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A B S T R A C T   

Quantitative photoacoustic tomography (QPAT) is a valuable tool in characterizing ovarian lesions for accurate 
diagnosis. However, accurately reconstructing a lesion’s optical absorption distributions from photoacoustic 
signals measured with multiple wavelengths is challenging because it involves an ill-posed inverse problem with 
three unknowns: the Grüneisen parameter (Γ), the absorption distribution, and the optical fluence (ϕ). Here, we 
propose a novel ultrasound-enhanced Unet model (US-Unet) that reconstructs optical absorption distribution 
from PAT data. A pre-trained ResNet-18 extracts the US features typically identified as morphologies of suspi-
cious ovarian lesions, and a Unet is implemented to reconstruct optical absorption coefficient maps, using the 
initial pressure and US features extracted by ResNet-18. To test this US-Unet model, we calculated the blood 
oxygenation saturation values and total hemoglobin concentrations from 655 regions of interest (ROIs) (421 
benign, 200 malignant, and 34 borderline ROIs) obtained from clinical images of 35 patients with ovarian/ 
adnexal lesions. A logistic regression model was used to compute the ROC, the area under the ROC curve (AUC) 
was 0.94, and the accuracy was 0.89. To the best of our knowledge, this is the first study to reconstruct quan-
titative PAT with PA signals and US-based structural features.   

1. Introduction 

Photoacoustic imaging (PAI) is an emerging imaging modality for 
non-invasive, non-ionizing, real-time measurement of the optical prop-
erties of biological tissue [1]. Compared with other optical imaging 
modalities, PAI can image deeper because acoustic scattering in tissue is 
an order of magnitude smaller than that of optical scattering [2]. 
Additionally, PAI inherently possesses ultrasound resolution because 
received photoacoustic waves are used to form images [3–5]. Photo-
acoustic tomography (PAT) uses a broad laser beam for illumination and 
an array of ultrasound transducers to measure the photoacoustic waves 
generated by the targeted biological tissue [6]. Imaging is typically done 
either by standard delay-and-sum beamforming if a linear array is used 
as a receiver or by tomographic reconstruction if a circular receiver 
array is employed [7]. For clinical applications, linear array transducers 
in the frequency range of 3–10 MHz are often used because they can 
easily access an organ through a limited biological window and are 
widely available at a low cost [8,9]. In this transducer frequency range, 
the depth of penetration can reach several centimeters [10]. Oncology 

applications of PAT include imaging and diagnosis of breast cancer [11, 
12], ovarian cancer [13,14], cervical cancer [15], and thyroid cancer 
[16]. 

The PA effect is induced by short laser pulses which generate initial 
pressure rises inside the tissue. The generated initial pressure (p0) in the 
tissue is proportional to Grüneisen parameter (Γ), target absorption 
coefficient (μa), and light fluence (ϕ(r)) (p0 = Γ • μa • ϕ) [17–20]. It is 
a technical challenge to quantitatively recover or reconstruct the optical 
absorption coefficient using PAT data because the received pressure is 
the product of tissue absorption and light fluence. Quantitative PAT 
approaches involve an ill-posed, non-unique, and non-linear inverse 
problem which is difficult to solve reliably for clinical applications [21, 
22]. Moreover, PAT data can be noisy and background tissue absorption 
can produce artifacts, both of which make the reconstruction more 
challenging [23]. 

Blood oxygenation saturation (%sO2) and total hemoglobin con-
centration (HbT) are functional biomarkers of the malignancy of ovarian 
tissue [24–26]. A %sO2 map can be calculated point by point from the 
ratio of the estimated relative oxygenated hemoglobin to the relative 
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total hemoglobin concentration, assuming the unknown laser fluence at 
each imaging point at all wavelengths used is a constant and can be 
canceled out. However, the accuracy of %sO2 depends on the PAT data 
quality received at all wavelengths. 

There have been several approaches to reconstructing photoacoustic 
images, for example, iterative methods [27,28], and machine 
learning-based approaches [29–32]. Cai used an end-to-end machine 
learning model to achieve fast reconstruction [33]. Luke et al. proposed 
a double Unet (named ‘O-net’) to simultaneously estimate the oxygen 
saturation in blood vessels and segment the vessels from the surrounding 
background tissue [34], and Bench achieved 3D %sO2 reconstruction of 
blood vessels under the skin by a 3D fully convolutional network [35]. 

However, these studies about machine learning-based PAT recon-
struction methods were only using photoacoustic signals as input. Here, 
based on the knowledge of ovarian lesions, structural morphologies seen 
by US images were characteristics to classify benignancy or malignancy 
[41–43] and can be incorporated into the PAT U-net to improve the 
diagnostic accuracy of ovarian lesions. 

Machine learning models, such as the ResNet model and Unet model, 
have demonstrated the ability to classify or reconstruct biomedical im-
ages. ResNet-18 is one of the most popular machine learning models 
used in image classification [36,37]. The developers of ResNet-18 
pre-trained it on the ImageNet dataset [38]. Transfer learning can be 
adapted to train a ResNet-18 model for ovarian lesion feature extraction, 
because ImageNet objects such as plates (round shapes), stones 
(masses), and flags (edges) have features similar to ovarian lesions, such 
as nodules (round shapes) and solid masses with edges. The Unet model 
is suitable for PAT reconstruction because it can maintain PA high res-
olution by using its skip-connection feature to copy the input to output. 
In contrast to Unet, CNN models are less suitable for PAT reconstruction 
because they use pooling layers that downgrade the resolution [39,40]. 

In this manuscript, based on the observed characteristics of ovarian 
lesions in US images, structural morphologies seen in US images are 
extracted by a ResNet-18 model. These US features are incorporated into 
a Unet model structure to perform quantitative PAT reconstruction of 
absorption coefficient maps and then the calculation of total hemoglobin 
and %so2, referred to as US enhanced Unet (US-Unet). To the best of our 
knowledge, this is the first report of co-registered US being used to 
enhance the machine learning performance of PAT reconstruction. Both 
phantom experiments and clinical studies showed the superiority of the 
proposed method. 

2. Methodology and materials 

2.1. Ultrasound-enhanced Unet model 

To extract ovarian tissue morphology features, a pre-trained ResNet- 
18 model was implemented, as shown in Fig. 1B. Ultrasound images of 
ovarian lesions were used to fine-tune the ResNet-18. Since we only had 
1200 ultrasound images after augmentation, we chose to use a pre- 
trained ResNet-18 to avoid training from scratch with random-initial 
weights. Three cross-validations were used to evaluate the perfor-
mance of the model. 

To reconstruct PAT images, we designed a US-enhanced Unet model 
whose structure is shown in Fig. 1. Fig. 1A shows the Unet model used to 
reconstruct the optical absorption coefficient maps. Fig. 1B shows the 
ResNet-18 model implemented to extract features from US images. To 
enhance the Unet model with extracted morphological features, we 
implemented the ResNet-18 model with 18 convolutional layers. After 
the final convolutional layer, we changed the fully connected layer to 
256 neurons, which was first resized to 16 × 16, then concatenated to a 
bottleneck block in the Unet model (as indicated by the dashed red 
arrow in Fig. 1.) [45]. Thus, the US-enhanced Unet utilizes the US image 
features extracted by ResNet and the initial pressure calculated from our 
co-registered US and PAT system [24], to quantitatively reconstruct 
optical absorption coefficient maps. 

The Unet model was trained using simulation and phantom data to 
learn the PAT reconstruction process, implementing the mean square 
error loss function. The ResNet-18 model was trained with clinical US 
images for classification, utilizing binary cross entropy loss. After 
training for 100 epochs, the ResNet-18 model could extract morphology 
features from US images well and classify lesions accurately. The fea-
tures extracted from the ResNet-18 model were incorporated into the 
Unet model to perform PAT reconstruction. Thus, the US-enhanced Unet 
model could reconstruct PAT images with ovarian morphology features 
incorporated. 

The model was implemented in Pytorch and trained for a total of 200 
epochs on an Nvidia 2080 Ti GPU, using the ADAM optimizer with a 
learning rate of 1e-4. A batch size of 256 images was used, and the 
training process was monitored for early stopping. To speed up training, 
the initial pressure maps and US images were down sampled from 
700 × 1400–128 × 128. We used 2000 simulation data and 480 phan-
tom data for training, 540 blood tube datasets for validation, and 621 

Fig. 1. Ultrasound-enhanced Unet model structure.  
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clinical datasets for testing. 

2.2. %sO2 and total hemoglobin concentration (HbT) calculation 

The ultrasound-enhanced Unet model reconstructed the optical ab-
sorption coefficient from raw data collected by the transducer. Then, 
using Eq. (1), we could compute the molar concentrations of oxy- and 
deoxy- hemoglobin [46]: 

μa(λ) = ln(10)ϵoxy(λ)Coxy + ln(10)ϵde(λ)Cde. (1) 

Here, λ represents the wavelength. Further, μa denotes the optical 
absorption coefficient, and ϵoxy and ϵde are the molar extinction co-
efficients of oxy- and deoxy-hemoglobin, respectively. Coxy and Cde are 
the molar concentrations of oxy- and deoxy-hemoglobin. For spectrum 
unmixing, we used the non-negative least square method. 

The HbT and the oxygen saturation (%sO2) can be computed from 
Eq. (2): 

HbT = Coxy + Cde

%sO2 =
Coxy

Coxy + Cde
× 100%.

(2)  

2.3. Co-registered US and PAT system 

To collect initial pressure in this study, we used the real-time co- 
registered PAT and US system demonstrated in Ref. [47]. The 
co-registered PAT system has three parts, 1) a tunable Ti:sapphire laser 
(700–900 nm) pumped by a Q-switched Nd: YAG laser (Symphotics, 
Camarillo, CA), which generates 10 ns laser pulses at a 15 Hz repetition 
rate; 2) an optical fiber-based light delivery system [48]; and 3) a 
commercial US system (EC-12R, Alpinion Medical Systems, Republic of 
Korea). In this study, the system acquired PAT data at four wavelengths 
(730, 780, 800, 830 nm) [49]. In principle, two optical wavelengths are 
needed to compute Coxy and Cde, and ideally, these two wavelengths are 
on each side of isosbestic wavelength at ~800 nm. However, two 
wavelengths of 730 nm and 780 nm give a more robust estimate of Cde, 
and the use of 800 nm and 830 nm give a more robust estimate of Coxy. 
Also, these four wavelengths are close to one other, and so the change of 
wavelength-dependent fluence is minimal for spectral unmixing. 

2.4. Simulations and phantoms (Unet training) 

Simulation data were used to train the U-net model. To generate the 
simulation data, we defined digital phantoms with a homogenous 
background and targets with different shapes and optical properties 
(absorption and scattering coefficients). The optical fluence inside each 
digital phantom was calculated using Monte Carlo simulation [50]; the 
maximum depth was 6 cm, the grid and voxel sizes were 
0.1 × 0.1 × 0.1 cm, and the total number of photons used was 1e7. We 
then computed the initial pressure value at each pixel of the phantom by 
multiplying the Grüneisen parameter at that pixel by its absorption co-
efficient and optical fluence. This initial pressure map was then used as 
the input of the k-wave toolbox [51], which generated the raw photo-
acoustic signal at each transducer element. The transducer configuration 
was the same as our co-registered US and PAT system. The simulation 
sampling frequency was 41 MHz, and input grid size was 700 × 1400, 
which was 6cmx12cm in real size. Finally, the delay-and-sum algorithm 
was employed to reconstruct the initial pressure from the raw data, here 
the Grüneisen parameter was assumed to be 1 [52]. When training the 
US-Unet model, we used the reconstructed initial pressure map as the 
input and the optical absorption coefficient map as the output. 

Finally, the delay-and-sum algorithm was employed to reconstruct 
the initial pressure from the raw data. In simulations, the Grüneisen 
parameter was assumed as 1 [52]. In phantom studies, the Grüneisen 
parameter was assumed to be constant and the light fluence profiles (ϕ 

(r)) were assumed to be wavelength independent. When training the 
US-Unet model, we used the reconstructed initial pressure map as the 
input and the optical absorption coefficient map as the output. 

We simulated the initial pressure with two different target shapes (a 
sphere and an ellipsoid), 25 different target absorption coefficients 
(ranging from 0.1 cm− 1 to 4.9 cm− 1, with a step of 0.2 cm− 1), three 
different target depths (2.5, 3, and 3.5 cm), three different radii (1, 1.5, 
and 2 cm), and four different wavelengths (730, 780, 800, and 830 nm). 
In total, 1800 simulation data were generated. 

Five ovary-mimicking gelatin-based phantoms were made, all with 
the same amount of gelatin, diluted intralipid (to provide the desired 
optical scattering), and glass beads (to enhance ultrasound scattering). 
Different amounts of ink were added to each phantom to achieve ab-
sorption coefficients of 0.2, 0.4, 0.6, 0.8, and 1.0 cm− 1. After being 
refrigerated for 24 h, each of the five solidified phantoms was placed by 
turns at three different imaging depths (1 cm, 1.5 cm, and 2 cm) in an 
intralipid solution with calibrated absorption and reduced scattering 
coefficients of 0.02 and 6 cm− 1, similar to the optical properties of soft 
tissue, and PAT data were acquired at each depth. Two sets of experi-
ments were done for each phantom at each depth, and each measure-
ment contained 4 frames, which generated 480 data sets at the 
previously mentioned four wavelengths, three depths, and five absorp-
tion coefficients. 

Besides gelatin phantoms, we made blood tubes to mimic the blood 
vessels in tissues with different %sO2 contrast. Five calibrated %sO2 
blood samples of 24.9 %, 44.2 %, 64.9 %, 83.9 %, and 97.6 % were made 
by controlling the amount of oxygen and nitrogen in the tube. The blood 
within the tube was collected from volunteers and mixed with saline 
water in a temperature/humidity-controlled chamber. The blood tube % 
sO2 values were calibrated with an ABL90 FLEX Radiometer. More de-
tails can be found in Ref. 24. These blood tubes were placed at 9 different 
depths (1 cm, 1.5 cm, 2 cm, 2.5 cm, 3 cm, 3.5 cm, 4 cm, 4.5 cm, and 
5 cm from the transducer) in a tank filled with intralipid solution. The 
experiments were repeated three times, generating 540 blood tube 
datasets in total. 

2.5. Patients and ovarian lesion data 

The study protocol was approved by the institutional review board of 
the Washington University Medical School and was compliant with the 
Health Insurance Portability and Accountability Act. A total of 35 pa-
tients with ovarian/ adnexal masses signed the informed consent and 
participated in this study from February 2017 to November 2018 [24]. 
The patients’ ages ranged from 33 to 87, and the ovarian lesions’ di-
ameters ranged from 1.8 cm to 11.5 cm. The final data set consisted of 
10 malignant ovarian/adnexal masses, 36 benign masses, and normal 
ovaries, and 3 borderline tumors of low malignancy potential. A total of 
655 regions of interest (ROIs) (421 benign, 200 malignant, and 34 
borderline tumor ROSs) were selected and used in this study (Table 1). 

Ultrasound images from a commercial US machine were collected 
from the same group of patients. We selected 600 ovarian lesion images, 
and after augmentation (rotation and flipping), the resulting 1200 ul-
trasound images were used in ResNet-18 fine-tune training and 
validation. 

2.6. Ovarian cancer morphologies revealed in US 

As shown in Fig. 2, there were five typical morphologies in the 

Table 1 
Clinical data.   

Malignant Benign Borderline 

Number of Patients  6  26  3 
Number of Ovarian Lesions  10  36  3 
Number of Data Sets  200  421  34  
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malignant ovarian cancers characterized by US images [53]. Some 
ovarian cancers appeared as solid papillary projections from the wall of 
cystic lesions (Fig. 2A and B). Other ovarian cancers had significant 
blood content, as shown by Doppler (Fig. 2C). Still other ovarian cancers 
appeared as solid lesions with irregular contours (Fig. 2D and E). 

Compared with benign lesions, malignant lesions often have more 
numerous solid nodules growing from the cyst wall, more irregular solid 
components both inside and/or at the lesion periphery, and more blood 
vessels revealed by Doppler US. Although these features are predictive of 
malignancy, however, they are not sensitive and specific [54]. Here, we 
sought to improve overall ovarian cancer diagnosis by using additional 
functional information obtained from co-registered photoacoustic im-
aging, such as the %sO2 contrast and the quantitative hemoglobin 
concentration. 

3. Results and analysis 

3.1. Phantom results 

As shown in Fig. 3, the reconstructed µa was calculated for the 
phantom experiments, each box represents the reconstructed µa distri-
bution from the proposed method, and the dashed line is the ground 
truth. The mean square estimated error for the phantoms, with ab-
sorption coefficients of 0.2, 0.4, 0.6, 0.8, and 1.0 cm-1, were 0.018, 
0.011, 0.019, 0.011, and 0.013 cm-1, respectively. 

3.2. Blood tube validation results 

After we trained the Unet model with simulation and phantom data, 
blood tube data was used to validate the performance of the US-Unet 
model. Blood tube reconstruction examples are shown in Figs. 4 and 
5. Both the calculated %sO2 and HbT maps were in the similar range of 
calibrated values, and the shapes were close to the tube shape. 

All the blood tube reconstructions were aggregated for quantitative 
display. As shown in Fig. 6, each box represents the calculated mean % 

sO2 for a tube at a different depth, from 1 cm to 5 cm, in steps of 0.5 cm. 
The dashed line is the ground truth based on calibration. 

In our method, the machine learning model was trained with the 
ground truth, and the blood tubes were homogenous. Therefore, the 
model could reconstruct the real shape and size of the targets. In other 
words, the machine learning model can mitigate boundary buildup due 
to interference [55]. Besides, we downsampled the reconstruction im-
ages, which also could yield a more homogenous result. 

The normalized mean square estimated error for blood tubes with % 
sO2 of 24.9 %, 44.2 %, 64.9 %, 83.9 %, and 97.6 % were 2.9 %, 3.5 %, 
2.7 %, 2.6 %, and 3.0 %, respectively. Compared with standard delay- 
and-sum results of 5.6 %, 3.8 %, 9.8 %, 8.7 % and 17.7 %, respec-
tively [24], as shown in Fig. 6, the errors were much smaller. Fig. 7 
shows the Unet reconstructed quantitative HbT data of blood tube. The 
calibrated values were given in black circles. 

Fig. 2. Five typical morphologies of ovarian cancer [53]. A) Unilocular cyst with 4 or more papillary projections. B) Multinodular cyst with solid component. C) Solid 
with smooth contour and high blood flow. D) Solid with irregular contour. E) Ascites and peritoneal nodules. 

Fig. 3. Reconstructed ua vs ground truth ua for phantom experiments.  
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3.3. ResNet-18 results 

Three cross-validations were used to test the accuracy of the ResNet- 
18 model. The accuracies were 0.80 ± 0.02, 0.76 ± 0.04, and 0.81 
± 0.04, which suggests that about 80 % accuracy can be achieved with 
morphology features only. 

We implemented Grad-CAM (gradient-weighted class activation 
mapping) to learn what features the three ResNet-18 models had 
learned. Grad-CAM uses the “gradients of any target” concept, back- 
flowing into the final convolutional layer to produce a coarse localiza-
tion map highlighting important regions in the image for predicting the 
diagnostic result [56,57]. In other words, if we have a trained model, we 
can use specific data and its label to perform back propagation to find 
the regions the model is “looking at” to make its prediction. 

From Fig. 8, we can see the ResNet-18 model learned the “nodules” 
and boundaries (hot spots) that were essential to benign or malignant 
lesion classification based on ultrasound images. The results also suggest 
that, although morphological features could distinguish between benign 
and malignant lesions, they are not specific or sensitive (moderate ac-
curacy). So, to improve the diagnostic results, these features extracted 
from ResNet-18 could be incorporated into the US-Unet model. 

3.4. Clinical results 

For clinical tests, total hemoglobin and %sO2 are important bio-
markers in analyzing ovarian lesions. Total hemoglobin and %sO2 were 
calculated from the optical absorption coefficient maps of the US- 
enhanced Unet model output. 

Fig. 4. Reconstructed blood tubes’ %sO2 co-registered with US images for five different %sO2 concentrations located 2 cm deep.  

Fig. 5. Reconstructed blood tubes’ HbT co-registered with US images for 5 different HbT concentrations located at 2 cm depth.  

Fig. 6. Calculated %sO2 vs calibrated %sO2 from the Unet model and delay-and-sum beamforming. The boxes represent tubes containing blood with different %sO2 
values, located at depths from 1 to 5 cm. 
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Fig. 9 shows the %sO2 and the HbT results for a malignant and a 
benign lesion. In Fig. 9A, the mean %sO2 of the ROI is 30.3 %, which is 
much lower than the mean %sO2 of 80.6 % in the benign lesion shown in 
Fig. 9B. Besides the mean %sO2 value, we could also see peripheral % 
sO2 distribution around the ultrasonically seen lesion. And according to 
mean HbT value, the malignant case (377 μM) is 1.5 times higher than 
the benign case (255 μM). 

value of boxes. 
To test the performance of the US-Unet model, three reconstruction 

methods were implemented: US-Unet, delay-and-sum reconstruction, 
and Unet reconstruction. As seen in Fig. 10, all three methods could 
distinguish benign from malignant lesions, with contrasts of 1.68, 1.33, 
1.44, respectively. However, the US-Unet model was superior to the 
other two methods in contrast. As for contrast between borderline tu-
mors and benign lesions, the delay-and-sum is better than that US-Unet 
and Unet alone, however, due to the smaller sample size of borderline 
tumors, we could not make any conclusion at this point. 

Fig. 11 shows the reconstructed quantitative total hemoglobin 

concentrations using the US-Unet (A), delay-and-sum (B), and Unet (C). 
For US-Unet, the median HbT of the malignant cases is 2.15 times higher 
than that of the benign cases. For delay-and-sum beamforming, the 
relative HbT is 1.51 times higher. For Unet, it is 1.71 times higher. The 
HbT contrast between borderline tumors and benign lesions is different 
for the delay-and-sum than that of US-Unet and Unet alone. Again, due 
to the smaller sample size of borderline tumors, we could not make any 
conclusion at this point. More data are needed. 

Logistic regression was implemented to evaluate the diagnostic 
performance of %sO2 and HbT data and %sO2 data only. The %sO2 
values, with and without HbT testing data from the output of the US- 
Unet model, with the input of PAT data and US images, were used to 
calculate the receiver operating characteristic (ROC) curves and the area 
under the curve (AUC) (See Fig. 12). Accuracies were calculated for the 
US-enhanced Unet model, the delay-and-sum model, and the Unet 
model (Table 2). Here, we distinguished benign and malignant cases 
only, because the three borderline cases are not large enough for a 
category to be classified. The results show the superiority of US- 
enhanced Unet with %sO2 and HbT data. 

4. Summary and discussion 

In this study, a novel ultrasound-enhanced Unet model was proposed 
to reconstruct the optical coefficient maps of ovarian/adnexal lesions 
from photoacoustic data. The experimental results showed that the 
ultrasound-enhanced Unet model reconstructed the target’s %sO2 and 
HbT maps more accurately than the delay-and-sum method and pro-
vided an improved diagnosis of ovarian cancers from benign lesions. 

Ovarian lesion morphologies from US images were predictive of 
malignancy, therefore, a ResNet-18 was implemented to extract relative 
features from US images. Grad-CAM demonstrated that the ResNet-18 
classification model focused on a pertinent area to make its pre-
dictions, which also suggested that the model had extracted related 
features useful for classification. Compared with both a Unet model 
without ultrasound extracted features and with the standard delay-and- 
sum method, the US-enhanced Unet demonstrated superior diagnostic 
contrast and also achieved diagnostic performance of AUC of 0.94 and 

Fig. 7. Calculated HbT vs calibrated HbT from the Unet model. The boxes 
represent tubes containing blood with different HbT. The normalized mean 
square estimated error for blood tubes with HbT of 1736, 1774, 1876, 2003, 
and 2049 were 3.14 %, 4.88 %, 2.45 %, 2.73 %, and 0.89 %, respectively. 

Fig. 8. A is an original US image of a malignant ovarian cancer case. C shows the co-registered US image and grad-CAM image: the hot spots are where the model 
focused. B and D are respectively a US image and a grad-CAM image of a benign case. 
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accuracy of 0.90. Classification results using reconstructions from the 
Unet model underperformed, even compared with the delay-and-sum 
method. Without ovarian morphology features, the Unet model could 
learn only from simulation and phantom data. There is a big difference 
between clinical and simulation/phantom data, because ovarian tissue 
is heterogeneous, with complex shapes. This factor could lead to an 
inferior prediction if using the Unet model only. The delay-and-sum 
beamforming method directly reconstructed the relative HbT from 
PAT raw data, with no learning process, and the errors resulted from the 

tissue heterogeneity, and the inaccurate assumption that the light flu-
ence was wavelength independent. 

The US-enhanced Unet has several limitations. The US-enhanced 
Unet model was limited by low resolution and small reconstructed 
image size, due to down sampling. However, using a large size of initial 
pressure will increase the training time exponentially. Additionally, 
although we reconstructed the quantitative oxy- and deoxy-hemoglobin 
concentrations, there were outliers in the reconstructions due to ill- 
posed problems and the diagnostic performance of HbT only was 

Fig. 9. A. is a malignant lesion US image, and B is a benign lesion US image. For each row, left is the US image, the red square is the ROI. Middle, the %sO2 map of 
the ROI, with a color bar from 0% to 100 %. Right, the HbT map with a colorbar from 0 to 800 μM. 

Fig. 10. A. %sO2 results of US-Unet model. B. Delay-and-sum reconstruction results. C. Unet reconstruction results. The label C indicates the ratio of the contrasts of 
the median. 
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Fig. 11. A. Quantitative total hemoglobin results for all patients’ data by US-Unet reconstructions. B. Quantitative total hemoglobin results for delay-and-sum beam- 
forming reconstruction. C. Quantitative total hemoglobin results for the Unet model. The label C indicates the ratio of the contrasts of the median value of each box. 

Fig. 12. A. ROC curves with %sO2 and HbT data and with %sO2 data only for the US-enhanced Unet model. B. ROC curves with %sO2 and HbT data and with %sO2 
data only for the delay-and-sum beam-forming model. C. ROC curves with %sO2 and HbT data and with %sO2 data only for the Unet model. 
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lower than %sO2. Finally, the absorption coefficients used in simula-
tions and gelatin phantoms in training are our best estimates because we 
found very limited literature reporting ovarian tissue absorption co-
efficients. One study, Ref. 44, used diffuse optical tomography to image 
excised ovarian lesions. Among 24 samples measured at 780 nm, 6 
malignant samples had a mean absorption coefficient of 0.153 cm− 1, 
and benign samples had a mean coefficient of 0.093 cm− 1. However, 4 
out of 6 malignant samples were pieces of large malignant lesions, and 
there was significant blood loss from the samples before imaging. 
Additionally, the diffuse optical tomography underestimated the target 
absorption because of the linear assumption of the target perturbation 
and target absorption using Born approximation. Thus, we believed the 
ovarian tissue optical absorption coefficients reported in Ref 44 were 
underestimated. In another ex vivo ovarian specimen study using spatial 
frequency domain imaging, the measured absorption coefficient of 
ovarian tissue ranged from 0.1 cm− 1 to 0.7 cm− 1 [58]. We also 
measured the absorption coefficient for the blood tubes used by spec-
trometry and found the absorption coefficients for the four wavelengths 
ranged from 1.11 cm− 1 to 2.06 cm− 1, more details in Appendix B. From 
the literature, the optical absorption coefficient of blood is in the range 
of 1–5 cm− 1 [59,60]. Because malignant ovarian lesions consist of mixed 
blood vessels and stromal tissues, we used estimated absorption co-
efficients in the range of 0.2 − 1 cm− 1 for gelatin phantoms and 
0.1–4.9 cm− 1 in simulations. 

The %sO2 and HbT data shown in Figs. 10 and 11 reveal that delay- 
and-sum beamforming performed differently from US-Unet and Unet for 
three borderline tumor cases. Delay-and-sum showed borderline tumors 
had lower %sO2 and lower relative HbT than benign lesions, while the 
US-enhanced Unet and Unet both showed that the %sO2 and HbT values 
of borderline cases were similar to those of benign lesions. Borderline 
ovarian lesions are slow-growing tumors with low malignant potential. 
The tumor angiogenesis development could be slow, and the lesion 
morphology could overlap between large benign and malignant lesions. 
There is no reported %sO2 data to support the suggestion that borderline 
ovarian/adnexal lesions should have the same or lower values than 
benign lesions. Nevertheless, it is likely that Unet and US-enhanced Unet 
did not see enough of these cases to robustly predict %sO2 and HbT. It is 
also likely that delay-and-sum was not sufficiently robust to estimate % 
sO2 when PAT signals were low. More borderline ovarian/adnexal le-
sions will be acquired from the ongoing trial to further evaluate the 
performance of US-Unet and beamforming algorithms in predicting 
borderline ovarian/adnexal lesions. 

For clinical data, the quality of reconstruction was highly affected by 
the system’s SNR. For low SNR data, the reconstruction will be less 
robust. Future work will be focused on building a larger database from 
phantoms to enhance training and reduce the effect of a low SNR. 
Currently, a clinical trial is on-going with the goal of acquiring US and 
PAT data of diverse ovarian/adnexal lesions of malignancies of various 
types, benign solid and cystic lesions, and mixed solid and cystic lesions, 
as well as normal ovaries. This large in vivo database will be used to 
further validate the initial finding that US-enhanced Unet has the su-
perior diagnostic performance to standard delay-and-sum beamforming. 
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