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Understanding the neural basis of the remarkable human cognitive capacity to learn
novel concepts from just one or a few sensory experiences constitutes a fundamen-
tal problem. We propose a simple, biologically plausible, mathematically tractable,
and computationally powerful neural mechanism for few-shot learning of naturalistic
concepts. We posit that the concepts that can be learned from few examples are
defined by tightly circumscribed manifolds in the neural firing-rate space of higher-
order sensory areas. We further posit that a single plastic downstream readout neuron
learns to discriminate new concepts based on few examples using a simple plasticity
rule. We demonstrate the computational power of our proposal by showing that it can
achieve high few-shot learning accuracy on natural visual concepts using both macaque
inferotemporal cortex representations and deep neural network (DNN) models of these
representations and can even learn novel visual concepts specified only through linguistic
descriptors. Moreover, we develop a mathematical theory of few-shot learning that
links neurophysiology to predictions about behavioral outcomes by delineating several
fundamental and measurable geometric properties of neural representations that can
accurately predict the few-shot learning performance of naturalistic concepts across
all our numerical simulations. This theory reveals, for instance, that high-dimensional
manifolds enhance the ability to learn new concepts from few examples. Intriguingly,
we observe striking mismatches between the geometry of manifolds in the primate
visual pathway and in trained DNNs. We discuss testable predictions of our theory for
psychophysics and neurophysiological experiments.
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A hallmark of human intelligence is the remarkable ability to rapidly learn new concepts.
Humans can effortlessly learn new visual concepts from only one or a few visual examples
(1–4). Several studies have revealed the ability of humans to classify novel visual concepts
with 90 to 95% accuracy, even after only a few exposures (5–7). We can even acquire
visual concepts without any visual examples, by relying on cross-modal transfer from
language descriptions to vision. The theoretical basis for how neural circuits can mediate
this remarkable capacity for “few-shot” learning of general concepts remains mysterious,
despite many years of research in concept learning across philosophy, psychology, and
neuroscience (8–12).

Theories of human concept learning are at least as old as Aristotle, who proposed that
concepts are represented in the mind by a set of strict definitions (13). Modern cognitive
theories propose that concepts are mentally represented instead by a set of features, learned
by exposure to examples of the concept. Two such foundational theories include prototype
learning, which posits that features of previously encountered examples are averaged
into a set of “prototypical” features (14), and exemplar learning, which posits that the
features of all previously encountered examples are simply stored in memory (8). However,
neither theory suggests how these features might be represented in the brain. In laboratory
experiments, these features are either constructed by hand by generating synthetic stimuli
that vary along a predefined set of latent features (15, 16) or are indirectly inferred from
human similarity judgements (17–19).

In this work, we introduce a theory of concept learning in neural circuits based on
the hypothesis that the concepts we can learn from a few examples are defined by tight
geometric regions in the space of high-dimensional neural population representations
in higher-level sensory brain areas. Indeed, in the case of vision, decades of research
have revealed a series of representations of visual stimuli in neural population responses
along the ventral visual pathway, including V1, V2, and V4, culminating in a rich object
representation in the inferotemporal (IT) cortex (20–22), allowing a putative downstream
neuron to infer the identity of an object based on the pattern of IT activity it elicits
(23, 24).
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We also hypothesize that sensory representations in IT, ac-
quired through a lifetime of experience, are sufficient to en-
able rapid learning of novel visual concepts based on just a few
examples, without any further plasticity in the representations
themselves, by a downstream population of neurons with afferent
plastic synapses that integrate a subset of nonplastic IT neural
responses.

Our approach is corroborated by recent work demonstrating
that artificial deep neural networks (DNNs) pretrained on a
diverse array of concepts can be taught to classify new concepts
from few examples by simply training linear readouts of their
hidden unit representations (25–27). To understand this, we
address the questions: What makes a representation good for
rapidly learning novel concepts? And does the brain contain
such representations? We introduce a mathematical theory, which
reveals that few-shot learning performance is governed by four
simple and readily measurable geometric quantities. We test our
theory using neurophysiological recordings in macaques, as well as
representations extracted from DNN models of the primate visual
hierarchy, which have been shown to predict neural population
responses in V1, V4, and IT (28, 29), the similarity structure
of object representations in IT (30), and human performance at
categorizing familiar objects (19, 31). We find that in both DNNs
and the primate visual hierarchy, neural activity patterns undergo
orchestrated geometric transformations so that few-shot learning
performance increases from each layer to the next and from the
retina to V1 to V4 to IT. Intriguingly, despite these common
patterns in performance, our theory reveals fundamental differ-
ences in neural geometry between primate and DNN hierarchies,
thereby providing key targets for improving models.

We further leverage our theory to investigate neurally plausible
models of multimodal concept learning, allowing neural represen-
tations of linguistic descriptors to inform the visual system about
visually novel concepts. Our theory also reveals that long-held

intuitions and results about the relative performance of prototype
and exemplar learning are completely reversed when moving from
low-dimensional concepts with many examples, characteristic of
most laboratory settings, to high-dimensional naturalistic con-
cepts with very few examples. Finally, we make testable predictions
not only about overall performance levels, but, more importantly,
about salient patterns of errors, as a function of neural population
geometry, that can reveal insights into the specific strategies used
by humans and nonhuman primates in concept learning.

Results

A. Accurate Few-Shot Learning with Nonplastic Representa-
tions. To investigate how the geometry of neural representations
affects few-shot learning performance, we obtain neural represen-
tations from a DNN that has been shown to be a good model
of object representations in IT cortex (32) (Fig. 1, ResNet50;
Section N). The DNN is trained to classify 1,000 naturalistic
visual concepts from the ImageNet1k dataset (e.g., “bee” and
“acorn”). To study novel-concept learning, we select a set of
1,000 new visual concepts, never seen during training, from
the ImageNet21k dataset (e.g., “coati” and “numbat”; Fig. 1A;
Section J). We examine the ability to learn to discriminate each
pair of new concepts, given only a few training images, by learning
to classify the activity patterns these training images elicit across
IT-like neurons in the feature layer of the DNN (Fig. 1B). Many
decision rules are possible, but we find that in the few-shot
regime, typical choices perform no better than a particularly sim-
ple, biologically plausible classification rule: prototype learning
(Section H). Prototype learning is performed by averaging the
activity patterns elicited by the training examples into concept
prototypes, x̄a , x̄ b (Fig. 1B). A test image is then classified by
comparing the activity pattern it elicits to each of the prototypes
and identifying it with the closest prototype. This classification
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Fig. 1. Concept-learning framework and model performance. (A) Example four-shot learning task: Does the test image in the gray box contain a “coati” (blue)
or a “numbat” (green), given four training examples of each? (B) Each training example is presented to the ventral visual pathway (Upper), modeled by a
trained DNN (Lower), eliciting a pattern of activity across IT-like neurons in the feature layer. We model concept learning as learning a linear readout w to
classify these activity patterns, which can be thought of as points in a high-dimensional activity space (open circles, Right). In the case of prototype learning,
activity patterns are averaged into prototypes x̄a, x̄b (filled circles), and w is pointed along the difference between the prototypes w = x̄a − x̄b, passing through
their midpoint. To evaluate generalization accuracy, we present a test image and determine whether its neural representation (gray open circle) is correctly
classified. (C) Generalization accuracy is very high across 1,000 × 999 pairs of novel visual concepts from the ImageNet21k dataset (orange). In comparison, test
accuracy is poor when using a randomly initialized DNN (blue) or when learning a linear classifier in the pixel space of input images (gray). (D) Test accuracy on
novel concepts (dark orange) is only slightly lower than test accuracy on familiar concepts seen during training (light orange). (E) Performance on the object-
recognition task used to train DNNs correlates with their ability to generalize to novel concepts, given few examples (r = 0.92, P < 1 × 10−4), across a variety
of DNN architectures. (F) Different DNN architectures are consistent in the pattern of errors they make across the 1,000 × 999 novel concepts (P < 1 × 10−10).
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rule can be performed by a single downstream neuron that adjusts
its synaptic weights so that its weight vector w points along
the difference between the prototypes, w = x̄a − x̄ b (Fig. 1B).
Despite its simplicity, prototype learning has been shown to
achieve good few-shot learning performance (33), and we find that
on our evaluation set of 1,000 novel concepts from the ImageNet
dataset, it achieves an average test accuracy of 98.6% given only 5
training images of each concept (Fig. 1C ), only slightly lower than
the accuracy obtained by prototype learning on the same 1,000
familiar concepts that were used to train the DNN (Fig. 1D).
When only one training example of each concept is provided
(one-shot learning), prototype learning achieves a test accuracy of
92.0%. In contrast, the performance of prototype learning applied
to representations in the retina-like pixel layer to the feature layer
of an untrained, randomly initialized DNN is around 50 to 65%
(Fig. 1C ), indicating that the neural representations learned over
the course of training the DNN to classify 1,000 concepts are
powerful enough to facilitate highly accurate few-shot learning
of novel concepts, without any further plasticity. Consistent with
this, we find that DNNs that perform better on the ImageNet1k
classification task also perform better at few-shot learning of novel
concepts (Fig. 1E).

For a finer-resolution analysis, we examine the pattern of errors
each model makes across all pairs of novel concepts. We find
that different models are consistent in which novel concepts they
find easy/hard to learn (Fig. 1F ; P < 1× 10−10; chance is zero),
although the consistency is noticeably lower for older architectures
(e.g., Alexnet or VGG). We also observe that good few-shot

learning performance does not require pretraining on a large
dataset of labeled examples, as models trained in a self-supervised
or unsupervised [e.g., SimCLR (34) or CLIP (27)] manner also
achieve high performance (Fig. 1E), are consistent in the patterns
of errors they make (Fig. 1F ), and exhibit similar representa-
tional geometry (SI Appendix, Fig. 5). Intriguingly, across models
tested, the few-shot learning-error patterns reveal a pronounced
asymmetry on many pairs of concepts (SI Appendix, section 7).
For instance, models may be much more likely to classify a test
example of a “coati” as a “numbat” than a “numbat” as a “coati”
(SI Appendix, Fig. 1). Importantly, this asymmetry is not only a
feature of prototype learning; diverse decision rules (e.g., exemplar
learning or support vector machines) exhibit similar asymmetry in
the few-shot regime (SI Appendix, Fig. 10).

These results raise several fundamental theoretical questions.
Why does a DNN trained on an image-classification task also
perform so well on few-shot learning? What properties of the
derived neural representations empower high few-shot learning
performance? Furthermore, why are some concepts easier than
others to learn (Fig. 1C ), and why is the pairwise classification er-
ror asymmetric (SI Appendix, Fig. 1)? We answer these questions
by introducing an analytical theory that predicts the generalization
error of prototype learning, based on the geometry of neural
population responses.

B. A Geometric Theory of Prototype Learning. Patterns of
activity evoked by examples of any particular concept define
a concept manifold (Fig. 2). Although their shapes are likely
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Fig. 2. Geometry of few-shot learning. Patterns of activity evoked by examples of each concept define a concept manifold, which we approximate as a high-
dimensional ellipsoid. The generalization error (red hashed area) of a prototype classifier w is governed by four geometric properties of these manifolds (Eq. 1),
shown schematically in A–D. (A) Signal refers to the pairwise separation between concept manifolds, ‖Δx0‖2. Manifolds that are better separated are more
easily discriminated by a linear classifier (gray hyperplane) given few training examples (open circles). (B) Bias: As the radius of one manifold grows relative to
the other, the decision hyperplane shifts toward the manifold with the larger radius. Hence, the generalization error on the larger manifold increases, while
the error on the smaller manifold decreases. Although the tilt of the decision hyperplane relative to the signal direction averages out over different draws
of the training examples, this bias does not. (C) Dimension: In high dimensions, the projection of each concept manifold onto the linear readout direction w
concentrates around its mean. Hence, high-dimensional manifolds are easier to discriminate by a linear readout. (D) Signal–noise overlap: Pairs of manifolds
whose noise directions ui overlap significantly with the signal direction Δx0 have higher generalization error. Even in the limit of infinite training examples,
m → ∞, the prototype classifier (dark gray) cannot overcome signal–noise overlaps, as it has access only to the manifold centroids. An optimal linear classifier
(light gray), in contrast, can overcome signal–noise overlaps using knowledge of the variability around the manifold centroids. (E–H) Behavior of generalization
error (with m = 1, 2, 5, ∞) in relation to each geometric quantity in A–D. Theoretical predictions are shown as dark lines, and few-shot learning experiments on
synthetic ellipsoidal manifolds are shown as points. (F) When bias is large and negative, generalization error can be greater than chance (0.5). (G) Generalization
error decreases when manifold variability is spread across more dimensions. (H) In the presence of signal–noise overlaps, generalization error remains nonzero,
even for arbitrarily large m. Details on simulation parameters are given in Section M.
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complex, we find that when concept manifolds are high-
dimensional, the generalization error of prototype learning can
be accurately predicted based only on each manifold’s centroid,
x0, and radii, Ri , along a set of orthonormal basis directions
u i , i = 1, . . . ,N (SI Appendix, section 3), capturing the extent
of natural variation of examples belonging to the same concept.
A useful measure of the overall size of these variations is the mean
squared radius R2 ≡ 1

N

∑N
i=1 R

2
i .

Our theory of prototype learning to discriminate pairs of new
concepts (a, b) predicts that the average error of m-shot learning
on test examples of concept a is given by εa = H (SNRa), where
H (·) is the Gaussian tail function H (x ) =

∫∞
x

dt e−t2/2/
√
2π

(SI Appendix, section 3C). The quantity SNRa is the signal-to-
noise ratio (SNR) for manifold a , whose dominant terms are
given by,

SNRa =
1

2

‖Δx0‖2 + (R2
bR

−2
a − 1)/m√

D−1
a /m + ‖Δx0 ·U b‖2/m + ‖Δx0 ·U a‖2

.

[1]
A full expression and derivation are given in SI Appendix,

section 3C. The SNR depends on four interpretable geometric
properties, depicted schematically in Fig. 2 A–D. Their effect on
the generalization error is shown in Fig. 2 E–H. The generalization
error for tasks involving discriminating more than two novel con-
cepts, derived in SI Appendix, section 3D, is governed by the same
geometric properties. We now explain each of these properties.

1. Signal. ‖Δx0‖2 ≡ ‖xa
0 − xb

0 ‖2/R2
a represents the pairwise

distance between the manifolds’ centroids, x0a and x0
b , nor-

malized by R2
a (Fig. 2A). As the pairwise distance between

manifolds increases, they become easier to separate, leading to
higher SNR and lower error (Fig. 2E). We denote ‖Δx0‖2 as
the signal and Δx0 as the signal direction.

2. Bias. R2
bR

−2
a − 1 represents the average bias of the linear

classifier (Fig. 2B). Importantly, when manifold a is larger than
manifold b, the bias term is negative, predicting a lower SNR
for manifold a . This asymmetry results from the fact that the
classification hyperplane is biased toward the larger manifold
(Fig. 2F ) and causes the asymmetry in generalization error
observed above (Section A). This bias is unique to few-shot
learning. As can be seen in Eq. 1, its effect on SNR diminishes
for large numbers of training examples m .

3. Dimension. In our theory, Da ≡ (R2
a)

2/
∑N

i=1(R
a
i )

4,
known as the “participation ratio” (35), quantifies the number
of dimensions along which the concept manifold varies
significantly, which is often much smaller than the number
of neurons, N (Section L). Previous works have shown that
low-dimensional manifolds have desirable properties for object
recognition, allowing a greater number of familiar object
to be perfectly classified (36, 37) and conferring robustness
(38). Intriguingly, Eq. 1 reveals that for few-shot learning,
high-dimensional manifolds are preferred. This enhanced
performance is due to the fact that few-shot learning involves
comparing a test example to the training examples of each
novel concept. In low dimensions, the distance from the test
example to each of the training examples varies significantly,
contributing a noise term to the SNR. But in high dimensions,
these distances concentrate around their typical value, and,
hence, the noise term is suppressed as D−1

a . Note that this
benefit of high-dimensional representations is unique to few-
shot learning, since the noise term can also be suppressed by
averaging over many training examples (by a factor of 1/m ;
Eq. 1).

4 Signal–noise overlap. ‖Δx0 ·U a‖2 and ‖Δx0 ·U b‖2
quantify the overlap between the signal direction Δx0 and the
manifold axes of variation U a ≡ [ua

1 R
a
1 , . . . ,u

a
NRa

N ]/
√

R2
a

and U b ≡ [ub
1 R

b
1 , . . . ,u

b
NRb

N ]/
√

R2
b (see Fig. 2D and

Section L for details). Generalization error increases as the
overlap between the signal and noise directions increases
(Fig. 2H ). We note that signal–noise overlaps decrease as the
dimensionality Da increases.

Effect of number of training examples. As the number of training
examples,m , increases, the prototypes more closely match the true
manifold centroids; hence, the bias and the first two noise terms in
Eq. 1 decay as 1/m . However, the last noise term, ‖Δx0 ·Ua‖2,
does not vanish, even when the centroids are perfectly estimated,
as it originates from variability in the test examples along the signal
direction (Fig. 2H ; m =∞). Thus, in the limit of a large number
of examplesm , the generalization error does not vanish, even if the
manifolds are linearly separable. The SNR instead approaches the
finite limit SNRa(m →∞) = 1

2‖Δx0‖2/‖Δx0 ·Ua‖2, high-
lighting the failure of prototype learning at large-m compared to
an optimal linear classifier (Fig. 2D). However, in the few-shot
(small-m) regime, prototype learning is close to the optimal linear
classifier (Section H).

To evaluate our theory, we perform prototype learning ex-
periments on synthetic concept manifolds, constructed as high-
dimensional ellipsoids. We find good agreement between theory
and experiment for the dependence of generalization error on each
of the four geometric quantities and on the number of examples
(see Fig. 2 E–H and Section M for details).

C. Geometric Theory Predicts the Error of Few-Shot Learning in
DNNs. We next test whether our geometric theory accurately pre-
dicts few-shot learning performance on naturalistic visual concept
manifolds, using the neural representations derived from DNNs
studied in Section A. For each pair of concept manifolds, we
estimate the four geometric quantities defined above (Section K)
and predict generalization error via Eq. 1, finding excellent agree-
ment between theory and numerical simulations (Fig. 3A and
SI Appendix, Fig. 3), despite the obviously complex shape of these
manifolds.

Our theory further allows us to dissect the specific contribution
of each of the four geometric properties of the concept manifolds
to the SNR, elucidating whether errors arise from small signal,
negative bias, low dimension, or large signal–noise overlap. We
dissect the contributions of signal and bias in Fig. 3B and the
contributions of dimension and signal–noise overlap in Fig. 3C,
along with specific illustrative examples highlighting, for instance,
the strong asymmetry of few-shot learning (e.g., “Prairie gentian”
vs. “Plumbago”).

DNNs perform complex nonlinear transformations to map im-
ages from the retina-like pixel layer to the feature layer. In Fig. 3D,
we examine the effect these transformations have on SNR, signal,
dimension, and signal–noise overlap for each pair of concepts.
We find that almost all concepts become better-separated (i.e.,
higher signal), higher-dimensional, and more orthogonal (i.e.,
lower signal–noise overlap) as they are mapped from the pixel
layer to the feature layer. In the following section, we study the
evolution of these geometric features along the layers of DNNs.

One might suspect that because the DNN was explicitly op-
timized to map the 1,000 concepts on which it was trained
to linearly separable regions in feature space, the geometry of
these 1,000 trained concepts would differ substantially from the
geometry of the 1,000 novel concepts we study in this work.
Nevertheless, although the signal is slightly higher for trained
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Fig. 3. Geometric theory predicts the generalization error of few-shot learning in DNNs. (A) We compare the predictions of our theory to the few-shot
learning experiments performed in Fig. 1. Each panel plots the generalization error of one novel visual concept (e.g., “laughing gull”) against all 999 other
novel visual concepts (e.g., “black-backed gull” or “pepperoni pizza”). Each point represents the average generalization error on one such pair of concepts. x axis:
SNR (Eq. 1) obtained by estimating neural manifold geometry. y axis: Empirical generalization error measured in few-shot learning experiments. Theoretical
prediction (dashed line) shows a good match with experiments. Error bars, computed over many draws of the training and test examples, are smaller than the
symbol size. We annotate each panel with specific examples of novel concept pairs, indicating their generalization error. Additional examples are included in
SI Appendix, Fig. 3. (B) Signal terms: We dissect the generalization accuracy on each pair of novel concepts into differential contributions from the signal and
bias (Eq. 1). We plot each pair of visual concepts in the resulting signal–bias plane, where both signal and bias are normalized by the noise so that one-shot
learning accuracy (color, dark to light) varies smoothly across the plot. Specific examples of concept pairs are included to highlight the behavior of generalization
accuracy with respect to each quantity. For example, the pair “Purple finch” vs. “Goldfinch” has a large signal and a bias close to zero and, hence, a very high
one-shot accuracy (98%). The pair “African violet” vs. “Oxeye daisy”, in contrast, has a large signal, but a large negative bias; hence, its accuracy is lower (93%).
Pairs with large negative bias and small signal may have very asymmetric generalization accuracy. For instance, “Prairie gentian” vs. “Plumbago” has an accuracy
of 87%, while “Plumbago” vs. “Prairie gentian” has an accuracy of 44%. For each pair of concepts, test examples are drawn from the upper left concept in blue.
(C) Noise terms: We dissect the contributions of dimensionality and signal–noise overlap to generalization error. Because the variability of the signal terms is
much larger than that of the noise terms, we include only pairs of concepts whose signal falls within a narrow range, so that we can visually assess whether
one-shot accuracy (color, dark to light) is due to large dimensionality, small signal–noise overlaps, or both. (D) We compare histograms of SNR, signal, dimension,
and signal–noise overlap across all pairs of novel concepts in the retina-like pixel layer (gray) to those in the feature layer (pink, “heldout”), revealing dramatic
changes in manifold geometry empowering high few-shot learning performance. We further compare to the geometry of the 1,000 concepts used to train the
network (blue histograms, “trained”), indicating that the geometry of trained and heldout concepts is largely similar.

concepts and the signal–noise overlaps slightly lower (Fig. 3D),
the geometry is largely similar between trained and novel con-
cepts, indicating that training on 1,000 concepts has furnished
the DNN with a fairly general-purpose feature extractor. We
show that novel-concept learning performance improves consis-
tently as the number of concepts seen during training increases,
due to smooth changes in manifold geometry in SI Appendix,
Fig. 7.

Finally, we find that the geometry of concept manifolds in the
DNN encodes a rich semantic structure, including a hierarchical
organization, which reflects the hierarchical organization of
visual concepts in the ImageNet dataset (SI Appendix, section 7).
We examine the relationship between semantic structure and
geometry in SI Appendix, Fig. 1 and provide examples of

concepts with small and large manifold dimension and radius
in SI Appendix, Fig. 8.

D. Concept Learning along the Visual Hierarchy. How the ven-
tral visual hierarchy converts low-level retinal representations into
higher-level IT representations useful for downstream tasks con-
stitutes a fundamental question in neuroscience. We first examine
this transformation in models of the ventral visual hierarchy and,
in the next section, compare it to the macaque hierarchy. Our
theory enables us to not only investigate the performance of
few-shot concept learning along successive layers of the visual
hierarchy, but also obtain a finer-resolution decomposition of
this performance into the geometric properties of the concept
manifolds in each layer.
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Fig. 4. Few-shot learning improves along the layers of a trained DNN, due to orchestrated transformations of concept manifold geometry. Each panel shows
the layerwise behavior of one quantity in three different trained DNNs, as well as an untrained ResNet50 (gray). Lines and markers indicate mean value over
100 × 99 pairs of objects; surrounding shaded regions indicate 95% CIs (often smaller than the symbol size). (A) Few-shot generalization error decreases roughly
monotonically along the layers of each trained DNN. (B) Signal is roughly constant across the early layers of the trained network and increases sharply in the
later layers of the DNN. (C) Dimension grows dramatically in the early layers of the network and shrinks again in the late layers of network. (D) Signal–noise
overlap decreases from pixel layer to feature layer, first decreasing sharply in the early layers of the network and then increasing slightly in the later layers of
the network.

We find that, across a range of networks, the ability to learn
novel concepts from few examples improves consistently along
the layers of the network (Fig. 4A). In the last few layers of
the network, the improvement in performance is due to a sharp
increase in the signal (pairwise separability) of concept manifolds
(Fig. 4B). In the earlier layers, the improvement in performance is
due to a massive expansion in manifold dimensionality (Fig. 4C )
and a suppression of signal–noise overlaps (Fig. 4D). We note that
as the signal increases in the last few layers of the network, the
dimensionality drops back down, and the signal–noise overlaps
increase, perhaps reflecting a tradeoff between pairwise separa-
bility of manifolds and their dimensionality. Nonmonotonicity
of dimension has also been observed by using capacity-related
measures of dimension (36) and nonlinear measure of intrinsic di-
mensionality (39, 40). Interestingly, Fig. 4 indicates that ResNets
exhibit long stretches of layers with apparently little to no change
in manifold geometry.

E. Concept Learning Using Primate Neural Representations.
We next turn to the primate visual hierarchy and investigate
the geometry of concept manifolds obtained via recordings of
macaque V4 and IT in response to 64 synthetic visual concepts,
designed to mimic naturalistic stimuli (24). The results in Fig. 5A
show that our geometric theory is able to correctly predict the
generalization error of few-shot learning simulations using the
activation patterns of real neurons in the V4 and IT cortex of
behaving animals. Furthermore, prototype learning achieves an
average five-shot accuracy of 84% across all 64× 63 pairs of visual
concepts; slightly better than the performance achieved by the
AlexNet DNN (80%) on the same set of visual concepts and worse
than ResNet50 (93%), consistent with previous experiments on
object-recognition performance in primates (24). We predict that
performance based on IT neurons will improve when evaluated
on more naturalistic visual stimuli than the grayscale, synthetic
images used here (as suggested by the increased performance of
DNNs, e.g., from 80 to 94% for AlexNet when using novel
stimuli from ImageNet). Beyond overall performance, we find that
the error patterns in IT and DNNs are consistent (Fig. 5 B and C ;
P < 1× 10−10), all exhibiting a prominent block diagonal struc-
ture, reflecting the semantic structure of the visual concepts (24).

How does concept manifold geometry evolve along the vi-
sual hierarchy? We compute the SNR in IT, V4, and a simu-
lated population of V1-like neurons (Section O) and find that

few-shot learning performance increases along the visual hierarchy
from just above chance in the pixel layer and V1 to 69% in
V4 and 84% in IT, approximately matching the corresponding
layers in trained DNNs that are most predictive of each cortical
area under the BrainScore metric (32) (Fig. 5D). Despite this
similarity, when we decompose the SNR into its finer-grained
geometric components, we find a striking mismatch between
visual cortex and trained DNNs. In particular, while manifold
dimensionality in DNNs undergoes a massive expansion in the
early to intermediate layers, reaching its maximum in the layer
most predictive of V4 (32), dimensionality in the visual hierarchy
reaches its minimum in V4 (Fig. 5 D, Upper Right). A similar
mismatch can be observed for signal–noise overlaps (Fig. 5 D,
Lower Right). To ensure that this mismatch is not simply due
to our choice to measure dimensionality using the participation
ratio, we repeated these analyses using nonlinear methods for
estimating intrinsic dimensionality and found consistent results
(SI Appendix, Fig. 4). The lower dimensionality and larger signal–
noise overlaps in V4 compared to DNNs are compensated by an
enhanced signal (Fig. 5 D, Lower Left), so that overall performance
is similar, despite these differences in representational geometry.

F. How Many Neurons Are Required for Concept Learning?.
Until now, we have assumed that a downstream cortical neuron
has access to the entire neural representation. Can a more realistic
neuron, which only receives inputs from a small fraction of IT-like
neurons, still perform accurate few-shot learning? Similarly, can a
neuroscientist who only records a few hundred neurons reliably
estimate the geometry of concept manifolds (as we have attempted
above)?

Here, we answer these questions by drawing on the theory of
random projections (41–43) to estimate the effect of subsampling
a small number of M neurons (see SI Appendix, section 5 for de-
tails). We find that subsampling causes distortions in the manifold
geometry that decrease both the SNR and the estimated dimen-
sionality, as a function of the number of recorded neurons M ,

SNR(M ) =
SNR∞√

1 +D∞/M
, D−1(M ) =D−1

∞ +M−1, [2]

where SNR∞ and D∞ are the asymptotic SNR and dimen-
sionality, given access to arbitrarily many neurons (SI Appendix,
section 5). However, these distortions are negligible when M is
large compared to the asymptotic dimensionality D∞. Indeed,
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Fig. 5. Concept learning and manifold geometry in macaque IT. (A) Five-shot prototype learning experiments performed on neural population responses of
168 recorded neurons in IT (24). Each panel shows the generalization error of one visual concept (e.g., “bear”) against all 63 other visual concepts (e.g., “cow”
or “dog”). Each point represents the average generalization error on one such pair of concepts. x axis: SNR (Eq. 1) obtained by estimating manifold geometry. y
axis: Empirical generalization error measured in few-shot learning experiments. The result shows a good fit to the theory (dashed line). Error bars, computed
over many draws of the training and test examples, are smaller than the symbol size. (B) Error pattern of five-shot learning in IT reveals a clear block diagonal
structure, similar to the error patterns in AlexNet and ResNet50. (C) Error patterns in DNNs are consistent with those in IT (Pearson r, P < 1 × 10−10). Error
bars are computed by measuring consistency over random subsets of 500 concept pairs. (D) Few-shot learning improves along the ventral visual hierarchy from
pixels to V1 to V4 to IT, due to orchestrated transformations of concept manifold geometry. We compute the geometry of concept manifolds in IT, V4, and a
simulated population of V1-like neurons (see Section E for details). Each panel shows the evolution of one geometric quantity along the visual hierarchy. The
layerwise behavior of a trained ResNet50 (blue), Alexnet (light blue), and an untrained ResNet50 (gray) are included for comparison. We align V1, V4, and IT
to the most similar ResNet layer under the BrainScore metric (32) (see Section E for details). Overall performance exhibits a good match between the primate
visual pathway and trained DNNs, but individual geometric quantities display a marked difference. In particular, in DNNs, dimensionality expands dramatically
in the early layers and contracts in the later layers, while in the primate visual pathway, dimensionality contracts from the V1-like layer to V4, then expands from
V4 to IT. Similarly, in DNNs, signal–noise overlaps are suppressed in the early layers, then grow in the late layers, while in the primate visual pathway, signal–
noise overlaps grow from the V1-like layer to V4, then are suppressed from V4 to IT. Lines and markers indicate mean value over 64 × 63 pairs of concepts;
surrounding error bars and shaded regions indicate 95% CIs.

in both macaque IT and a trained DNN model (Fig. 6), a
downstream neuron receiving inputs from only about 200
neurons performs essentially similarly to a downstream neuron
receiving inputs from all available neurons (Fig. 6 A and B),
and with recordings of about 200 IT neurons, the estimated
dimensionality approaches its asymptotic value (Fig. 6 C and D;
D∞ ≈ 35 in the trained DNN and D∞ ≈ 12 in the macaque IT).

G. Visual Concept Learning Without Visual Examples. Humans
also possess the remarkable ability to learn new visual concepts
using only linguistic descriptions, a phenomenon known as
zero-shot learning (Fig. 7A). The rich semantic structure encoded
in the geometry of visual concept manifolds (SI Appendix, Fig. 1)
suggests that a simple neural mechanism might underlie this
capacity, namely, learning visual concept prototypes from

nonvisual language representations. To test this hypothesis, we
obtain language representations for the names of the 1,000
familiar visual concepts used to train our DNN, from a standard
word-vector embedding model (44) trained to produce a neural
representation of all words in English based on cooccurrence
statistics in a large corpus (Section P).

Drawing inspiration from previous works that have trained
mappings between visual embeddings and word embeddings (33,
45) or between word embeddings in multiple languages (46),
we seek to learn a simple mapping between the language and
vision domains (Fig. 7B). Remarkably, despite being optimized
on independent objectives (word cooccurrence and object recog-
nition), we find that the language and vision representations
can be aligned by a simple linear isometry (rotation, translation,
and overall scaling). Furthermore, this alignment generalizes to
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Fig. 6. Effect of number of sampled neurons on concept learning and man-
ifold geometry. Five-shot learning experiments in ResNet50 on 1,000 × 999
pairs of concepts from the ImageNet21k dataset (A) and in macaque IT on
64 × 63 pairs of novel visual concepts (24) (B), given access to only M neurons
(light blue points) and given access to only M random linear combinations
of the N available neurons (dark blue points). The blue curve represents the
prediction from the theory of random projections (Eq. 2); the dashed line is its
predicted asymptotic value, SNR∞; and the shaded region represents the SD
over all pairs of concepts. In each case, the one-shot learning error remains
close to its asymptotic value, provided that the number of recorded neurons
M is large compared to the asymptotic manifold dimension D∞. (C and D) The
estimated manifold dimension D(M) as a function of M randomly sampled
neurons (light orange points) and M random linear combinations (dark orange
points) of the N neurons in the ResNet50 feature layer (C) and in macaque IT
(D). The orange curve represents the prediction from the theory of random
projections; the dashed line is its predicted asymptotic value, D∞; and the
shaded region represents the SD over all pairs of concepts.

novel concepts, allowing us to construct prototypes for novel
visual concepts by simply passing their names into the word-
vector embedding model and applying the linear isometry. We use
these language-derived prototypes to classify visual stimuli from

pairs of novel visual concepts, achieving a 93.4% test accuracy
(Fig. 7C ). Intriguingly, this performance is slightly better than
the performance of one-shot learning (92.0%), indicating that the
name of a concept can provide at least as much information as a
single visual example, for the purpose of classifying novel visual
concepts (SI Appendix, Fig. 9).

Our geometric theory for few-shot learning extends naturally
to zero-shot learning, allowing us to derive an analogous zero-shot
learning SNR (SI Appendix, section 4),

SNRzero-shot
a =

1

2

‖x0a − yb‖2 − ‖x0a − ya‖2
‖Δy ·Ua‖2

, [3]

where ya ,yb are the language-derived prototypes, and Δy ≡
(ya − yb)/R2

a . This zero-shot learning SNR takes a different
form from the few-shot learning SNR since language-derived
prototypes are fixed, rather than varying from trial to trial. But
note that the two expressions (Eqs. 1 and 3) agree in the limit
where m →∞, and the language-derived prototypes perfectly
match the concept manifold centroids. The signal (numerator)
captures how well the language-derived prototypes match the true
visual manifold centroids, while the noise (denominator) captures
the extent of variation of the visual manifolds along the readout
direction Δy . Fig. 7D indicates a close match between this theory
and zero-shot experiments.

To better understand why the zero-shot method performs so
well (even outperforming one-shot learning), we compare the ge-
ometry of the language-derived prototypes to the geometry of the
vision-derived prototypes used in one-shot learning. We find that
although the vision-derived prototypes typically better match the
true manifold centroids (Fig. 7E), so that the signal is in Eq. 3 is
higher for vision-derived prototypes, language-derived prototypes
pick out more informative readout directions, along which the
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representations from a word-vector embedding model (Left, gray circles) for the names of the 1,000 visual concepts used to train the DNN (e.g., “anteater” or
“badger”), along with corresponding visual concept manifolds from the trained DNN (Right, gray ellipsoids). We learn a linear isometry f to map each language
representation as closely as possible to its corresponding visual manifold centroid (Section P). To learn novel visual concepts (e.g., “coati” and “numbat”) without
visual examples, we obtain their language representations ra from the language model and map them into the visual representation space via the linear
isometry, ya = f(ra). Treating the resulting representations ya as visual prototypes, we classify pairs of novel concepts by learning a linear classifier w (gray
hyperplane), which points along the difference between the prototypes, w = ya − yb, passing through their midpoint. Generalization error (red hashed area)
is evaluated by passing test images into the DNN and assessing whether their visual representations are correctly classified. (C) Generalization accuracy is
high across all 1,000 × 999 pairs of novel visual concepts. (D) Each panel shows the generalization error of 1 visual concept against the 999 others. Each
point represents the average generalization error on one such pair of concepts. x axis: SNR (Eq. 3) obtained by estimating neural manifold geometry. y axis:
Empirical generalization error measured in zero-shot learning experiments. Theoretical prediction (dashed line) shows a good match with experiments. Error
bars, computed over many draws of the training and test examples, are smaller than the symbol size. (E) Visual prototypes from one-shot learning more closely
match true concept manifold centroids than do language-derived prototypes, as measured by cosine similarity. (F) However, language prototypes pick out more
informative readout directions: Concept manifolds vary less when projected onto readout directions derived from language prototypes than readout directions
derived from one-shot visual prototypes.

8 of 12 https://doi.org/10.1073/pnas.2200800119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200800119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200800119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200800119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200800119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200800119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2200800119/-/DCSupplemental
https://doi.org/10.1073/pnas.2200800119


visual manifolds vary less (Fig. 7F ), so that the noise in Eq. 3 is
smaller for language-derived prototypes. This suppression of noise
is greater than the loss in signal, and, hence, language-derived pro-
totypes perform better than one-shot vision-derived prototypes.*

H. Comparing Cognitive Learning Models on Naturalistic
Tasks. Our paradigm of using high-dimensional neural represen-
tations of naturalistic concepts as features for few-shot learning
presents a unique opportunity to compare different concept-
learning models, such as prototype and exemplar learning, in an
ethologically relevant setting and explore their joint dependence
on concept dimensionality D and the number of examples m .
We formalize exemplar learning by a nearest-neighbor decision
rule (NN; SI Appendix, section 6), which stores in memory the
neural representation of all 2m training examples and classifies
a test image according to the class membership of the nearest
training example. We find that exemplar learning outperforms
prototype learning when evaluated on low-dimensional concept
manifolds with many training examples, consistent with past
psychophysics experiments on low-dimensional artificial concepts
(15, 47–49) (Fig. 8A and Section Q). However, prototype learning
outperforms exemplar learning for high-dimensional naturalistic
concepts and few training examples. In fact, to outperform
prototype learning, exemplar learning requires a number of
training examples exponential in the number of dimensions,
m ∼ exp(D/D0) for some constant D0 (SI Appendix, section 6).
Hence, for high-dimensional manifolds, like those in trained
DNNs and the macaque IT, prototype learning outperforms
exemplar learning, given few examples.

A well-known criticism of prototype learning is that averaging
the training examples into a single prototype may cause the
prototype learner to misclassify some of the training examples
themselves (8). However, this phenomenon relies on training
examples overlapping significantly along a given direction and
almost never happens in high dimensions (Fig. 8B), where training
examples are approximately orthogonal (Fig. 8C ).

An intermediate model between prototype and exemplar
learning is max-margin learning (50) (Fig. 8C ). Like prototype
learning, max-margin learning involves learning a linear readout;
however, rather than pointing between the concept prototypes,
its linear readout is chosen to maximize the distance from the
decision boundary to the nearest training example of each
concept (50) (SI Appendix, Fig. 12). Max-margin learning is more
sophisticated than prototype learning, in that it incorporates
not only the estimated manifold centroid, but also the variation
around the centroid. Thus, it is able to achieve zero generalization
error for large-m when concept manifolds are linearly separable,
overcoming the limitation on the prototype learning SNR due to
signal–noise overlaps in the large-m limit (Eq. 1 and Fig. 2D).
However, like exemplar learning, it requires memory of all training
examples. Comparing the three learning models on DNN concept
manifolds, we find that prototype and max-margin learning
are approximately equivalent for m � 8, and both outperform
exemplar learning for m of small to moderate size (Fig. 8D and
Section Q).

I. Discussion. We have developed a theoretical framework that
accounts for the remarkable accuracy of human few-shot learning
of novel high-dimensional naturalistic concepts in terms of a
simple, biologically plausible neural model of concept learning.
Our framework defines the concepts that we can rapidly learn in

*But note that given two or more training examples (m ≥ 2), vision-derived prototypes can
average out this noise and achieve better overall performance (see SI Appendix, section 4B
for details).
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Fig. 8. Comparing cognitive learning models on naturalistic tasks. (A) We
compare the performance of prototype and exemplar learning as a joint
function of concept manifold dimensionality and the number of training
examples, using novel visual concept manifolds from a trained ResNet50. We
vary dimensionality by projecting concept manifolds onto their top D principal
components. We formalize exemplar learning by NN (SI Appendix, section 6).
Because the generalization error is very close to zero for m and D large,
here, we plot SNRproto − SNRNN. The dashed line demarcating the boundary
is given by m = exp(D/10), reflecting the relationship log m ∝ D predicted
by our theory (SI Appendix, section 6). The constant 10 is chosen by a one-
parameter fit. (B) Prototype learning error as a function of m and D when
training examples are reused as test examples. A prototype classifier may
misclassify one or more of the training examples themselves when concepts
are low-dimensional and the number of training examples is large. How-
ever, this rarely happens in high dimensions, as illustrated in C. (C) In low
dimensions, multiple training examples may overlap along the same direction
(Inset histogram; distribution of angles between examples in DNN concept
manifolds for D = 2). Hence, averaging these examples (open circles) to yield
two prototypes (filled circles) may leave some of the training examples on the
wrong side of the prototype classifier’s decision boundary (black line). In high
dimensions, however, all training examples are approximately orthogonal (C,
Inset histogram, D = 40), so such mistakes rarely happen. C also shows the de-
cision boundaries of max-margin learning (gray line) and NN learning (green
and blue regions), both of which perfectly classify the training examples. In
low dimensions, prototype and max-margin learning may learn very different
decision boundaries; however, in high dimensions, their decision boundaries
are very similar, as quantified in D. (D) Empirical comparison of prototype,
max-margin, and NN exemplar learning as a function of the number of
training examples m (Section Q). When the number of training examples is
small, prototype and SVM learning are approximately equivalent. For larger
m, SVM outperforms prototype learning. NN learning performs worse than
SVM and prototype learning for both small and intermediate m.

terms of tight manifolds of neural activity patterns in a higher-
order brain area. The theory provides readily measurable geomet-
ric properties of population responses (Fig. 2) and successfully
links them to the few-shot learning performance of a simple
prototype learning model. Our model yields remarkably high
accuracy on few-shot learning of novel naturalistic concepts us-
ing DNN representations for vision (Figs. 1 and 3), which is
in excellent quantitative agreement with theoretical prediction.
We further show that the four geometric quantities identified
by our theory undergo orchestrated transformations along the
layers of trained DNNs and along the macaque ventral visual
pathway, yielding a consistent improvement in performance along
the system’s hierarchy (Figs. 4 and 5). We extend our theory to
cross-domain learning and demonstrate that comparably powerful
visual concept learning is attainable from linguistic descriptors of
concepts without visual examples, using a simple map between
language and visual domains (Fig. 7). We show analytically and
confirm numerically that high few-shot learning performance is
possible with as few as 200 IT-like neurons (Fig. 6).
A design tradeoff governing neural dimensionality. A surprising
result of our theory is that rapid concept learning is easier when
the underlying variability of images belonging to the same object
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is spread across a large number of dimensions (Fig. 2 C and G).
Thus, high-dimensional neural representations allow new con-
cepts to be learned from fewer examples, while, as has been shown
recently, low-dimensional representations allow for a greater num-
ber of familiar concepts to be classified (36, 37). Understanding
the theoretical principles by which neural circuits negotiate this
tradeoff constitutes an important direction for future research.
Asymmetry in few-shot learning. We found that the pairwise
generalization error of simple cognitive models, like prototype,
exemplar, and max-margin learning, exhibits a dramatic asym-
metry when only one or a few training examples are available
(SI Appendix, Fig. 1). Our theory attributes this asymmetry to a
bias arising from the inability of simple classifiers to estimate the
variability of novel concepts from a few examples (Fig. 2 B and
F ). Investigating whether humans exhibit the same asymmetry
and identifying mechanisms by which this bias could be overcome
are important future directions. An interesting hypothesis is that
humans construct a prior over the variability of novel concepts,
based on the variability of previously learned concepts (51).
Connecting language and vision. Remarkably, we found that
machine-learning-derived language representations and visual
representations, despite being optimized for different tasks
across different modalities, can be linked together by an
exceedingly simple linear map (Fig. 5), to enable learning novel
visual concepts, given only language descriptions. Recent work
has revealed that machine-learning-derived neural language
representations match those in humans, as measured by both
electrocorticography (ECOG) and functional MRI (fMRI)
(52). Our results suggest that language and high-level visual
representations of concepts in humans may indeed be related
through an exceedingly simple map, a prediction that can be
tested experimentally. Broadly, our results add plausibility to the
tenets of dual-coding theory in human cognition (53).
Comparing brains and machines. Computational neuroscience
has recently developed increasingly complex high-dimensional
machine-learning-derived models of many brain regions, includ-
ing the retina (54–57); V1, V4, and IT (28, 58); motor cortex
(59); prefrontal cortex (60); and entorhinal cortex (61, 62). Such
increased model complexity raises foundational questions about
the appropriate comparisons between brains and machine-based
models (63). Previous approaches based on behavioral perfor-
mance (19, 31, 64–66); neuron (54) or circuit (57) matching;
linear regression between representations (28); or representational
similarity analysis (30) reveal a reasonable match between the
two. However, our higher-resolution decomposition of perfor-
mance into a fundamental set of observable geometric properties
reveals significant mismatches (Figs. 4 and 6D). For instance,
intermediate representations that have previously been shown to
be most predictive of responses in primate V4 are much higher-
dimensional than the corresponding representations in V4. These
mismatches call for a better understanding of their computational
consequences and for more veridical models of the visual pathway.

Finally, our results (SI Appendix, Fig. 7) indicate that it is not
only the network architecture and overall performance on object-
recognition tasks that govern downstream performance and shape
neural geometry, but also the number of concepts on which the
model is trained. Hence, the size and structure of the dataset on
which the model is trained likely play a key role when comparing
brains and machines.
Comparing cognitive learning models on naturalistic concepts.
Our theory reveals that exemplar learning is superior to proto-
type learning given many examples of low-dimensional concepts,
consistent with past laboratory experiments (15, 47, 48, 67), but
is inferior to prototype learning given only a few examples of high-
dimensional concepts, like those in DNNs and in primate IT

(Fig. 8), shedding light on a 40-y-old debate (8). These predictions
are consistent with a recent demonstration that a prototype-based
rule can match the performance of an exemplar model on catego-
rization of familiar high-dimensional stimuli (66). We go beyond
prior work by 1) demonstrating that prototype learning achieves
superior performance on few-shot learning of novel naturalistic
concepts; 2) precisely characterizing the tradeoff as a joint function
of concept manifold dimensionality and the number of training
examples (Fig. 8); and 3) offering a theoretical explanation of
this behavior in terms of the geometry of concept manifolds
(SI Appendix, section 6).
Proposals for experimental tests of our model. Our theory makes
specific predictions that can be tested through behavioral ex-
periments designed to evaluate human performance at learning
novel visual concepts from few examples (see SI Appendix, Fig. 11
for a proposed experimental design). First, we predict a specific
pattern of errors across these novel concepts, shared by neural
representations in several trained DNNs (proxies for the human
IT cortex), as well as neural representations in the macaque
IT (Fig. 5 and SI Appendix, Fig. 11C ). Second, we predict that
humans will exhibit a marked asymmetry in pairwise few-shot
learning performance, following the pattern derived in our theory
(see SI Appendix, Fig. 11 for examples). Third, we predict how
performance should scale with the number of training examples
m (Fig. 8D). Matches between these predictions and experimental
results would indicate that simple classifiers learned atop IT-like
representations may be sufficient to account for human concept-
learning performance. Deviations from these predictions may
suggest that humans leverage more sophisticated higher-order
processing to learn new concepts, which may incorporate human
biases and priors on object-like concepts (51).

By providing fundamental links between the geometry of con-
cept manifolds in the brain and the performance of few-shot con-
cept learning, our theory lays the foundations for next-generation
combined physiology and psychophysics experiments. Simulta-
neously recording neural activity and measuring behavior would
allow us to test our hypothesis that the proposed neural mecha-
nism is sufficient to explain few-shot learning performance and
to test whether the four fundamental geometric quantities we
identify correctly govern this performance. Furthermore, ECOG
or fMRI could be used to investigate whether these four geometric
quantities are invariant across primates and humans. Conceivably,
our theory could even be used to design visual stimuli to infer
the geometry of neural representations in primates and humans,
without the need for neural recordings.

In conclusion, this work represents a significant step toward
understanding the neural basis of concept learning in humans
and proposes theoretically guided psychophysics and physiology
experiments to further illuminate the remarkable human capacity
to learn new naturalistic concepts from few examples.

Materials and Methods

J. Visual Stimuli. Visual stimuli were selected from the ImageNet dataset,
which includes 21,840 unique visual concepts. A subset of 1,000 concepts
comprises the standard ImageNet1k training set used in the ImageNet Large
Scale Visual Recognition Challenge (68). All DNNs studied throughout this work
are trained on these 1,000 concepts alone. To evaluate few-shot learning on
novel visual concepts, we gather an evaluation set of 1,000 concepts from the
remaining 20,840 concepts not included in the training set, as follows. The
ImageNet dataset is organized hierarchically into a semantic tree structure, with
each visual concept a node in this tree. We include only the leaves of the tree
(e.g., “wildebeest”) in our evaluation set, excluding all superordinate categories
(e.g., “mammal”), which have many descendants. We additionally exclude leaves
that correspond to abstract concepts, such as “green” and “pet.” Finally, the
concepts in the ImageNet dataset vary widely in the number of examples they
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contain, with some concepts containing as many as 1,500 examples and others
containing only a single example. Among the concepts that meet our criteria
above, we select the 1,000 concepts with the greatest number of examples.
From each novel concept, we choose a random set of 500 examples. A full
list of the 1,000 concepts used in our evaluation set is available at GitHub
(https://github.com/bsorsch/geometry-fewshot-learning).

K. Estimating the Geometry of Concept Manifolds. Each visual stimulus
elicits a pattern of activity x ∈ R

N across the sensory neurons in a high-order
sensory layer, such as the IT cortex, or, analogously, the feature layer of a DNN. We
collect the population responses to each of all P images in the dataset belonging
to a particular visual concept in an N × P matrix X. To estimate the geometry of
the underlying concept manifold, we construct the empirical covariance matrix
C = 1

P XXT − x0xT
0, where x0 ∈ R

N is the manifold centroid. We then diagonal-
ize the covariance matrix,

C =
1
P

N∑
i=1

R2
i uiu

T
i , [4]

where ui are the eigenvectors of C and R2
i /P the associated eigenvalues. The ui

each represent unique, potentially interpretable visual features [e.g., animate vs.
inanimate, spiky vs. stubby, or short-haired vs. long-haired (22)]. Individual exam-
ples of the concept vary from the average along each of these “noise” directions.
Some noise directions exhibit more variation than others, as governed by the Ri.
Geometrically, the eigenvectors ui correspond to the principal axes of a high-
dimensional ellipsoid centered at x0, and the Ri correspond to the radii along
each axis. A useful measure of the total variation around the centroid is the mean
squared radius, R2 = 1

N

∑N
i=1 R2

i . R2 sets a natural length scale, which we use
in our theory as a normalization constant to obtain interpretable, dimensionless
quantities. Although we do not restrict the maximal number of available axes,
which could be as large as the dimensionality of the ambient space, N, the
number of directions along which there is significant variation is quantified by
an effective dimensionality D = (

∑N
i=1 R2

i )
2/

∑N
i=1 R4

i , called the participation
ratio (35), which, in practical situations, is much smaller than N. The participation
ratio arises as a key quantity in our theory (SI Appendix, section 3C).

L. Prototype Learning. To simulate m-shot learning of novel concepts pairs,
we present m randomly selected training examples of each concept to our model
of the visual pathway, and collect their neural representations xaμ, xbμ, μ=
1, . . . , m in a population of IT-like neurons. We perform prototype learning by
averaging the representations of each concept into concept prototypes, x̄a =
1
m

∑m
μ=1 xaμ, x̄b = 1

m

∑m
μ=1 xbμ. To evaluate the generalization accuracy, we

present a randomly selected test example of concept a and determine whether its
neural representation is closer in Euclidean distance to the correct prototype x̄a

than it is to the incorrect prototype x̄b. This classification rule can be implemented
by a single downstream neuron, which adjusts its synaptic weight vector w to
point along the difference between the two concept prototypes, w = x̄a − x̄b,
and adjusts its bias (or firing rate threshold) β to equal the average overlap
of w with each prototype, β = w · (x̄a + x̄b)/2. We derive an analytical the-
ory for the generalization error of prototype learning on concept manifolds in
SI Appendix, section 3C, and we extend our model and theory to classification
tasks involving more than two concepts in SI Appendix, section 3D.

M. Prototype Learning Experiments on Synthetic Concept Manifolds.
To evaluate our geometric theory, we perform prototype learning experiments
on synthetic concept manifolds constructed with predetermined ellipsoidal
geometry (Fig. 2 E–H). By default, we construct manifolds with Ra

i = Rb
i = 2, i =

1, . . . , D and D = 50, and we sample the centroids xa
0, xb

0 and subspaces
ua

i , ub
j randomly under the constraint that the signal direction Δx0 and

the subspace directions are orthonormal, ‖Δx0‖2 = ‖ua
i ‖2 = ‖ub

j ‖2 = 1,
Δx0 · ua

i =Δx0 · ub
i = ua

i · ub
j = 0, so that the signal–noise overlaps are

zero. We then vary each geometric quantity individually, over the ranges reflected
in Fig. 2 E–H. To vary the signal, we vary Ra

i , Rb
i from 1 to 2.5. To vary the bias

over the interval (−1, 1), we fix Ra
i = 2 and vary Rb

i from 0 to
√

2Ra
i . To vary the

signal–noise overlaps, we construct ellipsoidal manifolds with one long direction,
Ra

1 = Rb
1 = 1.5, and D − 1 short directions, Ra

i = Rb
i = 1, i = 2, . . . , D.

We then vary the angle θ between the signal direction Δx0 and the first
subspace basis vector ua

1 by choosing Δx0 = sin(θ)u⊥ + cos(θ)ua
1, where

u⊥ · ua
i = 0, i = 1, . . . , D. We vary θ from fully orthogonal (θ = π/2) to fully

overlapping (θ = 0).

N. DNN Concept Manifolds. All DNNs studied throughout this work are stan-
dard architectures available in the PyTorch library (69) and are pretrained on
the ImageNet1k dataset. To obtain novel visual concept manifolds, we randomly
select P = 500 images from each of the a = 1, . . . , 1,000 never-before-seen
visual concepts in our evaluation set, pass them into the DNN, and obtain their
representations in the feature layer (final hidden layer). We collect these repre-
sentations in an N × P response matrix Xa. N = 2,048 for ResNet architectures.
For architectures with M > 2,048 neurons in the feature layer, we randomly
project the representations down to N = 2,048 dimensions using a random
matrix A ∈ R

N×M, Aij ∼N (0, 1/
√

N). We then compute concept manifold
geometry, as described in Section K. To study the layerwise behavior of manifold
geometry, we collect the representations at each layer l of the trained DNN into an
N × P matrix Xa

l . For the pixel layer, we unravel raw images into 224 × 224 ×
3-dimensional vectors and randomly project down to N dimensions. Code is
available at GitHub (https://github.com/bsorsch/geometry-fewshot-learning).

O. Macaque Neural Recordings. Neural recordings of macaque V4 and IT
were obtained from the dataset collected in Majaj et al. (24). This dataset contains
168 multiunit recordings in IT and 88 multiunit recordings in V4 in response
to 3,200 unique visual stimuli, over ∼50 presentations of each stimulus. Each
visual stimulus is an image of 1 of 64 distinct synthetic three-dimensional objects,
randomly rotated, positioned, and scaled atop a random naturalistic background.
To obtain the concept manifold for object a, we collect the average response of IT
neurons to each of the P = 50 unique images of object a in an NIT × P response
matrix Xa

IT, where NIT = 168, and compute the geometry of the underlying man-
ifold, as described in Section K. We repeat for V4, obtaining a NV4 × P response
matrix XV4, where NV4 = 88. We additionally simulate V1 neural responses to the
same visual stimuli via a biologically constrained Gabor filter bank, as described
in Dapello et al. (70) To compare with trained DNNs, we pass the same set of
stimuli into each DNN and obtain a NDNN × P response matrix XDNN, as described
in Section N. We then project this response matrix into NIT, NV4, or NV1 dimensions
to compare with IT, V4, or V1. In order to align V1,V4, and IT to corresponding
layers in the trained DNN (as in Fig. 5D), we identify the DNN layers that are
most predictive of V1, V4, and IT using partial least-squares regression with 25
components, as in Schrimpf et al. (32).

P. Visual Concept Learning Without Visual Examples by Aligning Vi-
sual and Language Domains. To obtain language representations for each
of the 1,000 familiar visual concepts from the ImageNet1k training dataset, we
collected their embeddings in a standard pretrained word-vector embedding
model (GloVe) (44). The word-vector embedding model is pretrained to produce
neural representations for each word in the English language based on word
cooccurrence statistics. Since concept names in the ImageNet dataset typically
involve multiple words (e.g., “tamandua, tamandu, lesser anteater, Tamandua
tetradactyla”), we averaged the representations for each word in the class name
into a single representation ra ∈ R

Nl , where Nl = 300 (see SI Appendix, Fig. 9
for an investigation of this choice). We collected the corresponding visual concept
manifolds in a pretrained ResNet50. To align the language and vision domains,
we gathered the centroids of the a = 1, . . . , 1,000 training manifolds xa

0 into an
N × 1,000 matrix X0 and gathered the corresponding language representations
into an NL × 1,000 matrix Y . We then learned a scaled linear isometry f from
the language domain to the vision domain by solving the generalized Procrustes
analysis problem f = minα,O,b ‖fα,O,b(Y)− X0‖2, where fα,O,b = αOY − b,α
is a scalar, O ∈ R

NL×N is an orthogonal matrix, and b ∈ R
N is a translation.

Q. Comparing Cognitive Learning Models on Naturalistic Tasks. In addi-
tion to prototype learning, we performed few-shot learning experiments using
two other decision rules: a max-margin (SVM) classifier and a nearest-neighbors
classifier (Fig. 8). Exemplar learning more generally allows for comparisons to
more than just the nearest neighbor and involves the choice of a parameter
β, which weights the contribution of each training example to the discrimi-
nation function. When β =∞, only the nearest neighbor contributes to the
discrimination function. When β = 0, all training examples contribute equally.
However, we find that the nearest-neighbors limit β →∞ is close to optimal
in our setting (SI Appendix, Fig. 12). Hence, we formalize exemplar learning by a
nearest-neighbors decision rule. In order to study the effect of concept manifold
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dimensionality D on the performance of each learning rule (Fig. 8 A and B), we
vary D by projecting concept manifolds onto their top D principal components.

Data, Materials, and Software Availability. Code and numerical simulations
data have been deposited in GitHub (https://github.com/bsorsch/geometry-
fewshot-learning) (71).
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