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Abstract

Introduction: Subject head motion is an ongoing challenge in functional magnetic resonance imaging, particu-
larly in the estimation of functional connectivity. Infants (1-month old) scanned during nonsedated sleep often
have occasional but large movements of several millimeters separated by periods with relatively little movement.
This results in residual signal changes even after image realignment and can distort estimates of functional con-
nectivity. A new motion correction technique, JumpCor, is introduced to reduce the effects of this motion and
compared to other existing techniques.
Methods: Different approaches for reducing residual motion artifacts after image realignment were compared
both in actual and simulated data: JumpCor, regressing out the estimated subject motion, and regressing out
the average white matter, cerebrospinal fluid (CSF), and global signals and their temporal derivatives.
Results: Motion-related signal changes resulting from infrequent large motion were significantly reduced both by
regressing out the estimated motion parameters and by JumpCor. Furthermore, JumpCor significantly reduced
artifacts and improved the quality of functional connectivity estimates when combined with typical preprocess-
ing approaches.
Discussion: Motion-related signal changes resulting from occasional large motion can be effectively corrected
using JumpCor and to a certain extent also by regressing out the estimated motion. This technique should reduce
the data loss in studies where participants exhibit this type of motion, such as sleeping infants.
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Impact Statement

Functional magnetic resonance imaging scans from 1-month-old infants scanned during nonsedated sleep often show occa-
sional but large head motion. Data from subjects that move this much are commonly discarded in functional connectivity
studies. However, this study introduces a new motion correction technique, JumpCor, that can effectively reduce this type
of motion artifact and compares this to other existing motion correction techniques. The ability to retain valuable subject
data despite large motion will be highly important for the study of brain connectivity, particularly in neurodevelopmental
studies where this type of motion is common.
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Introduction

Subject head motion is an ongoing challenge in func-
tional magnetic resonance imaging (fMRI), leading to

an increased number of both false positive and false negative
activation, as well as the loss of usable data (Friston et al.,
1996; Power et al., 2012; Satterthwaite et al., 2012; Van
Dijk et al., 2012). This is particularly true in developmental
studies, where motion is more likely to occur (Satterthwaite
et al., 2013; Vanderwal et al., 2020), and for the estimation of
functional connectivity, which is highly sensitive to motion
(Power et al., 2012; Van Dijk et al., 2012).

Our research group recently completed acquisition of
fMRI data from a large cohort of infants at 1 month of

age, in which infants were scanned during nonsedated
sleep (Dean et al., 2018a, 2018b). During the fMRI scans,
the infants were generally motionless. However, despite
our best efforts to immobilize their head and body, many
of the infants had occasional large head motions of several
millimeters (1–24 mm, median 3.0 mm) during the acquisi-
tion, interspersed with relatively quiet periods of very little
movement (<0.2 mm frame-to-frame displacement com-
puted as the Euclidean norm of the temporal difference in
the six realignment parameters; Fig. 1). Significant signal
changes sometimes remained even after realignment and
after censoring time points occurring during the motion.

Prior studies often exclude participants with large or
‘‘gross’’ motion, that is, if any frame-to-frame displacement

FIG. 1. Prevalence and magnitudes of volume-to-volume movements (‘‘jumps’’) in the sample of 98 infants. (a) Preva-
lence of jumps: histogram showing the number of subjects that had a certain total number of jumps >1 mm (26 subjects
had no jumps, 16 subjects had only 1 jump, etc.). (b) Histogram of jump magnitude: the number of jumps of a certain mag-
nitude across all runs within the sample. (c) Effect of jump threshold: the number of subjects with at least one jump exceeding
the jump threshold, for different thresholds (e.g., 72 subjects had at least 1 jump exceeding 1 mm, 40 subjects had at least 1
jump exceeding 5 mm, and so on).
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exceeds a predefined threshold, such as 0.55 mm (Sat-
terthwaite et al., 2012, 2013) or 5 mm (Parkes et al., 2018).
However, such a criterion would eliminate a large proportion
of participants in our infant study who, in general, exhibited
only a few large movements in each imaging run. This mo-
tivated the search for alternative solutions. In this study,
we propose and examine different strategies to reduce this
motion artifact.

Residual head-motion related signal changes remaining
after image realignment can occur due to at least five differ-
ent mechanisms—errors in estimating the motion; errors due
to interpolation (Grootoonk et al., 2000); spin-history effects
(Friston et al., 1996); B0-field changes ( Jezzard and Clare,
1999); or movement into different parts of a nonuniform
radio-frequency (RF) coil sensitivity. Spatially nonuniform
sensitivity profiles are particularly common in RF coils
with higher number of channels, such as the 32-channel
coil used in the current study.

Visual inspection of our infant fMRI data after realign-
ment indicated that the residual signal changes were likely
due to the head moving into a different part of the (nonuni-
form) coil sensitivity. More specifically, the images before
and after large jumps showed changes in signal intensity
without any change in image shape (e.g., distortions in the
phase encoding direction), which would be expected from
B0-field changes. Furthermore, these signal changes were
generally prolonged unlike the more transient signal changes
that would be associated with spin-history effects.

The problem encountered with this large occasional mo-
tion is similar to that faced when combining data from mul-
tiple imaging runs, where the participant may have moved in
between runs. We therefore adopted a similar approach to re-
duce the influence of large head motion, or ‘‘jumps,’’ that
occur during the imaging run, a technique we call ‘‘Jump-
Cor.’’ To evaluate JumpCor, we compared it to other motion
reduction approaches.

Methods

JumpCor

A common approach to account for between-run signal
changes when combining data across runs is to model a sep-
arate baseline, and optionally linear drift and lower order
polynomials, for each imaging run. The idea behind JumpCor
is to extend this approach to deal with large motions that
occur during an imaging run. First, large jumps, where the
volume-to-volume displacement exceeds a user-defined
threshold, were identified (Fig. 2). This displacement was
computed using the Euclidean norm (square-root of the sum
of squares) of the temporal difference of the six realignment
parameters (‘‘Enorm’’). For most analyses presented below, a
1 mm threshold was used. We also investigated the impact of
changing this threshold. Next, regressors were generated for
every segment between the large jumps with a value of 1 dur-
ing the segment and a value of 0 outside of the segment
(Fig. 2). These JumpCor regressors are then used as addi-
tional nuisance regressors in a general linear model, option-
ally together with any other nuisance regressors that are
removed in the preprocessing of resting-state fMRI data
(e.g., average white matter, cerebrospinal fluid [CSF],

FIG. 2. Illustration showing how JumpCor regressors are
created for one subject. Data are realigned to correct for mo-
tion using rigid-body six-parameter registration. The square
root of the sum of the squares of the volume-to-volume (tem-
poral) difference (Euclidean norm, Enorm) of the six realign-
ment parameters is computed. Time points exceeding the
jump threshold, in this case 1 mm (red line), are considered
a jump. Constant regressors (a value of 1 during the segment
and a value of 0 outside of the segment) were generated for
every segment between the large jumps. These were then in-
cluded in a multiple linear regression model to model and
thus remove jumps in the signal between the segments. Seg-
ments of only one time point were not included in the Jump-
Cor regressors, and time points with Enorm >0.2 mm were
censored in this regression and not included in any further
analysis. Color images are available online.
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and possibly global signal changes). Segments consisting of
only one time point between large movement jumps were
censored.

Participants

All study procedures were in accordance with the Institu-
tional Review Board (IRB) policies at the University of
Wisconsin-Madison, and written informed consent was
obtained from each participating family. One hundred forty
nine mother and infant dyads took part in a longitudinal
study of the association between early-life experience and in-
fant brain development. The infant sample consisted of 77
females and 72 males who were brought to the MRI facility
for imaging at *1-month of age (34.1 – 7.7 days, corrected
to a 40-week gestational period). Additional sample details
can be found in the study (Dean et al., 2018b) and in the
Supplementary Data.

Imaging procedure

Scanning occurred during natural nonsedated sleep (Dean
et al., 2014). As previously, A MedVac vacuum immobiliza-
tion bag (CFI Medical Solutions) and foam cushions were
used to limit intrascan motion (Dean et al., 2017, 2018b).
Acoustic noise from the scanner was reduced by derating gra-
dient amplitudes and slew rates and using a sound attenuating
bore insert, malleable ear plugs, and neonatal ear covers (Min-
iMuff; Natus Medical, Inc.). Electrodynamic headphones
(MR Confon) played white noise during image acquisition.

MRI data were acquired on a 3T General Electric (GE)
MR750 MRI scanner (Waukesha, WI) using a 32-channel
receive-only RF coil (Nova Medical, Wilmington, MA). A
series of sagittal T2*-weighted functional MR images were
acquired using an echo-planar imaging (EPI) pulse sequence.
Functional MR imaging parameters included the following:
repetition time (TR): 2000 ms; echo time: 25 ms; flip angle:
60�; 36 slices; slice thickness: 3.5 mm; in-plane field of
view (FOV): 22.4 · 22.4 cm2; matrix: 64 · 64; and 240 vol-
umes for a total acquisition time of 8 min. Structural T2-
weighted images were obtained using GE’s CUBE imaging
pulse sequence (TR: 2500 ms; FOV: 25.6 · 25.6 · 16.0 cm;
echo train length: 65; and an acquisition time of 5 min and
36 sec). To reduce the acoustic noise produced during the
scan, the gradient slew rates were reduced by *67% of
their nominal value.

Of the 149 infants, fMRI data were missing from 11 in-
fants, who did not sleep through the entire fMRI scan.
Data from 15 infants were excluded from further analysis be-
cause large head motion resulted in a large shift and aliasing
of the image in the phase encoding direction, caused by a
failure of the dynamic phase correction applied by the scan-
ner during reconstruction. Data from an additional 20 infants
were excluded because they had <5 min of data left after mo-
tion censoring (Enorm >0.2 mm, see Data Analysis section
below). Data from four more infants were excluded because
the T1- and T2-weighted structural scans were unusable; and
one infant’s data were excluded because the motion was so
large that the brain moved outside the FOV. This left a
final sample of 98 infants, of which 72 (73%) exhibited occa-
sional large head movements of several mm (1–24 mm, me-
dian 3.0 mm), separated by periods with relatively little
motion (Fig. 1).

Data analysis

All data analysis was performed using the analysis of
functional neuroimages (AFNI) analysis package, unless oth-
erwise specified (Cox, 1996). The first three time points of
the fMRI time series were removed to allow the magnetiza-
tion to reach steady state, and the data were corrected for
slice timing differences (3dTshift). FMRI time series data
were then corrected for motion using six-parameter (rigid-
body) realignment with a least-square difference of signal in-
tensity cost function (3dvolreg). Regressors to model large
jumps in motion ( JumpCor) were computed from the
volume-to-volume motion (Enorm), as described in JumpCor
section above. Data where the Enorm exceeded 0.2 mm were
censored and excluded from further analyses. The fMRI time
series were then aligned to the T2-weighted structural scan.

A population-specific template was constructed from the in-
fant T2-weighted images using a multivariate image registra-
tion approach with the advanced normalization tool software
suite (Avants et al., 2011; Dean et al., 2018b). The T2-weighted
structural scan was subsequently aligned to the group template
using nonlinear warping (AFNI’s auto_warp.py). The fMRI-
to-structural and structural-to-template transformations were
concatenated and applied to the fMRI data, and the fMRI
data were resampled to 2 mm isotropic resolution.

The group average T2-weighted template was segmented
into white matter, gray matter, and CSF using the FMRIB
Software Library’s (FSL’s) program fast. The T2-weighted
image was used for segmentation because the T1-weighted
contrast is reversed at 1 month of age with gray matter
being brighter than white matter and overall lower gray/
white matter contrast than the T2-weighted image. The
group template was used for segmentation because the
gray/white matter contrast-to-noise ratio in each individual
subject’s T2 image was too low to perform accurate segmen-
tation. A lateral ventricle mask was defined from the CSF
mask using spatial clustering. Ventricular CSF and white-
matter masks were then resampled to 2 mm, and the white
matter mask was eroded by one voxel.

Motion artifact reduction strategies and evaluation

The strategy for reducing the effects of head motion was to
regress out a set of ‘‘nuisance’’ regressors that likely repre-
sent motion and other non-neuronal signal variations
(‘‘noise’’), using AFNI’s 3dTproject. Five different sets of
nuisance regressors were compared in addition to a ‘‘no nui-
sance regression’’ control: (1) JumpCor regressors; (2) aver-
age eroded white matter, ventricular CSF, realignment
parameters, and their derivatives; (3) same as no. 2 but in-
cluding the JumpCor regressors; (4) same as no. 2 but includ-
ing the global signal; (5) same as no. 2 but including both the
global signal and JumpCor regressors (Table 2).

The mean signal intensity over time was also removed
from each voxel’s time series as part of this nuisance regres-
sion (equivalent to adding a constant as an additional nui-
sance regressor). The same time point censoring and the
same transformation matrices from original to template
space were used for all of these strategies. To determine
the impact of different choices for the threshold of what
level of motion to consider a ‘‘jump,’’ five different thresh-
olds were evaluated (1, 5, 10, 15, 20 mm). Finally, to evalu-
ate the potential influence of spin-history effects that could
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result in prolonged signal changes after a jump, the above an-
alyses were repeated by excluding an additional five time
points (10 sec) of data following each jump. Data were then
spatially smoothed using a Gaussian kernel with a full-
width at half maximum of 4 mm.

Functional connectivity maps were computed by averaging
the preprocessed signal over a seed region of interest and then
computing the correlation of this time course with all other
voxel time series (3dDeconvolve). Several different seed re-
gions were evaluated: 4 mm spheres placed in motor cortex,
auditory cortex, visual cortex, or the posterior cingulate.
The coordinates of the center of these spheres relative to
the University of North Carolina 1-year brain template (Shi
et al., 2011) are provided in Table 1. A constant and linear
signal drift over time were included as additional nuisance re-
gressors in this connectivity calculation. Group estimates of
functional connectivity were determined using a 1-sample
t-test (3dttest++) of the Fisher Z-transformed correlation
(connectivity) maps for each seed region.

The rationale for examining seed-based functional con-
nectivity maps was that the spatial patterns of the expected
functional connectivity, particularly in motor, visual, audi-
tory, and default mode networks, are well known, and the
sources of potential artifacts can be more easily identified
by their impact on the spatial pattern of estimated functional
connectivity (e.g., patterns matching the slice acquisition, al-
ternating positive and negative connectivity in neighboring
voxels, strong correlations at edges, and so on).

To investigate the effectiveness of different processing
strategies on connectivity throughout the brain, a connectiv-
ity matrix was created by first defining 230 regions-of-
interest (ROIs) based on a study (Eggebrecht et al., 2017).
We then averaged the preprocessed data over these ROIs
and computed all possible pairwise Pearson correlations of
the ROI time series.

The degree that the data are corrupted by motion, and the ef-
fectiveness of different strategies at reducing this noise, was
evaluated by computing the Spearman rank correlation be-
tween the mean Enorm and the absolute value of the Fisher
Z-transformed functional connectivity, across subjects, for
each connection in the connectivity matrix (Ciric et al.,
2017, 2018; Satterthwaite et al., 2013). Multiple prior studies
have used the correlation of the mean Enorm and the functional
connectivity as a measure of potential motion artifacts (re-
ferred to as the QC-FC metric in the study (Ciric et al.,
2017)) (see Supplementary data for further details). A null dis-

tribution of the correlation with Enorm was obtained by ran-
domly reshuffling the mean Enorm across subjects and then
recalculating the correlation (across subjects) of this reshuffled
Enorm with each connection. This was repeated for 1000 ran-
dom permutations. Finally, we also examined the correlation
with other summary measures of motion—the maximum and
median jump amplitudes, and the number of jumps.

To further evaluate the impact of various motion correc-
tion approaches at the individual subject level, we computed
the similarity between each subject’s functional connectivity
matrix to the group mean connectivity matrix, for each cor-
rection. The group mean connectivity matrix for each set of
nuisance regressors was obtained by averaging the Fisher-Z
transformed functional connectivity matrices across all sub-
jects. The similarity was computed as the Pearson’s correla-
tion between each subject’s Fisher-Z transformed functional
connectivity matrix and the group mean connectivity matrix
(using AFNI’s 3ddot).

Simulation

To further understand the impact of different motion cor-
rection approaches on data acquired when the head moves
into areas with different RF coil sensitivity, we performed
a set of simulations. A brain containing functional connectiv-
ity was simulated by taking a single EPI brain volume from
one of the infant’s acquired data, copying it 250 times to cre-
ate a 250 sec time series, and then superimposing a sinusoidal
fluctuation (0.05 Hz, magnitude 2% of the baseline signal)
that was identical in two different ROIs (Fig. 6a, b). This
brain volume was then translated in the anterior-posterior di-
rection by several millimeters, for a block of time, first in one
direction, then back, and then in the opposite direction, and
back again (Fig. 6c).

To avoid interpolation errors and focus primarily on signal
changes resulting from movement into different parts of the
RF coil sensitivity, the brain was translated by an integer

Table 1. Seed Regions Used for Functional

Connectivity of the Motor Network, Auditory

Network, Visual Network, and Default Mode Network

ROI Coordinates (LPI)

Motor cortex (right) 22, �18, 44
Auditory cortex (right) 36, �30, 4
Visual cortex (right) 8, �80, �18
Posterior cingulate (left) �4, 40, 24

Coordinates are based on the UNC 1 year template, LPI orienta-
tion (LPI having negative values). Seed regions consisted of 4 mm
radius spheres with the center at the given coordinates.

LPI, left, posterior, inferior; ROI, region-of-interest; UNC, Uni-
versity of North Carolina.

Table 2. List of Processing Methods

(Different Combinations of Nuisance Regressors)

That Were Evaluated in This Study

Code Nuisance regressors

0 None
J JumpCor
M Estimated realignment parameters (Motion)
W, C Average white matter, CSF, and their

temporal derivatives
W, C, G Average white matter, CSF, global,

and their temporal derivatives
M, W, C Motion, avg. white matter, CSF,

and derivatives
M, W, C, G Motion, avg. white matter, CSF, global,

and derivatives
J, M, W, C JumpCor, Motion, avg. white matter,

CSF, and derivatives
J, M, W, C, G JumpCor, Motion, avg white matter,

CSF, global, and derivatives

0, none; C, average CSF signal and derivative; CSF, cerebrospinal
fluid; G, average global signal and derivative; J, JumpCor; M, esti-
mated head motion (six parameters); W, average white matter and
temporal derivative.
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number of voxels. Two different levels of movement were in-
vestigated: one voxel (3.5 mm) and three voxels (10.5 mm).
For comparison, we investigated motion in both the R–L
and A–P directions, as well as using estimated motion from
one of the infant scans. The image volumes were then multi-
plied by one of two different coil sensitivity profiles: one that
was constant across space, and another that varied across
space by a quadratic function (Fig. 6d). The scale of this qua-
dratic function was chosen to roughly match the coil nonuni-
formity used in the imaging study. Finally, Gaussian
distributed random noise with a variance of 1% of the mean
signal intensity was added to the time series data.

These simulated data were then corrected using rigid-body
realignment, followed by no further corrections, motion-
parameter nuisance regression, or JumpCor. For comparison,
the data were also realigned using the actual (input) motion,
and the actual motion was regressed from both the data real-
igned with the estimated and actual motion. Functional con-
nectivity was then estimated by taking the average voxel
time series from one of the ROIs with the simulated sinusoi-
dal fluctuation (Fig. 6e) and computing the correlation with
all other voxel time series (Fig. 6f–h).

Results

Prevalence of head motion

Of our 98 participants, 72 (73%) exhibited occasional (1–7,
median 3) large head movements (1–24 mm, median 3.0 mm),
separated by longer periods with very little movement.

Figure 1a shows a histogram of the number of large head
movements (‘‘jumps’’) across subjects, and Figure 1b shows
a histogram of the magnitude of the head movements, across
all jumps, for all subjects. Figure 1c shows the number of sub-
jects with at least one movement greater than a certain amount
(the threshold used to define a ‘‘jump’’).

Motion artifact reduction strategies and evaluation

The head motion from one subject illustrating occasional
large jumps in motion is shown in Figure 2. The functional con-
nectivity from a seed region in the motor cortex for this subject
is shown in Figure 3, in the subject’s native space. As expected,
without any image realignment, the functional connectivity
shows extensive correlations (‘‘connections’’) throughout the
brain, with a striped pattern in the through-slice (R–L) direc-
tion (Fig. 3a). After rigid body realignment and motion censor-
ing (but no other nuisance regression), the functional
connectivity still shows correlations across the brain, again
with a striped pattern in the through-slice direction (Fig. 3b).

The time course from one of the brain voxels indicates that
this is likely due to residual motion-induced signal changes
that were not removed by the realignment and censoring.
JumpCor significantly reduced these residual signal changes,
and the resulting motor cortex functional connectivity map
shows the expected pattern with strong connectivity to the
contralateral primary motor cortex and supplementary
motor cortex (Fig. 3c).

Group connectivity maps (Fig. 4) show very little apparent
motion artifact after JumpCor, as well as after all of the

FIG. 3. Example of time
courses (left) and functional
connectivity maps (right) for a
seed region in the right motor
cortex shown in native space
overlaid on the echo-planar
fMRI time series image. Acti-
vation maps are thresholded at
p < 0.0005. (a) Signal intensity
time series and functional
connectivity without any cor-
rection or processing. Large
signal changes correlated with
the seed region are observed
throughout the brain, with a
striped appearance that
matches the orientation of the
sagittal slice acquisition. (b)
Signal intensity time series and
functional connectivity after
motion correction (volume
registration) and censoring
time points with volume-to-
volume motion (Enorm)
>0.2 mm, as indicated by the
gray bars. Residual artifacts are
still present. (c) Signal inten-
sity time series and functional
connectivity after regressing
out the JumpCor regressors.
fMRI, functional magnetic
resonance imaging. Color
images are available online.
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typical processing steps (nuisance regression of the estimated
head motion and average CSF and white matter signals, with
or without the global signal) without JumpCor. Similar results
were obtained for group connectivity maps of the auditory
cortex, visual cortex, and posterior cingulate (part of the de-
fault mode network) (Supplementary Figs. S1–S3).

The effects of different sets of nuisance regressors are
shown in Figure 5 for the same representative subject
shown in Figure 3. Regressing out either the estimated mo-
tion parameters or the JumpCor regressors significantly re-
duced the motion artifact (Fig. 5a, b). In contrast, artifacts
remained when regressing out only the average white matter
and CSF signal changes and their temporal derivatives
(Fig. 5c). This was the case both with and without global sig-
nal regression (Fig. 5d). Regressing out the estimated motion
together with the white matter, CSF (Fig. 5e) and global sig-
nals (Fig. 5f) reduced motion related signal changes. The in-
clusion of the JumpCor regressors in the nuisance regression
(Fig. 5g, h) further reduced the more extensive connections
that appeared in the white matter when JumpCor regressors
were not included (Fig. 5f, green arrow).

Simulation

The simulation first showed that, as expected, head motion
disrupts the functional connectivity estimate, in this case by
causing significant false positive connections (correlations)
throughout the brain (Fig. 6f). Applying image realignment
eliminated this motion artifact when the coil sensitivity pat-

tern was uniform across the volume. However, the motion ar-
tifact was still present after image realignment when the coil
sensitivity pattern was spatially nonuniform (Fig. 6g).
Motion artifacts were reduced when the estimated head mo-
tion parameters were regressed from the data (Fig. 6h).
JumpCor also reduced the motion artifacts (Fig. 7d). Similar
results were obtained for different levels of motion, different
directions of motion (R–L, A–P) (Supplementary Fig. S5),
and when using estimated motion taken from one infant’s
scan (Supplementary Fig. S6).

Closer examination of the estimated head motion parameters
revealed the likely mechanism that explains why the regression
of motion parameters was so effective. The simulated motion
was only in one direction (anterior-posterior), and the head mo-
tion estimated from the image realignment did correctly show
the largest motion to be in this direction (Fig. 8). However, the
estimated head motion in the presence of a nonuniform RF
coil sensitivity profile also shows small changes (*0.01–
0.5 mm) in the other motion parameters. Furthermore, these
errors are not simply scaled copies of the primary movement.
For example, the estimated motion in the left-right (L–R) and
superior-inferior directions shows negative deviations during
the simulated motion that actually occurred in the anterior di-
rection (time points 50–100) and posterior direction (time
points 150–200) (Fig. 8). In this way, the six motion parame-
ters form a basis set that allows for the modeling of a wider
array of signal changes (e.g., increases in signal for movement
in either direction).

FIG. 4. Group functional connectivity maps of a seed region in the right motor cortex, with different sets of nuisance re-
gressors removed in the preprocessing. The nuisance regressors removed for each figure were: (a) motion, average eroded
white matter, ventricular CSF, and their temporal derivatives; (b) motion, average eroded white matter, ventricular CSF,
the average whole brain (global) signal, and their temporal derivatives; (c) motion, average eroded white matter, ventricular
CSF, their temporal derivatives, and the JumpCor regressors; (d) motion, average eroded white matter, ventricular CSF, the
average whole brain (global) signal and their temporal derivatives, and the JumpCor regressors. Connectivity maps are
thresholded at a Bonferroni corrected p = 0.05 (t-stat = 5.5). CSF, cerebrospinal fluid. Color images are available online.
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FIG. 5. Functional connectivity of the motor cortex for one subject that showed occasional large movements (the same
subject also shown in Figs. 2 and 3), with different sets of nuisance regressors removed during preprocessing. The nuisance
regressors removed for each figure are indicated by the words/abbreviations above each connectivity map. Nuisance regres-
sors: (a) motion = the six realignment parameters, shown at two different thresholds: top row cc = 0.6, bottom row, cc = 0.3;
(b) JumpCor = the JumpCor nuisance regressors, shown at two different thresholds: top row cc = 0.6, bottom row, cc = 0.3; (c)
WM = average signal over eroded white matter and its temporal derivative; CSF = ventricular CSF and its temporal deriva-
tive; (d) WM, CSF, and Global = average signal over the whole brain and its temporal derivative. (e) Motion, WM, CSF. (f)
Motion, WM, CSF, and Global. (g) Motion, WM, CSF, and JumpCor. (h) Motion, WM, CSF, Global, and JumpCor. Large
artifactual signal changes are reduced by regressing out the estimated motion, but not by regressing out WM, CSF, and Global
signal (without motion). Functional connectivity of a motor cortex seed region after nuisance regression of the motion, CSF,
WM, and Global signals (f) still showed correlated signal changes outside the motor network in white matter (green arrow).
These signal changes are reduced when JumpCor regressors were included in the nuisance regression. WM, white matter.
Color images are available online.
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Functional connectivity maps obtained when aligning the
data using the estimated motion are highly similar to those
when the data were realigned using the actual motion. The re-
sidual motion artifact seen in Figures 6g, 7a and e (realignment
without any nuisance regression) is not simply the result of er-
rors in the realignment due to inaccurate estimates of the mo-
tion because realigning the data using the true (input) motion
still results in artifacts (Fig. 7e). Moreover, regressing out the
true motion, either from the data realigned with the true motion
or estimated motion, did not correct for this artifact (Fig. 7b, f).
Regressing out the estimated motion (Fig. 7c, g) or the Jump-
Cor regressors (Fig. 7d, h) did reduce the motion artifact.

Quantitative measures of motion artifact reduction

Without any nuisance regression, most connections show a
strong correlation with motion (Fig. 9a, black line). These cor-

relations were reduced when the estimated head motion was
regressed from the data (Fig. 9a, magenta line). When the
JumpCor regressors were regressed out of the data, the corre-
lations were substantially reduced and more centered around
zero (Fig. 9a, red line). The regression of the estimated mo-
tion, average white matter, CSF, global signals, and their tem-
poral derivatives also reduced the correlation with motion
(Fig. 9a, green line). The inclusion of the JumpCor regressors
in the nuisance regression showed similar results, with an ad-
ditional slight decrease in correlation (Fig. 9a, blue line).

The histogram of correlation with motion after nuisance
regression ( JumpCor, white matter, CSF, global signals)
was close to the null distribution obtained from permuting
the mean Enorm values (Fig. 9, gray band). Censoring an ad-
ditional five time points (10 sec) of data after each jump
resulted in no difference in the association with the mean

FIG. 6. Simulation of functional connectivity in the presence of motion with different RF coil sensitivity profiles. A single
EPI brain volume from one of the acquired infant data was copied 250 times in time to create a 250 sec time series. A sinu-
soidal fluctuation (a) was added to two regions, indicated by the red +’s (b). This brain volume was then translated in the
anterior-posterior direction by several millimeters, for a block of time, first in on direction, then back, and then in the opposite
direction, and back again (c). The image volumes were then multiplied by one of two different coil sensitivity profiles: one
that was constant across space, and another that varied across space by a quadratic function (d). Finally, Gaussian distributed
random noise with a variance of 1% of the mean signal intensity was added to the time series data. Functional connectivity
was estimated by taking the average voxel time series from one voxel (green, e) and computing the correlation with all other
voxel time series after different corrections: (f) no further corrections; (g) rigid-body volume registration; (h) rigid-body reg-
istration followed by regressing out the estimated realignment parameters. Functional connectivity maps are thresholded at
p < 0.001. Time courses for the seed region are shown above the connectivity maps. Functional connectivity maps in the pres-
ence of motion without any correction shows high correlation throughout the brain (f). Image registration reduces these
motion-related correlations, but only if the coil sensitivity profile is constant across space (g). Motion in the presence of a
nonuniform coil sensitivity results in residual signal changes after registration. These residual changes are reduced when
regressing out the estimated motion (h). EPI, echo-planar imaging; RF, radio-frequency. Color images are available online.
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FIG. 7. Functional connectivity maps from
the simulated data (motion through a non-
uniform RF coil sensitivity) for different re-
alignment strategies and different sets of
nuisance regressors. Time courses of the
center seed region are shown above each
connectivity map. Top row (a–c), data were
realigned using the estimated motion
(AFNI’s 3dvolreg), and then different sets of
nuisance regressors were removed from the
data: (a) no nuisance regression; (b)
regressing the actual simulated motion; (c)
regressing the estimated motion. Bottom row
(d–f), data were realigned using the actual
simulated motion, and then different sets of
nuisance regressors were removed from the
data: (d) no nuisance regression; (e)
regressing the actual simulated motion; (f)
regressing the estimated motion. Functional
connectivity maps are thresholded at
p < 0.001. There were only minimal differ-
ences between realigning the data using the
estimated versus actual motion. However,
regressing out the estimated motion reduced
the motion artifact (c, f), while regressing out
the actual motion did not (b, e). AFNI,
Analysis of Functional NeuroImages. Color
images are available online.

FIG. 8. Estimated motion from a simulated brain volume moving through either (a) a constant or (b) a nonuniform RF coil
sensitivity profile. The estimated motion from a brain moving through a constant (uniform) RF coil sensitivity profile shows
the large simulated movement in the A–P direction and no systematic changes in the other directions. The estimated motion
from a brain moving through a nonuniform RF coil sensitivity profile shows the large simulated motion in the A–P direction,
as well as small changes in the other directions that coincide with the periods of movement. Color images are available online.
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FIG. 9. Histograms of the Spearman’s rank correlation, across subjects, of the mean volume-to-volume motion (Enorm)
and the functional connectivity for all pairwise connections from 230 ROIs, for different sets of nuisance regressors to reduce
motion-related signal changes: J = JumpCor regressors, W = average signal over eroded white matter and its temporal deriv-
ative, C = average signal over ventricular CSF and its temporal derivative, G = average signal over the whole (global) brain
and its temporal derivative, M = estimated realignment parameters. (a) Without any nuisance regression (none, black line),
most connections are highly correlated with motion. When JumpCor regressors are removed (red line), the correlation with
motion is significantly reduced, being more centered around zero. The correlation is further reduced by regressing out motion,
white matter, CSF, and global signals, and even further reduced by regressing out these nuisance regressors and the JumpCor
regressors. Null distribution is obtained by permuting the mean framewise displacement across subjects and then recomput-
ing the Spearman’s rank correlation. (b, c) Histograms for different thresholds for what is considered a ‘‘jump.’’ (b) after
regressing out only the JumpCor regressors; (c) after regressing out the JumpCor regressors ( J), average signal over eroded
white matter and its temporal derivative (W), average signal over ventricular CSF and its temporal derivative (C), G = average
signal over the whole (global) brain and its temporal derivative (G), and the estimated realignment parameters (M). Reducing
the jump threshold reduces the correlation with motion when only the JumpCor regressors are removed. When all of the nui-
sance regressors are removed, different jump thresholds have only a small effect. ROI, region-of-interest. Color images are
available online.

FIG. 10. Box plots showing the similarity between each subject’s functional connectivity matrix and the group average
functional connectivity matrix, for different sets of nuisance regressors: None, J = JumpCor, M = estimated motion parame-
ters, W = average signal over white matter and the temporal derivative, C = average signal over CSF and the temporal deriv-
ative, G = average signal over the whole brain (global) and the temporal derivative. **( p < 0.001), n.s. ( p > 0.2). The
inclusion of the JumpCor regressors together with the estimated motion (M) and tissue based regressors (W, C, G) results
in a significant increase in similarity between the individual subject and group connectivity matrices. No significant differ-
ences in similarity were observed with versus without the inclusion of the global signal and its derivative when the other
regressors ( J, M, W, C) were included. n.s., not significant. Color images are available online.
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Enorm (Supplementary Fig. S8). Similar results were
obtained when examining the correlation with the maximum
jump amplitude, median jump amplitude, and number of
jumps (Supplementary Fig. S9).

Removing jumps in motion using the JumpCor regressors
resulted in a significant increase in similarity compared to
regressing out only white matter, CSF, global signals, and
their derivatives (Fig. 10). Regressing out the estimated
head motion resulted in even higher similarity. The similarity
further improved when the tissue-based regressors were
combined with the estimated head motion. The addition of
the JumpCor regressors to the estimated head motion and
tissue-based regressors resulted in a significant increase in
similarity ( p < 0.001). Regressing out the global signal and
its derivative did not have a significant impact on similarity
when the other tissue based regressors and estimated head
motion were regressed from the data (Supplementary Fig. S7).

The effect of different jump thresholds

For higher thresholds (e.g., 20 mm) very few jumps are
identified, and the correlation of the absolute value of func-
tional connectivity with motion is similar to that when no
nuisance regression is performed. As the jump threshold is
lowered, the correlation with motion decreased, until a
threshold of about 5 mm, with relatively little difference
for smaller jump thresholds (Fig. 9b). When the average
white matter, ventricular CSF, and global signals were
regressed from the data, different jump thresholds had rela-
tively little effect (Fig. 9c).

Discussion

Large head motion can result in significant residual motion-
related signal changes even after realignment and motion cen-
soring, in large part due to the head moving into different parts
of the coil sensitivity profile. Our proposed correction tech-
nique, JumpCor, successfully reduces these changes when
they occur infrequently during the imaging run.

Somewhat surprisingly, regressing out the estimated head
motion parameters (a common preprocessing step in resting-
state fMRI) also successfully reduces these motion artifacts.
The reason this result is surprising is that the signal change
resulting from head motion is not necessarily linearly related
to the head motion, particularly if the coil sensitivity profile
is spatially nonlinear and if the motion is large relative to
this sensitivity profile (e.g., as illustrated in Supplementary
Fig. S4).

Our simulations suggest that nuisance regression of the mo-
tion parameters is likely successful because the signal changes
resulting from moving into a different part of the coil sensitiv-
ity affect the estimated head motion in such a way that the six
realignment parameters form a basis set that can model a
wider array of motion-induced signal changes. Therefore, nui-
sance regression of the six realignment parameters can reduce
artifacts even for very large movements.

In this simulation, we examined different amounts of mo-
tion (one voxel and three voxels), directions of motion (A–P,
L–R), and temporal patterns of motion (A–P translation and
motion estimated from one infant). In all cases, the estimated
motion parameters had slight errors that provided a basis set
to estimate the resulting signal changes. However, there is no
way to test and examine all possible types of motion, objects,

and coil sensitivity profiles, and therefore, there is no way to
guarantee that the regression of estimated motion parameters
will always work so well. Therefore, if residual signal
changes from occasional jumps in motion remain, JumpCor
could be used to reduce them.

Although the motion-induced signal intensity changes are
reduced by either JumpCor or motion parameter nuisance re-
gression, our simulation shows that large movement through
a nonuniform coil sensitivity can result in slight errors in the
realignment. How significant is this misalignment? In our sim-
ulation, a movement of –10.5 mm resulted in erroneous motion
estimates of up to –0.5 mm. Although we are often concerned
with movements as low as 0.2 mm in functional connectivity
studies, here we have already censored time points with an
Enorm >0.2 mm, and using either JumpCor or the regression
of the estimated motion we have reduced the signal intensity
changes associated with this movement. Therefore, these sig-
nal changes should not contribute to false connectivity.

An alternative strategy if alignment errors are of concern
is to use a realignment technique that is not as sensitive to
the difference in signal intensity, such as boundary-based
registration. Nevertheless, even if the realignment is accu-
rate, signal changes resulting from moving into different
parts of the coil sensitivity pattern would remain. These
changes would not necessarily be reduced by regressing
out the accurately estimated motion parameters (e.g., as
shown in Fig. 7b, f). In this case, JumpCor could be used
to reduce the residual motion-reduced signal changes.

While group functional connectivity maps (Fig. 4, Supple-
mentary Figs. S1–S3) showed very little difference between
including or not-including the JumpCor regressors, the ef-
fects of JumpCor were more significant at the individual sub-
ject level. JumpCor significantly increased the similarity
between the individual connectivity maps and the group av-
erage, reducing between-subject variability associated with
the large ‘‘jumps’’ in signal due to head motion.

The finding that censoring an additional 10 sec of data
after each jump did not change the results suggests that the
observed motion-related signal changes in this sample are
not due to spin-history effects associated with the jumps.
Furthermore, gray plots (Supplementary Figs. S10–S13)
show prolonged signal increases or decreases in the period
between jumps (green and yellow arrows, respectively), con-
sistent with moving into a different part of the RF coil sensi-
tivity, but no clear transient effects after each jump as may be
expected with spin-history effects. Both JumpCor and the re-
gression of estimated motion reduce these prolonged signal
changes. The global signal changes remaining after JumpCor
were not synchronized with the motion. These residual signal
changes are most likely due to physiological noise (e.g.,
aliased respiration) since similar global fluctuations were
also observed in subjects who showed relatively little head
motion (Supplementary Fig. S12–S13).

The motion threshold that should be used to define a
‘‘jump’’ is a tradeoff between flexibility in modeling motion
and degrees of freedom. In our dataset, a threshold of 1 mm
reduced motion artifacts while only requiring an additional
2–8 degrees-of-freedom (1–7 jumps, median 3). Accounting
for the degrees of freedom is important to estimate statistics
correctly, and many common preprocessing approaches,
such as temporal filtering, can significantly reduce the de-
grees of freedom. The numbers of additional JumpCor
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regressors are relatively small, but should be considered in
the context of other processing choices, the duration of the
imaging run, and the total number of data points acquired.

In our data, the correlation with mean Enorm decreased
with lower jump thresholds, but with similar results for 1
and 5 mm thresholds (Fig. 9b). However, when the estimated
motion was regressed from the data, different jump thresh-
olds had minimal effect (Fig. 9c). This minimal effect is
likely because the estimated motion parameters are already
reducing the motion artifact.

The JumpCor technique presented here regressed out a
constant for each segment between the jumps. In principle,
one could increase the number and order of polynomials to
account for more complex signal dynamics, such as those
resulting from spin-history effects.

An alternative approach to reduce the effects of large move-
ments in the presence of nonuniform coil sensitivity is to es-
timate the bias fields from the acquired images and then
correct for the spatial nonuniformity (Seshamani et al.,
2014). Finally, an alternative strategy to reduce motion arti-
facts is to use prospective motion correction (Thesen et al.,
2000; Todd et al., 2015; Ward et al., 1998, 2000). Unfortu-
nately, this technology is not yet available on all scanners
and does not correct for variations in signal intensity due to
the brain moving into a different part of the coil sensitivity.
Our proposed technique provides a relatively simple method
to deal with this artifact when such technology is unavailable.

Conclusions

Residual head motion-related signal changes in fMRI result-
ing from moving into a different part of the RF coil sensitivity
can be successfully corrected by regressing out the estimated
head motion, even when the motion is relatively large. In addi-
tion, we present an alternative correction method, JumpCor,
that reduces motion artifacts resulting from large infrequent
head movements (jumps). This technique significantly reduces
artifacts and improves the quality of functional connectivity es-
timates when combined with the typical preprocessing ap-
proach (regressing out the estimated head motion and tissue
based regressors). We therefore recommend that JumpCor be
added to the typical nuisance regressors used to reduce noise
when large jumps in motion are present in the data.

This technique, as well as the knowledge that regression of
estimated motion successfully reduces motion artifacts even
in the presence of very large head motion (several mm),
should reduce the data loss in studies where participants ex-
hibit this type of motion, such as sleeping infants. JumpCor
could prove to be a great advantage in developmental neuro-
imaging studies.
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