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SUMMARY

Homozygous familial hypercholesterolemia (HoFH) is an extremely rare meta-
bolism disorder usually caused by low-density lipoprotein receptor (LDLR) muta-
tions. LDLR genotype is commonly known to determine blood concentrations of
LDL cholesterol. However, effects of LDLR genotype on holistic metabolome
remain unclear. Herein, we present metabolomic, genetic, and clinical datasets
from a large multi-center panel of 142 patients with LDLR-mutated HoFH.
We found that true homozygotes and compound heterozygotes showed few dif-
ferences in clinical and metabolomic phenotypes. Compared with defective/
defective mutation carriers, patients carrying one or two null mutation showed
profound alterations in clinical laboratory lipids and serum cholesterol esters,
lysophosphocholines, bile acids, and amino acids. Importantly, these altered me-
tabolites are implicated in multiple biochemical reactions and associated with LDL
cholesterol. This study extends the first map of different LDLR genotypes influ-
encing the metabolome and suggests that the small-molecule metabolites serve
as potential targets to mitigate the deleterious impact of LDLR mutations on
HoFH.

INTRODUCTION

Homozygous familial hypercholesterolemia (HoFH) is an extremely rare, but devastating inborn errors of
metabolism disorder (Thompson et al., 2018). HoFH is commonly caused by biallelic mutations in genes
involved in the catabolism of low-density lipoprotein cholesterol (LDL-C) (Cuchel et al., 2014). These mu-
tations lead to decreased clearance of LDL-C from blood, and consequently to extremely elevated
LDL-C levels and increased risks for premature cardiovascular diseases and death (Cuchel et al., 2013,
2014). Currently, its global prevalence is estimated to be between 1:160,000 and 1:400,000 (Beheshti
et al., 2020; Tromp et al., 2022). In China, it was estimated that there are between 2,000 and 5,000 individ-
uals with HoFH, in line with a prevalence of 1:300,000 to 1:600,000 (Chen et al., 2019; Jiang et al., 2022).

More than 90% of patients with HoFH have two pathogenic variants in gene encoding low-density lipopro-
tein receptor (LDLR). Patients may carry two same mutated LDLR alleles (true homozygotes) or two different
variants (compound heterozygotes) in either LDLR allele (Bertolini et al., 2020; Sjouke et al., 2015). The cell-
surface LDLR is the key protein that maintains the level of cholesterol in hepatocytes by controlling the rate
of LDL-C uptake from circulation. Different LDLR mutations might cause different impacts on LDLR protein
expression and LDL-C uptake cycle. Regarding the type of LDLR pathogenic variants, two major classes
based on phenotypic effects have been proposed, including null mutations and defective mutations (Cu-
chel et al., 2014; Santos et al., 2016). Generally, patients carrying of null LDLR mutations exhibit a more
aggressively elevated LDL-C than those carrying of two defective variants (Alves et al., 2020; Raal et al.,
2020).

Metabolomics has been broadly acknowledged to be the omics discipline that is closest to the phenotype
(Guijas et al., 2018). High-throughput metabolomic analysis provides an unbiased and holistic view on the
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2021). Metabolome senses DNA variations and causes perturbations in individual biochemical phenotypes
that ultimately influence the phenotypic presentation in inborn errors of metabolism disorders (Argmann
et al., 2016; Vernon, 2015).

Recent metabolomic studies revealed that patients with heterozygous familial hypercholesterolemia
(HeFH) and LDLR™~ mice that mimic human HoFH with two LDLR null variants did not just simply form
an LDLR-specific lipoprotein spectrum, but also presented a variety of significantly changed small-mole-
cule metabolites. Of note, most of these altered metabolites are not the direct production of LDLR path-
ways. More importantly, these metabolic alterations were implicated in multiple biological processes and
closely associated with the development of atherosclerotic cardiovascular diseases (Lauterbach et al.,
2020; Li et al., 2015; Olkowicz et al., 2021; Saulnier-Blache et al., 2018). However, current knowledge of
LDLR mutations-caused HoFH is limited in the datasets of clinical laboratory and genetic tests; information
on metabolomic effects of LDLR genotypes are still lacking.

We hypothesized that the different LDLR genotypes that result in heterogeneous clinical phenotypes might
also render an altered metabolomic phenotypes in patients with HoFH. Therefore, in the present study, we
performed a comprehensive metabolome analysis to examine the serum metabolome map of 142 patients
with HoFH with different LDLR genotypes. We sought to investigate the potential links between LDLR
genotypes and metabolomic phenotypes and infer potential molecular mechanisms underlying the asso-
ciation between LDLR genotypes and clinical phenotypes of unknown origin in HoFH.

RESULTS

Demographic and clinical characteristics of study subjects

Atotal of 142 patients with HoFH with genetically identified LDLR gene mutations participated in the study.
The detailed characteristics of LDLR mutations were summarized in Table S1. According to the classical cat-
egories in HoFH population, all patients were firstly subdivided into true homozygous group (TH: n = 33;
ages =23.8 + 8.1; male, 48.5%) and compound heterozygous group (CH: n = 109; ages = 20.2 + 13.1; male,
51.4%). Then, we grouped the participants into three groups according to the LDLR status as follows: defec-
tive/defective group (n = 58; ages = 21.4 + 12.4; male, 51.7%), null/defective group (n = 61; ages = 20.5 +
12.7; male, 51.0%), and null/null group (n = 23; ages = 22.1 + 9.6, male, 47.8%). The detailed grouping cat-
egories and clinical characteristics of study patients were depicted in Figure 1A and summarized in Table 1.

Hypertension and cardiovascular disease (CVD) were recorded in four and forty-two subjects, respectively.
Although no significant difference was observed in the prevalence of CVD in each subgroup comparison,
the results demonstrated that patients with LDLR null/null mutations (43.5%) exhibited a higher trend in the
prevalence of CVD than those with null/defective (29.5%) and defective/defective (26.9%) mutations. No
significant difference was observed in the lipid-lowering treatments (LLT) and the concentrations of clinical
laboratory lipids between TH and CH groups. In addition, there was also no significant difference in LLT
status among the defective/defective, null/defective, and null/null groups. Null/null group had the highest
levels of LDL-C, total cholesterol (TC), triglycerides (TG), and apolipoprotein B (APOB). This is followed by
null/defective and defective/defective groups (Table 1).

Metabolomic phenotypes of true homozygotes and compound heterozygotes

Using UPLC-QTOF/MS, we identified 808 circulating metabolites in the serum of study patients, with 245
metabolites being annotated by chemical standards. The relative standard derivations (RSD) of the distri-
bution for the identified metabolites in the quality control (QC) samples are shown in Figure STA. A total of
696 metabolites with less than 20% RSD of peak intensity were included for unsupervised principal compo-
nent analysis (PCA). The resultant PCA scores plot demonstrated that the QC samples were clustered
closely (Figure S1B), indicating that the proposed metabolomic approach was robust and reproducible
for further analysis. The treemap-based distribution of identified metabolites into each metabolic category
was as follows (Figure 1B): phospholipids (17.4%), fatty acyls (9.3%), lysophospholipids (9.1%), carbohy-
drates (9.5%), amino acid and its derivatives (7.8%), organic acids (6.9%), nucleotides (6.3%), triacylglycerols
(4.7%), sphingolipids (3.4%), bile acids (4.0%), carnitines (2.6%), cholesterol esters (1.9%), benzenoids
(1.7%), and indoles (1.6%).

To investigate the potential differences in the sera metabolome phenotypes of patients with HoFH with TH
and CH, both unsupervised and supervised multivariate statistical analysis (MVA) models were performed.
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Figure 1. Study design and multivariate statistical pattern analysis of metabolomic data

(A) Grouping design of the study patients.

(B) Treemap overview for the category distribution of identified metabolites.

(C and D) PCA and PLS-DA scores plot of the metabolomic data from serum samples of patients with TH and CH; each point represents an individual serum
sample.

(E) PLS-DA permutations plot of metabolomic data of TH and CH groups; each green point and black point represents R2-value and Q2-value, respectively.
The criteria for PLS-DA model validity: All Q2-values to the left are lower than the original points to the right; The left regression line of the Q2-points is below
zero; all R2-values to the left are lower than the original point to the right.

(F-H) PCA scores plot, PLS-DA scores plot, PLS-DA permutations plot of the metabolomic data from defective/defective, null/defective, and null/null
groups.

By using the datasets of all identified 696 serum metabolites, the unsupervised PCA score plot showed un-
satisfactory classifications between TH and CH groups (Figure 1C). Furthermore, the supervised partial
least squares discriminate analysis (PLS-DA) scores plot and permutations plot (Figures 1D and 1E) also
demonstrated a poor separation between TH and CH groups and indicated a lower explanatory and
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Table 1. Demographic and clinical characteristics of all subjects

True Compound Defective/
homozygosity heterozygosity Defective Null/Defective  Null/Null
Total (n=142) (n=33) (n=109) P (n =58) (n=61) (n=23) P

Ages 21.1 £ 121 23.8 £+ 8.1 20.2 £ 131 0.14 214 + 124 20.5 + 12.7 221+ 9.6 0.85
Male sex, n (%) 72, (50.1%) 16, (48.5%) 56, (51.4%) 0.77 30, (51.7%) 31, (51.0%) 11, (47.8%) 0.95
Hypertension, n (%) 4, (2.8%) 1, (3.0%) 3, (2.8%) 0.93  2,(3.4%) 2, (3.3%) 0, (0.0%) 0.67
CVD, n (%) 42, (30.3%) 8, (24.2%) 35, (32.1%) 0.39 15, (26.9%) 18, (29.5%) 10, (43.5%) 0.29
LDL-C, mmol/L 10.55 + 3.63 10.35 + 2.82 10.61 £ 3.86 0.72 875+ 3.39 11.36 + 3.43 12.96 + 2.52 <0.0001
TC, mmol/L 12.47 + 3.67 12.21 £ 3.07 12.55 + 3.84 0.65 10.68 + 3.49 13.20 + 3.31 15.06 + 2.84 <0.0001
TG, mmol/L 0.97[0.69, 1.41]  1.11[0.59, 1.48] 0.95[0.71,1.40] 0.78 0.90[0.61,1.24] 0.82[0.69, 1.59] 1.30[1.11, 1.48]  0.0025
HDL-C, mmol/L 0.85 + 0.38 0.91 +£ 0.36 0.83 + 0.34 0.31 0.93 +£ 0.31 0.81 £+ 0.41 0.74 £+ 0.45 0.077
APOB, g/L 2.47 £+ 0.64 247 + 0.56 2.48 £+ 0.67 0.94 2.20 + 0.64 2.60 + 0.54 2.89 +£0.43 <0.0001
LP(a), mg/dL 41.0[21.0,75.0] 40.0[24.1,57.0] 43.1[18.0,77.2] 0.44 44.9[17.6,658] 41.0[23.0,76.3] 33.4[16.0,72.3] 0.56
Statin alone 9, (6.3%) 2, (6.1%) 7,(6.4%) 0.94 6,(10.3%) 2, (3.3%) 1, (4.3%) 0.26
Statin + Probucol 22, (15.5%) 6, (18.1%) 16, (14.7%) 0.63 11, (19.0%) 8, (13.1%) 3, (13.0%) 0.64
Statin + Ezetimibe 111, (78.2%) 25, (75.8%) 86, (78.9%) 0.70 41, (70.7%) 51, (83.6%) 19, (82.7%) 0.20

Continuous data are presented as mean + SD or median [interquartile range], categorical variables are presented as %. Two-tailed Student’s t test or Mann
Whitney U test were used for continuous data in comparison of true homozygosity and compound heterozygosity. One-way ANOVA or Kruskal Wallis test
was used for continuous data in comparison of defective/defective, null/defective, and null/null groups. The Chi-square test was used for categorical data.
CVD, cardiovascular disease; LLT, lipid-lowering therapy; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triglycerides; HDL-C, high-density
lipoprotein cholesterol; APOB, apolipoprotein B; Lp(a), lipoprotein (a).

predictive ability (R2 = 0.137; Q2 = 0.105; CV-ANOVA p value = 0.0789). These results suggested that the
overall metabolite profiles could not discriminate patients with HoFH with TH and DH.

LDLR null mutations associated with significant metabolomic changes

We further investigated whether different LDLR functional status (carriers of null mutations or defective mu-
tations) could cause prominent changes in the sera metabolome of patients with HoFH. By using the overall
datasets of 696 metabolites, unsupervised PCA of was firstly performed to obtain an overview of metabolomic
phenotypes among the three groups. As shown in Figure 1F, PCA score plots showed a partial discrimination
between the null/null, null/defective, and defective/defective groups. A distinct group separation was
achieved by supervised PLS-DA scores plot (Figure 1G) with an excellent fitness, as evidenced by higher
values of R2, Q2 (R2 = 0.432; Q2 = 0.484), and significant CV-ANOVA p value (<0.0001). A satisfactory predict-
ability without overfitting was also highlighted in the permutations plot (all Q2 and R2 values are lower than
the original points, Figure TH). These results indicated that patients with HoFH carrying different functional
LDLR mutations (null or defective) exhibited a significant heterogeneity in the serum metabolome.

To determine which metabolomic changes are mainly associated with LDLR functional status, we employed
multivariate variable importance projection (VIP) plot and univariate volcano plot analyses to identify the
discriminatory metabolites contributing to the separations among null/null, null/defective, and defec-
tive/defective groups (Figures 2A and S1C). A total of 41 differentially expressed metabolites among three
groups were identified and summarized in Table S2. Notably, most of the differentially expressed metab-
olites between null/null and defective/defective groups were also significantly altered between null/defec-
tive and defective/defective groups.

Using the normalized levels of these differentiated metabolites, the cluster trends between groups were
visualized by hierarchical clustering heatmap and PCA score plot (Figures 2B and 2C). From the resultant
graphs, it was evident that the null/null and null/defective groups were clustered nearby and were distinct
from defective/defective group. Patients carrying null/null variants exhibited the most aggressive pheno-
type in the perturbed sera levels of free cholesterol, cholesterol esters (CE), bile acids, triacylglycerides
(TAG), lysophosphocholines (LysoPC), fatty acids, long-chain carnitine, purines, and amino acids (as shown
in Figure 2B and Table S2). The differential metabolites obtained from the comparison of null/null group
versus defective/defective group and null/defective group and defective/defective group exhibited
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Figure 2. Metabolomic signatures associated with LDLR functional status

(A) VIP plots of each metabolite variation in pairwise comparisons of defective/defective, null/defective, and null/null groups; the dashed lines indicate the
threshold for the significant differences.

(B) Hierarchical clustering heatmap of LDLR status-associated metabolite intensities in different groups.

(C) PCA scores plot of the differentiated metabolites; each point represents an individual sample. CE = cholesterol esters, TAG = triacylglycerides, LysoPC =
lysophosphocholines, LysoPC O = alkyl LysoPC, LysoPE O = alkyl lysophosphoethanolamines, LysoPA = lysophosphatidic acid, LPI = lysophosphatidylinositol.

significant enrichments in various identical metabolic pathways, mainly including fatty acid metabolism,
betaine metabolism, retinol metabolism, steroid metabolism, multiple phospholipids metabolism, and
amino acids metabolism (Figure 3A).

Regression analyses of LDLR null mutations-associated metabolite signatures

Our results indicated that carriers of one or two null LDLR variants might cause profound sera metabolome
perturbations than two defective LDLR variants carriers (Figure 2B and Table S2). To further validate and
confirm the associations between metabolomic signatures and null LDLR mutations, regression analyses
were calculated using multiple covariates adjustments.
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Figure 3. Metabolic pathway enrichment and regression analyses

(A) Pathway enrichment analysis of the differentiated metabolites that distinguished the study groups; the bubble size refers to the enrichment factor of the
pathway and the color represents the natural log of the pathway p value.

(B) Correlation plot depicting the relation of each metabolite and LDLR status; positive or negative B-coefficient values indicate a positive or negative
correlation between metabolites and LDLR status (at least LDLR null mutation: null/null or null/defective), FDR-adjusted p < 0.05 was considered as
significant threshold, n.s. represents no significance; Model 1: Adjustments for ages, gender, and CVD history; Model 2: Adjustments for all variables in
model 1 and clinical lipids (TC, TG, LDL-C, HDL-C, Lp(a), and APOB). NN = null/null, DD = defective/defective, ND = null/defective. Other abbreviations are
seen in Figure 2.

We firstly constructed the regression analyses adjusted for the well-known important modifiers in metab-
olome changes, including ages, gender, and CVD (Model 1, Figure 3B). The results demonstrated that 40
in 41 analytes (exception of TAG 52:2) demonstrated significant associations with at least one LDLR null
mutation (p < 0.05), indicating that the associations between the identified metabolite signatures and
null LDLR mutations were independent of the commonly known metabolic factors. After stepwise adjust-
ment for all tested clinical lipids (Model 2, Figure 3B), a broad array of metabolites (25 in 41 metabolites)
still remained significantly associated with LDLR null mutations, mainly including histidine, hypoxanthine,
lysine, purine, serine, taurine, phenylalanine, methionine, glutamine, betaine, retinoic acid, glycocholic
acid, linoleic acid, palmitic acid, stearoyl-carnitine, two CE species, two TAG species, and several
lysophospholipids. These results indicated that LDLR-null mutations might also cause a variety of
metabolome alterations, in addition to the well-known LDLR pathway-altered lipoproteins, such as
LDL-C and APOB.

Metabolomic signatures network correlates with phenotypic alterations in clinical lipids

As described above, patients carrying one or two LDLR null mutations showed remarkable differences in
the circulating levels of clinical lipids and sera metabolome compared with two defective LDLR mutations
carriers. To further investigate the association between altered metabolites and clinical lipid features, cor-
relation analysis was calculated using Spearman’s rank correlation coefficients and debiased sparse partial
correlation (DSPC) network. The resultant Spearman’s rank correlogram (Figure 4A) demonstrated that the
free cholesterol, retinoic acid, palmitic acid, palmitoyl-carnitine, stearoyl-carnitine, betaine, phenylalanine,

6 iScience 25, 105334, November 18, 2022



iScience

Hypoxanthine
A Betaine B
Lysine . Hypoxanthine
! Serine
Taurine
[+ Histidine
Glutamine . Betaine
| Phenylalanine
Purine

Methionine . Phenylalanine
Sphingosine

Retinoic acid @ Peimitic acid @ vssoPat60
3-Indoxyl sulfate

Cholesterol

CE 18:1 . Palmitoyl-carnitine

CE 18:0

CE 16:1 oy LysoPC 18:1

CE 16:0 . Histidine . ¥

Cholic acid

Glycocholic acid . LysoPC 16:0

Taurocholic acid

Linoleic acid . LysoPC 18:0

Palmitic acid . LysoPC 0-18:1 . Lysine

Docosahexaenoic acid . LysoPC 0-18:2 )
Palmitoyl-carnitine . LysoPC16:1

Stearoyl-carnitine . Cholic acid
TAG 52:3 @ usorc 182

TAG 52:2 W @ retinoic acid
TAG 54:2

TAG 54:3 © cesi
LysoP!I 18:0 | B M oc
LysoPI 18:1

LysoPA 16:0 H eos @ crotesterol
LysoPC 18:1 | S
LysoPC 16:1

LysoPC 18:2
LysoPC 16:0

LysoPC 18:0 . Glycocholic acid . CE 16:1
LysoPC O-18:1

LysoPC O-18:2 CE160
LysoPE O-18:2 . ’

O
Q
—

80

90

. Stearoyl-carnitine

'0-

20-
060600060006 6
0606000600 06
6066066006-606 - 6

0

0

. Taurocholic acid

90

80
0000600606066
0000006 606
060606e0ee6e6

@]

TC
TG

LDL-C
APOB

=
a
I

Figure 4. Differential metabolites correlated with clinical lipids

(A) Spearman'’s rank correlation heatmap depicting the relationship of each LDLR status-associated metabolites with
clinical lipids. Positive correlations are displayed in red and negative correlations in blue. Color intensity and size of the
circle are proportional to the Spearman correlation coefficients. In this correlogram, correlations with p < 0.05* or

p < 0.01** are considered significant.

(B) Debiased sparse partial correlation network plot visualizing the major relationships of clinical lipids and key
metabolites; circles represent metabolites, squares represent clinical lipids, the solid lines indicate positive correlation,
the dashed lines indicate negative correlation, the thickness of the edges represents the strength of the partial correlation
coefficients (Jcoefficients| ranges from 0.5 to 1.0). Abbreviations are seen in Figure 2.

bile acids, CE species, and LysoPC species were positively associated with LDL-C, TC, and APOB, whereas
lysine and histidine were negatively associated with these clinical lipid markers.

As metabolites act in a coordinated manner and not in isolation, an association network between metab-
olites and the clinical lipids could provide valuable insights into the underlying processions. As shown in
Figure 4B, the DSPC network was dominated mainly by retinoic acid, palmitoyl-carnitine, stearoyl-carnitine,
cholesterol, betaine, phenylalanine, lysine, histidine, CE species, LysoPC species, and 12a-hydroxylated
primary bile acids (cholic acid, taurocholic acid, and glycocholic acid). They were significantly correlated
with each other. In line with the Spearman’s rank coefficients (Figure 4A), most of these altered metabolites
were also positively correlated with TC, LDL-C, and APOB.

DISCUSSION

LDLR genotype is the strongest prevalent genetic risk factor for HoFH and plays determined roles in the
sera concentrations of LDL-C (Banerjee et al., 2019; Zhao et al., 2020). Different pathogenic mutations in
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LDLR gene may affect LDLR protein expression and activity, resulting different uptake rates of LDL-C from
circulation (Santos et al., 2016; Zhao et al., 2020). Besides the limited information on the circulating levels of
LDL-C, the impact of LDLR genotype on holistic metabolism in human HoFH remains largely unknown. To
our knowledge, the current study marks the first metabolomic analysis that compares sera metabolome of
patients with HoFH with different LDLR genotypes and identifies previously unknown LDLR genotypes-
associated metabolomic signatures and pathways. The associations of metabolome alterations with
LDLR genotypes and clinical laboratory alterations provide potential molecular targets and may help in giv-
ing future directions for discovering additional therapeutical strategies in patients with HoFH, specifically
null LDLR variants carriers.

As previously described mostly in European, Iberoamerica, and North American populations (Alves
et al., 2020; Luirink et al., 2019; Raal et al., 2016; Sanchez-Hernandez et al., 2016), patients with TH
carrying two identical LDLR mutations showed more severe hypercholesterolemia than patients with
DH carrying two differential LDLR mutations. Recent studies within a smaller number of Chinese patients
with HoF also revealed that individuals with TH showed higher untreated-LDL-C levels than individuals
with CH (Jiang et al., 2022). Interestingly, the present revealed that the patients with TH and
patients with CH who had received similar LLT exhibited few differences in the levels of all tested clinical
lipids and sera metabolome phenotype (Table 1 and Figures 1C and 1D). The pathogenic status of LDLR
mutations plays critical roles in determining the circulating cholesterol levels (Sniderman et al., 2022). Pa-
tients with TH may carry two LDLR defective mutations (residual LDLR function ranging from 2% to 25%),
whereas subjects that are CH can bear one or two LDLR null mutations (residual LDLR function <2%)
(Alves et al., 2020; Raal et al., 2020). Patients with HoFH carrying one or two LDLR null mutations may
show a higher level of circulating LDL-C and TC than those carrying two LDLR defective mutations
(Drouin-Chartier et al., 2017). Thus, the observed phenotypes of clinical lipids between the TH and CH
that differed from previous reports may be explained by the LDLR mutation types and LLT status of
the study subjects.

Another important finding of our study was that different LDLR functional mutations could lead to remark-
able differences in the clinical and metabolomic phenotypes of patients with HoFH. Patients carrying two
LDLR null mutations had the highest serum levels of LDL-C, TC, APOB, and TG and highest prevalence of
CVD. This is followed by those with LDLR null/defective mutations and those with two LDLR defective mu-
tations. In the view of metabolome, carriers of one or two LDLR null mutations also exhibited more aggres-
sive phenotype in the elevation of free cholesterol, retinoic acid, primary bile acids, long-chain carnitines,
CE species, and LysoPC species than those with two defective LDLR mutations. Importantly, these metab-
olomic signatures were mapped to multiple metabolic pathways and significantly correlated with the levels
of HoFH-related clinical lipids, including LDL-C, TC, and APOB.

CE and LysoPC are the major basic elements of LDL-C (Luo et al., 2020; Zhou et al., 2019). Consistent with
the discriminating capabilities of LDL-C in distinguishing patients with null/null, null/defective, and
defective/defective mutations (Table 1), a variety of CE and LysoPC species in serum samples also showed
significant discriminating power (Table S2). In addition, the correlation and network analyses demonstrated
that these altered small-molecular lipids were positively correlated with the direct metabolic markers in the
defected LDLR pathway, including LDL-C, TC, and APOB (Figure 4). Previous evidence indicated an intri-
cate connection between CE biosynthetic pathways and LysoPC metabolism. CE can be produced by trans-
fer of a fatty acid from the phosphatidylcholines to cholesterol, resulting in the formation of LysoPC (Claria
et al., 2021; Huang et al., 2020). Furthermore, previous studies also revealed that LysoPC administration
could also induce a significant elevation of cholesterol in LDLR™~ mice, and induce cholesterol biosyn-
thesis in macrophages (Cha et al., 2018; Mukherjee et al., 2018). Thus, the increased circulating LysoPC
in the sera of patients with HoFH with LDLR null mutations might also promote cholesterol-related
small-molecular lipids and lipoprotein accumulation.

LysoPC is also known as the major element and hydrolyzed production of LDL-C and oxidized LDL-C,
which is a useful marker of oxidative stress in hypercholesterolemic subjects (Kim et al., 2020). In addi-
tion, this study also demonstrated several oxidative stress-associated hydrophilic metabolites were asso-
ciated with LDLR genotypes. We observed patients with HoFH with one or two null mutations expressed
lower sera levels of methionine, taurine, histidine, and glutamine than those carrying two defective mu-
tations. These metabolites have been reported to act as the endogenous free radical scavenger for
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reactive oxygen species (Afolabi et al., 2022; Chen et al., 2012; Watanabe et al., 2008). Interestingly, the
decreased plasma level of taurine, methionine, and glutamine was also observed in the comparisons of
LDLR null/null mice versus wild-type mice and patients with HeFH versus normolipidemic subjects (Olko-
wicz et al., 2021). Furthermore, we also identified the elevation of serum hypoxanthine and purine was
positively with null LDLR mutations. Hypoxanthine is a downstream product in the purine degradation
pathway. The elevated hypoxanthine has been demonstrated to be a marker of oxidative stress (Irvine
et al., 2022). These evidences suggest that declined metabolic antioxidants and elevated purines reflect
a more severe oxidative stress condition in null LDLR mutations carriers comparing to subjects carrying
defective mutations.

It is well documented that LDLR gene and its regulated pathway play a critical role in maintaining
cholesterol homeostasis in hepatocytes by controlling the rate of cholesterol uptake from circulating
LDL-C (Santos et al., 2016; Zhao et al., 2020). Interestingly, the present study demonstrated that several
LDLR genotype-associated metabolites were also implicated in the routes of cholesterol absorption and
excretion. In patients with one or two LDLR null mutations, the sera levels of retinoic acid and three
12a-hydroxylated bile acid species (including cholic acid, glycocholic acid, and taurocholic acid) were
significantly higher than those with two LDLR defective mutations. Retinoic acid is a functional
derivative of retinol which plays a vital role in regulating the cholesterol absorption genes expression
and 12a-hydroxylated bile acid synthesis (Hong et al., 2021; Pathak et al., 2013). 12a-hydroxylated bile
acid, the major products in the cholesterol excretion route, can also promote cholesterol absorption
and increase hepatic and plasma cholesterol. Inhibition of 12a-hydroxylated bile acid synthesis could
significantly prevent hypercholesterolemia in mice (Semova et al., 2022; Zurkinden et al., 2020). These
evidences suggested new insights into the additional signaling routes of LDLR in regulating cholesterol
homeostasis.

Limitations of the study

Some limitations warrant discussion. It is an observational cross-sectional clinical study that cannot
accurately establish causality of the observed associations. Functional assessments were not available
for all LDLR mutations identified in the present study. Future studies on determining the activity of
LDLR mutations and investigating the metabolite signatures in purified LDL-C will offer great
promise for a more comprehensive understanding of the effects of LDLR genotypes on HoFH to establish
mechanism-based precise therapy. Nevertheless, it is a large-scale and multi-center study investigating
over 140 individuals with LDLR-mutated HoFH with advanced metabolomic approaches, providing new
metabolism information which is beyond existing knowledge of LDLR genetic effects on this orphan dis-
ease. The collective evidence here suggests a possible role of small-molecular metabolites as interven-
tion point to mitigate the impact of LDLR pathogenic mutations in the pathophysiology progression of
HoFH.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Biological samples

Serum samples

Beijing Anzhen Hospital

https://www.anzhen.org/

Chemicals, peptides, and recombinant proteins

LC-MS grade acetonitrile Fisher Scientific Cat # A955-4
LC-MS grade methanol Fisher Scientific Cat # A456-4
LC-MS grade formic acid Fisher Scientific Cat # A117-50
L-phenyl-ds-alanine Sigma-Aldrich Cat # 615870
L-leucine-5, 5, 5-ds Sigma-Aldrich Cat # 486825
Stearic acid-18, 18, 18-ds Sigma-Aldrich Cat # 490393
Cholic acid-2, 2, 4, 4-d, Sigma-Aldrich Cat # 903809
L-arginine-d; Cayman Chemical Cat # 34834
PC (18:0/20:4)-d14 Cayman Chemical Cat # 27928
Stearoyl-L-carnitine-ds Cayman Chemical Cat # 26580
Cholesterol-d; Cayman Chemical Cat # 25265
LysoPC (19:0)-ds Avanti Polar Lipids, Inc. Cat # 855778
Critical commercial assays

TC Tellgen Corporation. BHO16Z

TG Tellgen Corporation. BHO017Z
APOB Tellgen Corporation. BH021Z

HDL Tellgen Corporation. BH018Z

LDL Beijing Strong Biotechnologies, Inc. EGS141Z
Lp(a) Beijing Strong Biotechnologies, Inc. GM9151Z

Deposited data

LC-MS raw data

This paper

https://service.most.gov.cn/

Software and algorithms

Progenesis Ql software

SIMCA-P software
SPSS Statistics
MetaboAnalyst

Bioinformatics platform

Waters, Manchester, U.K.

Umetric, Umea, Sweden
IBM Corp, New York, USA

https://www.metaboanalyst.ca

http://www.bioinformatics.com.cn/login/

https://www.waters.com/waters/en_US/

Progenesis-Ql-Software
https://www.sartorius.com/
N/A

N/A

N/A

RESOURCE AVAILABILITY
Lead contact

Further information and requests for reagent and resource may be directed to and will be fulfilled by the
lead contact, Prof. Yanwen Qin (ginyanwen@vip.126.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data reported in this paper will be shared by the lead contact upon request. Raw metabolomic data has
been deposited at https://service.most.gov.cn/ and is available from the lead contact and National Key
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Research and Development Program of China upon request. This paper does not report original code. Any
additional information required to reanalyze the data reported in this paper is available from the lead con-
tact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS
Human subjects

A total of 142 subjects (ages 21.1 £+ 12.1, male sex 50.1%) were enrolled from Beijing Anzhen Hospital, Pe-
king University First Hospital, and Suzhou Municipal Hospital between June 2015 and December 2021. This
study complies with the Declaration of Helsinki and was approved by the Ethics Committee of Beijing Anz-
hen Hospital of the Capital University of Medical Sciences and Peking University First Hospital. Verbal and
written consent was obtained from all subjects.

METHOD DETAILS
HoFH diagnosis and study design

Criteria for the diagnosis of HoFH were as follows: An untreated LDL-C > 13 mmol/L or a treated LDL-C >
8 mmol/L, either cutaneous or tendon xanthomas before the age of 10 years, together with two mutant al-
leles at LDLR, APOB, PCSK9, or LDLRAP1 genes(\Wu et al., 2021). Genotyping was obtained from patients if
it had been performed or tested according to our previously reported methods (Jiang et al., 2017, 2022).
Only subjects with two mutant alleles at LDLR gene were included in this study.

All study patients were further divided into true homozygous (carriers of two identical pathogenic variants
of LDLR) and compound heterozygous (carriers of two different pathogenic variants in either LDLR allele).
Assignment of functional status of LDLR variants were determined as previously described and classified as
either null or defective according to previous in vitro functional experiments, the National Center for
Biotechnology Information ClinVar database, LDLR-specific Leiden Open Variation database, and pre-
dicted dysfunctional effects of variants in silico analysis (Alves et al., 2020; Jiang et al., 2017; Thompson
et al., 2018): All LDLR variants with less than 2% activity verified by in vitro functional assays, nonsense, large
deletions, and frameshift variants were considered to be null variants. All other variants were classified as
defective. The pathogenicity classification of variants was annotated by using ClinVar database, LDLR-spe-
cific Leiden Open Variation database, and MLb-LDLr software (Larrea-Sebal et al., 2021).

CVD history for the subjects were defined as a composite of myocardial infarction, coronary and carotid
revascularization, ischemic or atherothrombotic stroke, premature carotid artery disease, peripheral artery
disease, and supra-aortic valve disease. Hypertension was defined as a condition in individuals with mean
office systolic blood pressure (SBP) > 140 mmHg or diastolic blood pressure (DBP) > 90 mmHg (three
consecutive measurements at 5-min intervals), or a condition in those who underwent antihypertensive
agent therapy with a defined history of hypertension.

Blood sample collection, transportation, and preservation

Blood sample was collected by trained technologists following a uniform standard guideline: After signing
the informed consent, we requested that the participants to record the time of dinner and maintain an over-
night fasting state of 10-12 h before blood collection in the next day. Blood sample was collected from the
antecubital vein of patients. All blood samples were collected into BD vacutainer serum separator tube
containing micronized silica particles (clot activators) and a polymer gel separator to obtain serum. All va-
cutainer were filled to capacity and were inverted five times immediately after blood drawing to mix the clot
activators with the whole blood. Serum was obtained after clotting for 30 min at room temperature fol-
lowed by centrifugation at 1300 xg for 20 min. Finally, three serum aliquots of 200 pL were transferred
into new plastic test tubes with no additives and stored at — 80°C. The processing time, collection location,
sample size, storage temperature, and technologist names for the blood collection were clearly recorded
in the three hospitals. All serum samples were transported to Metabolomics Analysis Platform, State Key
Laboratory of Natural and Biomimetic Drugs, Peking University by using ultra-low temperature cold chain.
Prior to metabolomic analyses, all samples were separated by centrifugation at 3000xg for 20 min. The
serum levels of LDL-C, TC, TG, APOB, Lp(a), and HDL-C were determined using an automatic biochemistry
analyzer (Beckman AU 5400, Brea, USA).
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Metabolomic analyses

Metabolomics analysis was performed as described previously (Du et al., 2021). Briefly, the metabolites
were extracted as follows: 50 plL serum was extracted by 4-fold volume of ice-cold acetonitrile: water
(1:1, v/v) containing internal standards (0.012 mg/mL L-phenyl-ds-alanine, 0.014 mg/mL L-arginine-d5,
0.10 mg/mL stearic acid-18, 18, 18-d3, 0.09 mg/mL L-leucine-5, 5, 5-d;, 0.10 mg/mL LysoPC (19:0)-ds,
0.04 mg/mL PC(18:0/20:4)-dyq, 0.04 mg/mL cholesterol-d;, 0.1 mg/mL stearoyl-L-carnitine-d;, and
0.05 mg/mL cholic acid-2, 2, 4, 4-d,). The mixture was vortexed and centrifuged at 14,500 rpm for 10 min
at4°C. Then, 150 pL supernatant was transferred into a clean dry tube and evaporated to dryness. The dried
residue was stored at —80°C. Following the above protocol, QC samples were prepared by mixing equal
aliquots from each sample.

Metabolomic profiling was performed on a high-resolution UPLC-SYNAPT Xevo-G2 XS Q-TOF/MS system
(Waters Corporation, Milford, USA). The dried residue was reconstituted in 100 pL of water: methanol (1:1,
v/v) solution. Metabolites separations were performed on an Acquity UPLC BEH Cg column
(2.1 mm x 100 mm, 1.7 um, Waters Corp., Milford, USA). The column temperature was maintained at
35°C and the flow rate remained constant at 0.4 mL/min. The optimal mobile phase consisted of a linear
gradient system of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B): 0-4.0 min,
2-20% B; 4.0-7.0 min, 20-60% B; 7.0-9.0 min, 60% B; 9.0-12.5 min, 60-90% B; 12.5-14.0 min, 90-100% B;
14.0-16.0 min, 100% B; 16.0-19.0 min, 0% B. Mass acquisition was performed on positive and negative
ion modes. The capillary voltage was 3.0 kV for positive mode and 2.3 kV for negative model. The source
temperature was set at 110°C. The sampling cone voltage and cone gas rate were set at 35V and 50 L/h,
respectively. The desolvation gas temperature and desolvation gas flow were 450°C and 600 L/h, respec-
tively. All analyses were acquired using a LockSpray interface to ensure the accuracy and reproducibility.
Data was collected in centroid mode from 50 to 1100 Da. The collision energy parameters were ranging
from 5 to 60 eV. The QC sample was injected every 6 real samples throughout the entire experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS
Metabolomic data processing

All the LC-MS acquired data was transformed to Progenesis Ql software (Waters, Manchester, U.K.) for de-
convolution, alignment, and data reduction by using the QC samples. The MS1 and MS2 spectra-based
metabolite identification was performed by using Ql MetaScope database, METLIN database, HMDB
database, LIPIDMAPS database, and in-house metabolite library. The semi-quantitative intensity was
calculated by using the isotope-labeled internal standards. The identified metabolites that were absent
in more than 10% of all QC samples together with those with more than 20% relative SD in peak intensity
across QC samples were removed. Subsequently, a list of normalized data matrix including information of
identified metabolite names, precursor ions, fragment ions, neutral molecules, retention time, and normal-
ized intensity was generated for further analysis. The MVA for the data matrix was performed using
SIMCA-P software (v14.1, Umetric, Umea, Sweden). Unsupervised PCA was employed to explore the clus-
tering trends among different groups. The quality of PCA models was controlled by evaluating the R2 and
Q2 values. Supervised PLS-DA was performed to maximally discriminate groups and to compute the var-
iable importance projection (VIP) score plot for each metabolite. The quality of PLS-DA model was
controlled by R2, Q2, permutation plot (200 permutations), and cross validation ANOVA(CV-ANOVA; sig-
nificance threshold <0.05). VIP value >2.0 and Mann Whitney Utest p < 0.05 after false discovery rate (FDR)
were used as the thresholds to identify differentially expressed metabolites between groups. Hierarchical
clustering heatmap analyses of metabolite features were performed by using TBtools software v1.082.

Statistics and pathway enrichment analysis

Categorical clinical variables were summarized by frequency (n) and percentages (%) and compared using
Chi-square test or Fisher exact test. Continuous and non-normally distributed variables were presented by
mean and SD(means + SD) and expressed by medians and interquartile ranges [IQR], respectively. The un-
paired two-tailed Student’s t test and Mann Whitney U test were used for the comparisons of normally
distributed data and non-normally distributed data, respectively. The associations between LDLR status
and metabolites were performed by regression analyses using the sum of standardized metabolite values
(z-scores) weighted according to the value of their corresponding B-coefficients(Lin et al., 2020). Relation-
ships between clinical lipids and metabolic variables were calculated using Spearman’s rank correlation
coefficient. All analyses were performed by using SPSS Statistics 26 (IBM Corp, New York, USA) and
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bioinformatics platform (http://www.bioinformatics.com.cn/login/). Debiased Sparse Partial Correlation
algorithm was used for estimating partial correlation networks of metabolites and clinical lipids by using
MetScape (Basu et al., 2017). The quantitative metabolic pathway enrichment analysis was derived by using
MetaboAnalyst (http://www.metaboanalyst.ca/).

ADDITIONAL RESOURCES
This study is registered with www.chictr.org.cn/index.aspx, number: ChiCTR1900022156.
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