numerous cancers (17). USP9X also 
improves cell growth of high-grade glioma by β-caten-
in K48-linked deubiquitination (18). 

Searching common DEGs in two meta-analyses in-
volved in ncRNA processing (GO:0034470) in Enrichr 
eventuated in fi nding RPS3A and INTS8.
INTS8 is a constituent of the RNA polymerase II-medi-
ated transcription machinery. The dysfunctional INTS8 
is the root of many cancers. Investigating 31 different 
tumors showed a high mutation in INTS8 (19). In search 
of accurate biomarkers for the timely diagnosis of gas-
tric cancer, INTS8 was found to be reliable (20). To fi nd 
biomarkers associated with the Barcelona Clinic Liver 
Cancer (BCLC) staging and hepatocellular carcinoma 
(HCC) in a study, INTS8 under-expression prolonged 
overall survival (21). There are also reports of the neu-
ro-development fault and UsnRNA abnormal process-
ing due to mutated INTS8 (22).
RPS3A expression, with boosting NF-κB signaling, in-
tensifi es HBx liquefying and develops HCC (23). 
Surveying DEGs involved in the term of ribosomal 
large subunit binding (GO:0043023) in the molec-
ular function in Enrichr indicated the enrichment 
of DHX33 and NMD3 in the meta-analysis of can-
cer datasets, sharing the latter DEG with the me-

Garousi Sh et al.
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ta-analysis of normal datasets. 
The NMD3, in a study, was discovered to be impli-
cated in resistance to breast anti-cancer drugs. It was 
reported that under-expression and overexpression of 
both NMD3 and 4F2 cell-surface antigen heavy chain 
(SLC3A2) took place in apoptotic signaling pathway 
and cell redox homeostasis in McF-7 breast cancer 
cells, respectively (24). 
Apart from regulating cell growth and proliferation, the 
DHX33 boosts the initiation of mRNA translation, as 
its decreased levels inhibit mRNA translation (25). In 
addition, the nucleus and cytosol localizing of DHX33 
in various cancer cell lines have been reported. What 
is more, DHX33 strongly induces tumorigenesis as its 
overexpressed level was observed in Ras-mutated hu-
man lung cancer cell lines (26). DHX33 also lifts can-
cer cell movement (27). It has been shown that DHX33 
cooperates with the AP-2 transcription factor incites 
Bcl-2 gene expression and survives cancer cells (28). 
Overexpressing DHX33 in human Glioblastoma Multi-
forme and preserving movement and multiplying glio-
blastoma cells is also reported (29). Additionally, it has 
been discovered that DHX33 regulates vital genes in-
cluded in the cell cycle, apoptosis, and movement, and 
improves colon cancer (30). Cancer cells trigger cells to 
proliferate via stimulating deregulated genes involved 
in glycolysis. DHX33 promotes these genes through 
the Warburg effect (31). 
Analyzing protein processing in endoplasmic reticu-
lum term in KEGG pathway in Enrichr and ClueGO 
revealed SEC13, SKP1, and YOD1 upregulation in 
both meta-analyses, and P4HB in the meta-analysis of 
cancer datasets.
A high expression of SKP1 in non-small cell lung tu-
mors, leading to late diagnosis, was reported (32). So 
to cure cancer with the conventional drugs, SKP1 is tar-
geted. Research on colorectal cancer (CRC) stem cells 
(CRC-SCs) disclosed SKP1 overexpression in CRC-
SCs with a poor diagnosis (33). 
SEC13 involvement in cancer has been reported. With 
implicating in the signaling cascade of transforming 
growth factor-β (TGF-β), SEC13 involvement in car-
cinogenesis is believed. To detect upregulated genes in 
gastric adenocarcinoma, suppression subtractive hybrid-
ization was applied on this cancer tissue, and eight over-
expressed genes, including SEC13, were screened (6). 
P4HB is connected to many cancers. This chaperon 
collaborates in a handful of enzymatic activities in the 

endoplasmic reticulum (34). Based on a report, abnor-
mally expressed P4HB managed to deteriorate glio-
ma cancer phenotypically. In addition, overexpressed 
P4HB enforced cancer attributes such as developed 
tumorigenesis, migration, invasion through the MAPK 
signaling pathway (35). Similarly, P4HB was intro-
duced as a biomarker for diffuse gliomas (35). Western 
blot analysis has also confirmed P4HB overexpression 
in bladder carcinoma (36). In a report, by using western 
blot, RT-qPCR, and bioinformatics analyses, high ex-
pression of P4HB in bladder cancer with feeble overall 
survival was also shown (37)

6. Conclusion
Finding reliable cancer-associated biomarkers for the 
timely diagnosis of cancers is of paramount impor-
tance. EGF, modulating many crucial processes in the 
human body, when upregulates can cause cancer. The 
present study by conducting two meta-analyses detect-
ed DEGs, biological processes, molecular functions, 
and pathways malfunction by EGF-stimulation. Using 
Enrichr and ClueGO, DEGs involvement in specific 
GO terms and pathways were clarified. The hub genes 
(OTUD4, YOD1, USP34, USP9X, RPS3A, INTS8, 
SEC13, SKP1, and P4HB), which their overexpression 
by EGF-stimulation was confirmed by conducting two 
meta-analyses, showed to participate fully in tumori-
genesis. 
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