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Abstract

We leveraged nationally representative data from the Panel Study of Income Dynamics-Child 

Development Supplement (N = 3,562) and the Early Childhood Longitudinal Study (N = 18,174), 

to chart the development of working memory, indexed via verbal forward and backward digit 

span task performance, from 3 to 19 years of age. Results revealed non-linear growth patterns for 

forward and backward digit span tasks, with the most rapid growth occurring during childhood 

followed by a brief accelerated period of growth during early adolescence. We also found similar 

developmental trajectories on digit span task performance for males and females across the U.S. 

population. Together, this study highlights the relative importance of the childhood period for 

working memory development and provides researchers with a reference against which to compare 

the developmental changes of working memory in individual studies. From a practical perspective, 

clinicians and educators can also use this information to understand important periods of working 

memory growth using national developmental trends.
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Working memory (WM) refers to a complex cognitive system involved in the storage, 

maintenance and manipulation of information in immediately accessible memory systems 

(Cowan, 2008). The fundamental ability to actively maintain information in the presence of 
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ongoing cognitive processing plays an essential role in everyday cognitive functions such as 

learning, reasoning, and problem solving (Baddely & Hitch, 1974). The significance of WM 

for a range of cognitive functions and behaviors has made it one of the most widely studied 

constructs in cognitive psychology and neuroscience (Miyake & Shah, 1999). In fact, WM 

has been referred to as the “hub of cognition” (Haberlandt, 1997, p. 212) and hailed as 

“perhaps the most significant achievement of human mental evolution” (Goldman-Rakic, 

1992, p. 11).

Although ubiquitous in cognitive psychology, WM research has become common in almost 

all branches of psychology, given its foundational role in active information maintenance, 

which underpins virtually all complex thought and behavior (Moser et al., 2018). In the 

past two decades, there has been a sharp rise in WM research in areas such as clinical 

psychology - as an endophenotype for neurological and psychiatric disorders (Forbes et 

al., 2009; Kasper et al., 2012), developmental and educational psychology - in the context 

of learning and social functioning (Ahmed et al, 2019; McQuade et al., 2013), and social 

psychology, given its role in decision-making and personality traits (Finn, 2002; Hinson et 

al., 2003). WM research has also been heavily studied in the areas health psychology and 

gerontology (e.g., Coppin et al., 2014), most notably in context of Alzheimer’s’ disease 

(Huntly & Howard, 2010) and recently in areas of public health and medicine (Gunstand et 

al., 2020; Xie et al., 2020).

Despite its widespread use as a psychological construct, several fundamental questions 

about the development of WM remain unanswered. First, although the developmental 

progression of WM has been extensively studied across various developmental stages, 

much of the research in this area relies on cross-sectional data or short-term longitudinal 

studies to chart WM growth over time (Alloway et al., 2006; Conklin, 2007; Gathercole et 

al., 2004; Luciana et al., 2005; Simmering, 2012). For example, Alloway and colleagues 

(2006) reported gradual increases in WM capacity from age 4 to age 11. Further, Luciana 

and colleagues (2006) found that aspects of spatial WM continue to develop during 

adolescence and early adulthood in a sample of 10–20-year-old participants. However, the 

functional form of WM development spanning early childhood through adulthood has not 

been extensively examined. This fragmented understanding of the growth and progression 

of WM across discrete developmental stages has resulted in an incomplete picture of 

WM development across a wide developmental timespan. Not only would extending the 

developmental window provide a more comprehensive understanding of WM growth, but 

can also reveal periods of relative calm and rapid growth across important developmental 

stages (e.g., early childhood and adolescence) which would otherwise be masked in cross-

sectional or short-term longitudinal studies.

Second, the overwhelming use of homogenous and convenience samples in charting WM 

growth limits our understanding of the developmental trends of WM across the national 

population. As WM research becomes increasingly widespread in educational, clinical, and 

medical settings, providing information about normative development at the population 

level becomes increasingly important, as a way to provide researchers and practitioners 

with a national standard of WM development across childhood and adolescence. Although 

recent studies have used nationally representative samples to chart WM development during 
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early childhood (e.g., Finch, 2019; Reynolds et al., 2022; Willoughby et al., 2019), few 

studies have examined population growth from early childhood into adolescence and early 

adulthood. An archetype of WM development across a wide age range can be useful from 

a clinical perspective (akin to national height or weight standards in medical settings) and 

provide researchers with a foundation to understand the effects of interventions independent 

of age-related changes in WM.

Finally, examining WM growth across a wide age range at the population level can also 

clarify sex differences that are presently under debate in the WM literature. Sex differences 

in WM are generally small, domain-specific, and vary across age. For example, meta-

analyses indicate a small, but significant female advantage in auditory WM in children 

and adolescents, but not during adulthood (Lynn & Irwing, 2008). Conversely, there 

is also evidence supporting a male advantage in visuospatial WM; however, these sex 

differences are small and first appear during adolescence (Voyer, 2016). Differences in WM 

performance across biological sex might be due to underlying neurobiological differences 

(e.g., circulating sex hormones; Zilles et al., 2016) or due to differences in how males 

and females approach and process WM tasks (e.g., differences in attentional biases; Weiss 

et al., 2006). However, there is limited, and mixed evidence for sex differences in WM. 

When disparities emerge, they depend on the developmental stage of assessment and are 

almost always examined cross-sectionally. Therefore, understanding the nature of WM 

sex differences, when they emerge, and the extent to which they persist over time using 

longitudinal data remains an important and underexplored topic of inquiry.

Current study

We leveraged data from the Panel Study of Income Dynamics-Child Development 

Supplement (PSID-CDS) to chart the development of verbal forward and backward digit 

span task performance from 3 to 19 years of age. The PSID-CDS, an accelerated 

longitudinal design, includes counting span tasks measured from 3 to 19 years of age, 

which will allow us to examine the development of verbal WM across a wide developmental 

window. Given research demonstrating rapid WM growth during childhood and relative 

stabilization during adolescence (e.g., Gathercole et al., 2004; Luna et al., 2004; Thaler et al, 

2013), we expect nonlinear functional forms to best characterize WM development.

Despite being a rich national data set, the PSID-CDS lacks the prospective longitudinal 

design necessary to characterize intraindividual change of WM at the person-level (e.g., 

Nesselroade, 1991). Therefore, we will also chart the functional form of WM development 

in the ECLS-K:2011, a prospective longitudinal population sample of over 18,000 

individuals, albeit sampled across a narrower timeframe from 5 to 11 years of age. Both 

the PSID-CDS and the ECLS-K:2011 include counting span tasks measured multiple times 

across the studies, making it possible to examine developmental trends and compare findings 

across the two data sets. Counting span tasks measure verbal WM, one of two core WM 

systems outlined in Baddeley and Hitch’s (1974) WM model (i.e., phonological loop and 

visuospatial sketchpad). Verbal counting span tasks are widely used in both academic and 

clinical settings given their ease of administration, developmental stability, and suitability 

for a wide range of populations, including young children and non-native English speakers 
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(e.g., Conway et al., 2005; Waters & Kaplan, 2003). Finally, both the PSID-CDS and ECLS-

K:2011 are nationally-representative, making them ideal to examine whether developmental 

trajectories differ across biological sex, which can provide patterns of normative WM 

development generalizable to the U.S. population.

Method

Participants, PSID-CDS:

We examined public use data from the PSID, a longitudinal household study of over 5,000 

U.S. families that began in 1967 (Johnson, et al., 2018). The PSID used a probability 

sampling design to achieve a sample representative of U.S. households in 1967 (see Table 

1 for sample demographics). Data for the PSID-CDS were collected in three waves: 1997, 

2002/2003, and 2007/2008. The PSID-CDS employed an accelerated longitudinal design. 

That is, a single cohort consisting of children of different ages was tested in 1997 (age range 

2.78 years to 13.64 years), and was tested again across two subsequent waves; 2002/2003 

(age range 5.25 years to 19.33 years), and 2007/2008 (age range 10.33 years to 19 years). 

This sampling design allowed the PSID-CDS to collect data from participants spanning a 

wide age range (i.e., 3–19 years of age) in a shorter period of time than would be possible 

with a prospective longitudinal design. The 1997 cross-sectional family weight was applied 

to make the sample representative of the U.S. population during 1997. The total sample size 

of our analytic sample in the PSID-CDS was 3,562.

Working Memory, PSID-CDS:

The Digit Span Task from the Wechsler Intelligence Scale for Children, Revised (Wechsler, 

1974) was administered to measure participants’ verbal working memory capacity. 

Participants were asked to accurately recite a string of numbers that began with two-number 

sequences and increased in length until eight digits, including two trials for each length. In 

Digit Span Forward, participants were asked to accurately recall the string of numbers in the 

same order they were presented, and in Digit Span Backward, to recall the numbers in the 

reverse-order. Although there is some debate in the WM literature (see Conway et al., 2005 

for review), forward and backward span tasks capture distinct aspects of the broader working 

memory construct. Forward span includes storage and maintenance components, whereas 

backward span also requires participants to manipulate and update the information stored in 

short-term memory, and is often described as capturing working memory capacity because 

of the additional processing demand (Conway et al., 2005; Cowan, 2008). Participants 

completed both Forward and Backward Span tasks in 1997, 2002/2003, and 2007/2008. 

Items were scored by summing the number of correctly answered sequences (digit span 

score range: 0-16). The Digit Span Task demonstrates excellent reliability (α = .93; 

Wechsler, 2008) and good test-retest reliability (r = .73; Lipsey et al., 2017).

Covariates and Missing Data, PSID-CDS:

Child covariates used in missing data analysis included child sex, child age at the time 

of digit span testing measured in years, race, whether the child had ever been diagnosed 

with a learning disability in 1997, reading scores in 1997, 2002, and 2007; and math 

scores in 1997, 2002, and 2007. Family covariates included maternal unemployment in 
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1997 and 2007, household income in 1997, and maternal educational attainment measured 

in years in 1997. Descriptive statistics of study variables and percentages of missing data 

in the PSID-CDS can be found in Table 1. Missing data for digit span forward ranged 

from 26.25% to 63.64% and for backward span from 26.36% to 62.61% (Table 1 displays 

missing rates for all study variables). To account for the high levels of missingness, 

missing data were imputed using multiple imputations (Rubin, 1987) by chained equations 

procedures implemented in Stata (StataCorp., 2019) to create 70 complete data sets. Using 

the covariates mentioned above, we conducted missing data analyses, where missing data 

on the digit span variables were dichotomously coded (0=non-missing, 1=missing) and 

t-tests and chi-square tests were conducted. Variables that were related to missingness on 

the outcome variables of interest were entered in our imputation models as covariates to 

adhere to MAR assumptions (Enders, 2010). Specific details about covariates and missing 

data analysis for the PSID-CDS can be found in the online supplemental materials.

Participants, ECLS-K:2011.

We examined public-use data from the Early Childhood Longitudinal Study, Kindergarten 

Class of 2010–2011 (ECLS-K:2011), a prospective longitudinal study of 18,174 children 

sponsored by the National Center for Education Statistics (NCES). Participants in the 

ECLS-K:2011 were a nationally representative sample of public and private school students, 

their families, teachers, schools, and care providers (Tourangeau et al., 2015). Sample 

characteristics for the ECLS-K:2011 are displayed in Table 1. The baseline sampling 

weights provided by NCES were applied to make the sample representative of the U.S. 

population during the 2010–2011 school year.

Working memory, ECLS-K:2011.

The Numbers Reversed subtest of the Woodcock Johnson Tests of Achievement (WJ-NR) is 

a measure of working memory where children are presented with lists of numbers and are 

asked to repeat the numbers back in reverse order (Mather & Woodcock, 2001). Students 

begin with five two-number sequences; if a student incorrectly repeats three consecutive 

two-number sequences, the assessment is discontinued. In each subsequent round, the 

number sequences increase by one digit, up to a maximum of eight-number sequences. 

The discontinue rule of three consecutive incorrect answers applies in each round, or until a 

student completes all number sequences. W-scores, a score metric on an equal-interval scale 

sensitive to longitudinal change, were used for the present study (Mather & Jaffe, 2016; 

McGrew & Woodcock, 2001).

Covariates, ECLS-K:2011.

Parents reported their children’s sex, age (in months), race and ethnicity, and family 

socioeconomic status. Information regarding child’s sex, age, disability status, guardian 

education level, and employment status was gathered from parents during interviews 

conducted in the fall of kindergarten, and household income was reported by parents during 

the spring kindergarten interview. Children’s Math and Reading achievement was measured 

during the fall of Kindergarten (i.e., first wave) using theta scores based on the National 

Assessment of Educational Progress (NAEP) math and reading frameworks (Tourangeau et 

al., 2015).
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Missing data – Longitudinal Attrition and Planned Missingness, ECLS-K:2011:

Table 1 displays missing rates for all study variables from the ECLS-K:2011. Using the 

covariates mentioned above, we conducted missing data analyses, where missing data on 

the digit span variable was dichotomously coded (0=non-missing, 1=missing) and t-tests 

and chi-square tests were conducted. To account for longitudinal attrition and planned 

missingness across the study’s waves, missing data were imputed using multiple imputations 

(MI; Rubin, 1987) by chained equations procedures implemented in STATA (StataCorp., 

2019) to create 40 complete data sets. Further, and to adhere to MAR assumptions, variables 

significantly related to the outcome of interest were entered in our imputation models as 

covariates (Enders, 2010). Specific details about covariates and missing data analysis for the 

ECLS-K:2011 can be found in the online supplemental materials.

Analytic Plan

PSID-CDS and ECLS-K:2011:  Longitudinal mixed-effects modeling was used to examine 

the functional form of children’s working memory development (Singer & Willett, 2003). 

Using this framework, time was nested within persons, where level 1 variables included 

child age and digit span performance, with a random intercept (level 2) that varied across 

individuals. We estimated the intraclass correlation (ICC), which conveys the percent 

variation in the dependent variable that can be attributed to difference between and within 

individuals. In supplementary analyses not included in our preregistration plan, we also 

tested whether the random slope at level 2 was statistically significant; tested whether 

there were a statistically significant covariance between the intercept and random slope; 

and plotted individual trajectories of a random subsample of 100 participants in the 

ECLSK:2011 in order to understand individual variation in the development of digit span 

performance across time. In the PSID-CDS, the primary independent variable was child age 

(which ranged from 3–19 years), and the dependent variable was the raw score of digit span. 

Because the ECLS-K:2011 numbers reversed variable was standardized based, partially, 

on child age, the primary independent variable in the ECLS-K:2011 was study-wave. The 

ECLS-K:2011 had 9 study waves: Fall 2010, Spring 2011, Fall 2011, Spring 2012, Spring 

2013, Spring 2014, Spring 2015, Spring 2016, and Spring 2017. Therefore, the study wave 

variable was re-coded to mirror the unequal distances in measures (.5=wave 1, 1=wave 
2, 1.5=wave 3, 2=wave 4, 3=wave 5, 4=wave 6, 5=wave 7, 6=wave 8, 7=wave 9). When 

dealing with an independent variable that is time-unstructured (such as child age in the 

PSID-CDS), or when dealing with a time variable that has unequal distances (as in the 

ECLS-K:2011), mixed effects modeling is preferred over other methods, such as latent 

growth-curve modeling (McNeish & Matta, 2018).

Four functional forms were tested: linear, quadratic, logarithmic, and cubic. The best fitting 

model was determined by comparing AIC and BIC across models as well as the functional-

form regression estimates and corresponding p-values. Smaller AIC and BIC values and 

significant parameter estimates were used to identify the best fitting model (e.g. Rafferty, 

1995; Singer & Willett, 2003). We first examined the functional forms of Forward Digit 

Span and Backward Digit Span using the entire child age range of the PSID-CDS (i.e., ages 

3–19). Then, for the comparison analyses, we examined the functional form of Backward 

Digit Span in the PSID-CDS and ECLS-K:2011 datasets, wherein PSID-CDS data were 
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restricted to the ages examined in the ECLS-K:2011. More specifically, PSID-CDS data 

were restricted to the mean age of children in the ECLS-K:2011 in 2010 and 2017 (i.e., 

ages 6–11). Next, we conducted subgroup analyses based on child sex to determine whether 

the functional forms of children’s Forward Digit Span and Backward Digit Span were the 

same for boys and girls. These subgroup analyses were conducted on the full age range 

of the PSID-CDS Forward Digit Span, the full age range of the PSID-CDS Backward 

Digit Span, the restricted age range of the PSID-CDS, and the ECLS-K:2011. To adjust 

for multiple testing, we used a Bonferroni correction, such that only p-values < .001 were 

considered statistically significant. This study used publicly available and deidentified data 

and, therefore, Institutional Review Board (IRB) approval was not obtained. Data from 

the ECLS-K: 2010–11 are publicly available at https://nces.ed.gov/ecls/dataproducts.asp. 

Data from the PSID-CDS are publicly available at https://psidonline.isr.umich.edu/cds/

default.aspx. All study analyses were preregistered on OSF: https://osf.io/szvmx/ (Ellis et 

al., 2021).

Results

Functional form model parameters and fit statistics of Forward and Backward Digit Span 

in the full PSID-CDS sample (i.e., ages 3–19) can be found in Table 2. The ICC suggested 

that 27% of the variation in Forward Digit Span could be attributed to differences between 

persons, with 73% being attributed to differences within persons. The ICC suggested that 

26% of the variation in Backward Digit Span could be attributed to differences between-

persons, with 74% being attributed to differences within persons. For Forward Digit Span, 

model fit statistics suggested that a cubic functional form best characterized development on 

both Forward (AIC = 503165648; BIC = 503165692; b = 0.002, p < .001) and Backward 

Digit Span tasks (AIC = 462856581; BIC = 462856628; b = 0.002, p < .001). The random 

slopes for the Forward and Backward Digit Span models were statistically significant, but 

extremely small (Forward: b = 0.011, SE = .005, 95% CI = [0.005, 0.026]; Backward: b = 

0.020, SE = .002, 95% CI = [0.016, 0.024]). The covariance between the intercept and slope 

had a confidence interval that included 0 for Forward Digit Span (b = −0.081, SE = .057, 

95% CI = [−0.194, 0.033]). The covariance between the intercept and slope for Backward 

Digit span was small, but statistically significant (b = −0.056, SE = .014, 95% CI = [−0.084, 

−0.028]1. It is important to note that the PSID-CDS only had three waves of data collection; 

therefore, the random slope models and covariances between the intercept and slope in this 

data set should be interpreted with caution.

As shown in Figure 1, the most rapid growth for Forward Digit Span occurred across 

childhood (i.e., ages 3–10), followed by a brief period of growth during early adolescence 

(i.e., ages 13–16). Also displayed in Figure 1, the most rapid growth for Backward Digit 

Span also occurred during childhood; however, the onset of performance did not begin 

until the age of 5, with childhood growth leveling off at age 11. Similar to Forward Digit 

Span, we observed a brief period of growth during early adolescence (i.e., ages 14–17). 

1The random slope models for the PSID-CDS with the multiple imputation dataset yielded standard errors and a 95% CI that were so 
close to zero that Stata would not show exact estimates; therefore, the random slope results for the PSID-CDS are with non-imputed 
data. Further, the random slopes model would not converge for the cubic function, therefore, the random slopes models were run on 
the linear function.
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Means, standard errors, and 95% confidence intervals of the point estimates for Forward 

and Backward Digit Span in the full PSID-CDS sample (i.e., ages 3–19) are reported in 

tables 3 and 4, respectively. Sample means, standard deviations, and ranges for Forward and 

Backward Digit Span in the full PSID-CDS sample (i.e., ages 3–19) can be found in tables 

S5 and S6 in the supplementary materials.

Results from the comparison analyses can be found in Table 5 and Figure 2. Although 

inspection of the model fit indices in the age-restricted PSID-CDS data suggested that a 

cubic functional form best fit the data, the cubic coefficient was non-significant (b = 0.015, 

p = .208). Therefore, the best fitting model was the quadratic functional form, which had 

the next-lowest model fit indices and a statistically significant growth coefficient (AIC 

=104487838; BIC =104487868; b =−0.101, p <.001). In the ECLS-K:2011 data, the ICC 

suggested that 15% of the variability in number reversed can be attributed to differences 

between individuals, with 85% of the variability being attributed to differences within 

person. A logarithmic functional form best fit growth in numbers reversed performance 

in the ECLS-K:2011 data (AIC =348702742; BIC =348702778; b = 20.714, p < .001), 

suggesting that growth begins to grow quickly during early childhood and decelerates over 

time. The random slope was statistically significant (b = 7.749, SE = .174, 95% CI = 7.414, 

8.100). The covariance between the intercept and slope was also statistically significant 

(b = −0.489, SE = .014, 95% CI = [−0.517, −0.461]). Means, standard errors, and 95% 

confidence intervals of the point estimates for Numbers Reversed in the ECLS-K:2011 

sample are reported in table 6. Sample means, standard deviations, and ranges for Numbers 

Reversed in the ECLS-K:2011 sample can be found in tables S7 in the supplementary 

materials.

Results from the biological sex subgroup analyses conducted with the full age range of 

the PSID-CDS can be found in Tables S1 and S2 of the supplementary materials. For the 

Forward Digit Span, the cubic functional form was the best fitting model for boys and for 

girls. However, the cubic coefficient was not statistically significant for boys after adjusting 

for multiple comparisons (girls: b = 0.002, p < .001; boys: b = 0.001, p = .005). For the 

Backward Digit Span, the cubic functional form was the best fit model for boys and for girls. 

However, the cubic coefficient was not statistically significant for boys after adjusting for 

multiple comparisons (girls: b = .002, p < .001; boys: b = .001, p = .035). The subgroup 

analysis for the restricted age range of the PSID-CDS can be found in Table S3 of the 

supplementary materials. Although inspection of model fit indices alone suggested that a 

cubic functional form best fit the data, the cubic coefficient was non-significant for girls (b = 

0.035, p = .036) and boys (b = −0.003, p = .843). Therefore, the best fitting model for boys 

and girls was the quadratic functional form, which had the next-least model fit indices and 

statistically significant growth coefficients (girls: b = −0.116, p < .001; boys: b = −0.087, 

p < .001). The subgroup analysis for the ECLS-K:2011 can be found in Table S4 in the 

supplementary materials. The logarithmic functional form was the best fit model for girls (b 
= 20.446, p < .001) and boys (b = 20.959, p < .001).

As a robustness check, we conducted an interaction between biological sex and age 

to determine whether the growth in task performance differed by sex. We observed non-

significant interaction coefficients for the cubic functional form of the Forward Digit Span 
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(b = 0.001, SE = .001, p = .217; see Figure 3) and Backward Digit Span (b = 0.001, 

SE = .001, p = .224; see Figure 3) in the full PSID-CDS dataset. We also observed 

non-significant interaction coefficients (i.e., child ages 6–11) for the cubic functional form 

of Backward Digit Span (b = −0.029, SE = .033, p = .372; see Figure 3) in the restricted 

PSID-CDS dataset (i.e., child ages 6–11), and the logarithmic functional form of Numbers 

Reversed in the ECLS-K:2011 (b = −0.520, SE = .250, p = .041; see Figure 3) after 

the multiple comparison correction. Finally, individual trajectories of a random subsample 

of 100 participants in the ECLSK:2011 can be found in Figure S1 of the supplementary 

materials.

Discussion

The purpose of the present study was to chart the functional form of working memory 

(WM) development using verbal counting span tasks in two samples representative of the 

U.S. population. Four main findings emerged. First, we observed non-linear growth patterns 

for both forward and backward digit span tasks from 3 to 19 years of age, with the most 

rapid growth occurring across childhood, followed by a brief accelerated period of growth 

during early adolescence. Second, the age of onset differed for forward and backward span 

tasks–children as young as 3 years of age were able to complete the forward span task, 

whereas performance on backward span did not emerge until 5 years of age. Third, we 

observed a non-linear growth pattern of WM in a separate prospective longitudinal sample 

of 6–11-year-old participants. Finally, results from subgroup analyses indicated that males 

and females developed WM at similar rates across the population.

Non-linear growth functions best characterized development on both forward and backward 

span tasks. Specifically, we observed rapid age-related changes in WM capacity across 

childhood and to a lesser degree during early adolescence, and two periods of relative calm: 

late childhood and late adolescence. These findings are consistent with previous research 

demonstrating rapid increases in WM across childhood and relative stabilization during 

late adolescence (Alloway et al., 2006; Gathercole et al., 2004; Luna et al., 2004; Thaler 

et al, 2013). The rapid development of WM during childhood also coincides with the 

dramatic physical and neurological changes that take place during childhood, as well as with 

important contextual transitions (e.g., start of formal schooling) that have been shown to 

influence the maturation of executive systems (Kim et al., 2021; Finch, 2019). This pattern 

of WM growth highlights the relative importance of the early childhood period for normative 

WM development, which may provide a window of opportunity during which the effects 

of interventions might be the most effective. Conversely, from a clinical perspective, these 

findings also suggest that children’s WM development might be particularly vulnerable to 

the effects of negative environmental settings during childhood. As such, an important future 

direction of this research would be to understand the contextual predictors of WM growth 

to identify the factors that promote or impede normative WM development at the population 

level.

We also observed a brief acceleration in WM performance during early adolescence, which 

aligns with previous studies examining adolescent WM development (Anderson, 2001; 

Brocki & Bohlin, 2004; Lensing & Elsner, 2018; Vuontela et al., 2012). Like childhood, 
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there are also contextual and biological changes occurring during this time that might 

explain this acceleration in WM development, such as the onset and progression of puberty, 

adolescent neural differentiation, and transitions in educational and social contexts, which 

have been shown to influence the maturation of executive systems (see Blakemore, & 

Choudhury, 2006, for review). However, future research carefully examining the brief uptick 

in WM performance during adolescence is necessary to help elucidate the causes and nature 

of this developmental pattern and to rule out age-related measurement artifacts, such as 

motivation or task persistence, that might partially explain these findings. For example, it 

is possible that a subgroup of low-performing participants during late childhood could be 

driving the apparent acceleration of WM performance during early adolescence. Therefore, 

a promising future direction of this research would be to model different WM performance 

classifications over time. This would help illuminate heterogeneity in WM trajectories at the 

population level while also allowing researchers to understand whether the brief accelerated 

period of growth during early adolescence is present across classes of WM trajectories.

The PSID-CDS sample used in the present study was an accelerated longitudinal design, 

however, we were also able to characterize intraindividual change of WM using a 

prospective longitudinal sample, which lends further support to the non-linearity of WM 

growth across childhood. However, the difference in scaling of counting span across the two 

data sets warrants caution in directly comparing the results across the PSID-CDS and ECLS-

K:2011. Moreover, given the narrower window of development in the ECLS-K:2011, a truly 

developmental account of WM trajectories from early childhood to late adolescence at the 

population level is still needed. Therefore, future research, including intensive, prospective 

measurement during the adolescent period, should be undertaken to replicate these findings 

and clarify the scope and non-linearity of WM development at the within-person level. 

A particularly fruitful avenue of future longitudinal research would be to also extend the 

measurement occasions of WM past late adolescence and emerging adulthood. Given that 

research with aging populations suggests a marked decline in WM capacity during later 

adulthood (Ferguson et al., 2021), longitudinal data during middle adulthood could shed 

light on the normative development of WM across the lifespan.

A notable finding that emerged from these analyses is the lack of meaningful sex differences 

in the overall functional form and rate of growth of WM. Specifically, we observed a 

non-significant biological sex-age interaction for growth on both Forward and Backward 

Digit Span tasks from 3–19 years of age. Although prior research in this area has been 

mixed (Lynn & Irwing, 2008; Voyer, 2016), our findings suggest that when modeled at 

the population level, WM sex differences are minimal at any given developmental stage 

and entirely disappear when examining growth patterns over time. The inconsistent sex 

differences found in the literature could be attributed to the lack of studies charting the 

growth of WM across development. That is, when WM sex disparities are found, they 

depend on the developmental stage of assessment and are almost always examined cross-

sectionally.

There are several limitations of the present research that are important to note. First, 

this study focused solely on verbal WM development - however, the extent to which 

these developmental trends extend to visuospatial WM development remains unclear. An 
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important future direction of this work would be to chart the functional form of visuospatial 

WM development to understand whether the two core WM systems outlined in Baddeley 

and Hitch’s (1974) WM model (i.e., phonological loop and visuospatial sketchpad) develop 

at similar rates at the population level. Second, it is important to note that the observed 

decelerating growth pattern can be, in part, due to scale shrinkage, or the tendency of growth 

rates to decline as item complexity increases (Bolt et al., 2014; Yen, 1985). As a result, 

it is possible that task performance is not increasing as quickly as true WM capacity over 

time. Finally, although these findings are representative of the U.S. population, they are only 

generalizable to a small fraction of the human population. As such, longitudinal data from 

non-western societies and populations historically underrepresented in psychological science 

are needed to gain a fuller understanding of the development of working memory.

Together, the present study provides national trends of working memory development from 

preschool to late adolescence. Despite its ubiquity in psychological science, researchers 

often do not have a reference against which to compare the developmental changes of 

working memory in individual studies. Not only do these findings offer information about 

normative development of working memory at the population level, they can also provide 

researchers with a foundation to understand the effects of interventions independent of 

normative age-related changes in working memory. From a practical perspective, clinicians 

and educators can also use this information to understand important periods of working 

memory growth using national developmental trends.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Functional forms of forward and backward digit span tasks in the PSID-CDS.

Note: Fitted values for forward and backward spans are cubic functions based on observed 

means; 95% confidence intervals are in gray. Values shown are non-imputed.
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Figure 2. 
Functional forms of backward digit span tasks in the restricted-range PSID and the full 

ECLS-K:2011.

Note: 95% confidence intervals are in gray. Values shown are non-imputed. Time in the 

ECLS-K:2011 was coded as .5=wave 1, 1=wave 2, 1.5=wave 3, 2=wave 4, 3=wave 5, 

4=wave 6, 5=wave 7, 6=wave 8, 7=wave 9; the x-axis displays the log of Time. Means 

depicted are raw, unadjusted means.
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Figure 3. 
Working memory functional forms across biological sex.
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Table 3.

Predicted Means for Forward Digit Span in the PSID-CDS.

Age Mean SE LCI UCI

3 3.09 .19 2.72 3.46

4 4.41 .13 4.17 4.66

5 5.55 .08 5.38 5.71

6 6.50 .07 6.37 6.63

7 7.30 .06 7.18 7.42

8 7.96 .06 7.84 8.07

9 8.48 .06 8.37 8.59

10 8.90 .05 8.79 9.00

11 9.22 .05 9.12 9.32

12 9.46 .05 9.36 9.57

13 9.64 .06 9.53 9.75

14 9.78 .06 9.66 9.89

15 9.88 .06 9.76 10.00

16 9.97 .06 9.84 10.09

17 10.06 .08 9.91 10.21

18 10.17 .11 9.95 10.38

19 10.31 .16 9.98 10.64

Note: Estimates were calculated by running a weighted multilevel model where age was a cubic function. Missing data were handled using multiple 
imputation.
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Table 4.

Predicted Means for Backward Digit Span in the PSID-CDS.

Age Mean SE LCI UCI

3 −0.90 .10 −1.11 −0.70

4 0.25 .07 0.11 0.38

5 1.26 .05 1.17 1.36

6 2.15 .04 2.07 2.24

7 2.93 .04 2.84 3.01

8 3.59 .04 3.50 3.68

9 4.16 .04 4.08 4.24

10 4.64 .04 4.56 4.72

11 5.04 .04 4.96 5.12

12 5.37 .04 5.28 5.46

13 5.64 .05 5.54 5.74

14 5.86 .05 5.76 5.96

15 6.04 .05 5.93 6.15

16 6.19 .06 6.07 6.31

17 6.32 .07 6.18 6.46

18 6.43 .10 6.23 6.64

19 6.55 .15 6.24 6.85

Note: Estimates were calculated by running a weighted multilevel model where age was a cubic function. Missing data were handled using multiple 
imputation.
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Table 6.

Predicted Means for Numbers Reversed in the ECLS-K:2011.

Time Mean SE LCI UCI

1 436.77 .26 436.27 437.27

2 451.13 .20 450.74 451.51

3 459.53 .17 459.19 459.87

4 465.49 .16 465.16 465.81

5 473.88 .16 473.56 474.21

6 479.84 .17 479.51 480.19

7 484.47 .19 484.10 484.83

8 488.24 .20 487.86 488.63

9 491.44 .21 491.02 491.85

Note: Estimates were calculated by running a weighted multilevel model where time was a logarithmic function. Missing data were handled using 
multiple imputation.
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