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ABSTRACT
Background: Comanagement of glycemia and adiposity is the cornerstone of cardiometabolic risk reduction in type 1 diabetes (T1D), but targets
are often not met. The intestinal microbiota and microbiota-derived short-chain fatty acids (SCFAs) influence glycemia and adiposity but have not
been sufficiently investigated in longstanding T1D.
Objectives: We evaluated the hypothesis that an increased abundance of SCFA-producing gut microbes, fecal SCFAs, and intestinal microbial
diversity were associated with improved glycemia but increased adiposity in young adults with longstanding T1D.
Methods: Participants provided stool samples at ≤4 time points (NCT03651622: https://clinicaltrials.gov/ct2/show/NCT03651622). Sequencing of
the 16S ribosomal RNA gene measured abundances of SCFA-producing intestinal microbes. GC-MS measured total and specific SCFAs (acetate,
butyrate, propionate). DXA (body fat percentage and percentage lean mass) and anthropometrics (BMI) measured adiposity. Continuous glucose
monitoring [percentage of time in range (70–180 mg/dL), above range (>180 mg/dL), and below range (54–69 mg/dL)] and glycated hemoglobin
(i.e., HbA1c) assessed glycemia. Adjusted and Bonferroni-corrected generalized estimating equations modeled the associations of
SCFA-producing gut microbes, fecal SCFAs, and intestinal microbial diversity with glycemia and adiposity. COVID-19 interrupted data collection,
so models were repeated restricted to pre-COVID-19 visits.
Results: Data were available for ≤45 participants at 101 visits (including 40 participants at 54 visits pre-COVID-19). Abundance of Eubacterium
hallii was associated inversely with BMI (all data). Pre-COVID-19, increased fecal propionate was associated with increased percentage of time
above range and reduced percentage of time in target and below range; and abundances of 3 SCFA-producing taxa (Ruminococcus gnavus,
Eubacterium ventriosum, and Lachnospira) were associated inversely with body fat percentage, of which two microbes were positively associated
with percentage lean mass. Abundance of Anaerostipes was associated with reduced percentage of time in range (all data) and with increased
body fat percentage and reduced percentage lean mass (pre-COVID-19).
Conclusions: Unexpectedly, fecal propionate was associated with detriment to glycemia, whereas most SCFA-producing intestinal microbes were
associated with benefit to adiposity. Future studies should confirm these associations and determine their potential causal linkages in T1D. This
study is registered at clinical.trials.gov (NCT03651622; https://clinicaltrials.gov/ct2/show/NCT03651622). Curr Dev Nutr 2022;6:nzac107.
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Introduction

Individuals with type 1 diabetes (T1D) are at a 3–7 times higher
risk of micro- and macrovascular (cardiovascular) complications than
those without diabetes (1). Comanagement of glycemia and adipos-
ity is the cornerstone of cardiometabolic risk reduction for people
with T1D. However, glycemic and weight targets are often not met,
particularly in young adults, in whom glycated hemoglobin (HbA1c)
peaks between the ages of 19 and 30 (2). Glycemia has not im-
proved in the United States whereas the prevalence of obesity has
increased in people with T1D in recent decades (3–5) despite nu-
merous advances in and uptake of diabetes self-management tech-
nologies [e.g., continuous glucose monitoring (CGM) and insulin
pump therapy] (6). There is a pressing need to identify novel fac-
tors that ease the burden of comanaging glycemia and adiposity in
T1D.

One potential disruptor of comanagement of glycemia and adipos-
ity is an altered composition of the intestinal microbiota—the vast
community of microbes residing in the intestinal tract—and its ef-
fector metabolites, short-chain fatty acids (SCFAs), produced through
gut microbial fermentation of nondigestible carbohydrates such as
fiber (7). Individuals with T1D may have a reduced abundance of
SCFA-producing gut microbes and fecal SCFAs compared with con-
trols without T1D (8–10). This altered microbial ecosystem could im-
pact glycemia and adiposity via metabolic regulation. Specifically, SC-
FAs have been shown to bind to receptors in the liver and adipose
tissue leading to improved hepatic and peripheral insulin sensitivity,
enhanced neurologically mediated satiety, and glucagon-like peptide
1 (GLP-1) production by intestinal epithelial L-cells—which can en-
hance satiety through afferent signals to the brain’s appetite regula-
tory centers (7, 11, 12). However, salient to weight management, spe-
cific gut microbes can increase energy harvest by fermenting fiber to
SCFAs, which invites speculation that SCFA-producing intestinal mi-
crobes could contribute to positive energy balance and therefore weight
gain (13–15). The notion that SCFAs can contribute to adiposity is sup-
ported by the finding that mice lacking the G-protein coupled SCFA
receptor GPR41 are leaner than their wild-type littermates (16), al-
though another preclinical study found a protective effect of SCFAs
on adiposity through their signals to a different SCFA receptor, GPR43
(17).

Investigations of the role of the gut microbiota in T1D etiology
have revealed differences in the abundances of major gut microbial
taxa and their functional genomic potential (e.g., increases or decreases
in facets of carbohydrate metabolism) in individuals with T1D com-
pared with controls without T1D (8, 9, 18). However, prior associa-
tions of gut microbes and SCFAs with glucose metabolism and adi-
posity in animals, and in humans with metabolic syndrome (19, 20)
have not been effectively translated to the metabolically unique set-
ting of longstanding T1D. Therefore, in this hypothesis-generating
study, we assessed whether an increased abundance of SCFA-producing
gut microbes, fecal SCFAs, and intestinal microbial diversity were
associated with improved glycemia, but also with increased adipos-
ity, in young adults with longstanding T1D and overweight or obe-
sity.

Methods

Study sample
Participants were young adults with T1D aged 19–30 y (T1D dura-
tion ≥1 y), literate in English, HbA1c <13.0% (<119 mmol/mol),
and BMI 27–39.9 kg/m2 who enrolled in the NIH-funded Advancing
Care for Type 1 Diabetes and Obesity Network (ACT1ON) Sequential
Multiple Assignment Randomized Trial (SMART) pilot for weight and
glycemic management (1DP3DK113358-01, NCT03651622). Those in-
cluded in the present analysis participated in an ancillary gut micro-
biome pilot study under the umbrella of ACT1ON. The study design
of ACT1ON has been described elsewhere (21). Briefly, the ACT1ON
SMART pilot was a 9-mo feasibility intervention conducted at the Uni-
versity of North Carolina at Chapel Hill (UNC) and Stanford University.
Its objective was to identify acceptable dietary strategies (hypocaloric
low carbohydrate, hypocaloric moderate low fat, or Mediterranean diet
without calorie restriction) to co-optimize weight and glycemia in
young adults with T1D. Per the SMART design, participants were as-
signed to an initial diet arm at study enrollment, after which the trial
adapted dynamically to participant responses by rerandomizing those
who rated the diet as being unacceptable or who did not achieve a min-
imum weight loss, or whose glycemic parameters deteriorated accord-
ing to HbA1c or self-reported hypoglycemia. Diets were assigned using
permuted block randomization stratified by site at 3 and 6 mo of the
intervention (22–24). The primary parent study outcomes were weight,
HbA1c, and percentage of time in clinical hypoglycemia (54–69 mg/dL)
(25) assessed by CGM at the end of each of 3 diet periods. Secondary
outcomes were percentage body fat assessed by DXA, and percentage of
time in target glucose range (CGM, 70–180 mg/dL). (25) UNC coordi-
nated the study.

We identified eligible young adults according to medical record data
for participation in the parent ACT1ON SMART using a 2-step recruit-
ment process (26). Participants completed 4 measurement visits. All
study visits were completed between November 12, 2018 and Febru-
ary 2, 2021. As of April 27, 2020, the study moved to a virtual format
via a Health Insurance Portability and Accountability Act–secure Zoom
account in continued response to COVID-19. Dietary counseling and
data collection were both done virtually, and recruitment ceased (we en-
rolled 68 participants whereas the target was 72). We conducted the first
virtual visit during COVID-19 on June 17, 2020. Using standardized
protocols with support from study staff, participants collected HbA1c
samples and inserted CGM sensors at home. DXA was discontinued
and measures of body composition were therefore only available pre-
COVID-19.

Ancillary gut microbiome pilot study
We invited ACT1ON study participants who had not taken antibiotics
in the prior month to provide stool samples for an ancillary hypothesis-
generating gut microbiome study via a home collection during the
2 weeks in which all other measurement visit data were collected (i.e.,
before the beginning of each diet period). We originally planned to col-
lect samples only at baseline and measurement visit 2, which we did pre-
COVID-19. During COVID-19, we added voluntary stool collection at
measurement visits 3 and 4 due to participant dropout and diminished
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sample size resulting in part from the COVID-19 pandemic. We invited
participants who provided samples at the baseline visit to provide ad-
ditional samples at follow-up visits if they reported no antibiotic use in
the month prior to collection.

Sixty-eight parent ACT1ON participants completed 200 visits across
the 4 study timepoints. Forty-five participants voluntarily provided
stool for the ancillary gut microbiome pilot study, including 112 stool
samples across the 4 study timepoints (we excluded 6 participants for
antibiotic use, 2 who did not return the stool sample before diet ran-
domization due to shipment issues, 2 who had difficulty with produc-
ing a sample, 4 who declined participation, and 9 who initially agreed to
participate but did not return the sample prior to randomization). We
restricted the analysis to visits with concurrently available 24-h dietary
recall data, because it was necessary to adjust for fiber intake as an im-
portant potential confounder. Thus, we excluded 11 samples from study
analysis due to missing diet data. SCFA and diet data were available for
101 samples, of which all had HbA1c and BMI data, 43 were missing
DXA data (due to the post-COVID-19 virtual format), and 24 had miss-
ing (n = 9) or insufficient (n = 15) CGM data. An additional 4–5 sam-
ples (dependent on the outcome) did not pass quality controls [filter-
ing and denoising in the Quantitative Insights Into Microbial Ecology 2
(QIIME2) analytic pipeline] and were therefore excluded from analysis
of gut microbial taxonomy and diversity but still provided SCFA data.
We show a Consolidated Standards of Reporting Trials diagram with
the derived sample size for each outcome, including after restriction to
pre-COVID-19 data (Supplemental Figure 1).

Measures
Gut microbiota characterization.
We isolated genomic microbial DNA from human fecal samples using
a phenol-chloroform extraction combined with a bead beating step us-
ing 0.1-mm glass beads (Bio Spec products) to physically disrupt bac-
terial cells, and a DNA clean-up kit (Qiagen DNeasy Blood and Tissue
extraction kit), as previously described (27). We characterized fecal mi-
crobiotas using the variable 4 region of the 16S rRNA gene to create
sequencing libraries via PCR and sequencing on the Illumina MiSeq
platform at the High-Throughput Sequencing Facility in the Carolina
Center for Genome Sciences at the UNC School of Medicine, as previ-
ously described (28).

We managed 16S rRNA gene sequences generated by the Illumina
MiSeq platform via the QIIME2 pipeline, which included demultiplex-
ing and denoising reads via the Divisive Amplicon Denoising Algorithm
(DADA2) (29). We generated sequence variants at 100% identity thresh-
old using DADA2. The total number of sequence reads was 11,105,926
[98,558.5 (IQR: quartile 1, 78,072.0; quartile 3, 129,325.8) per sample]
and there were 2339 generated sequence variants. We considered several
approaches to normalize read counts (30, 31) and ultimately selected a
previously published method using the following formula (32):

log10

([
Raw count in sample (i)

# of sequences in sample (i)

× Average # of sequences per sample

]
+ 1

)

We performed taxonomic classification using the DADA2-
formatted reference database Silva (33). We used QIIME2 to derive

rarefied intestinal microbial diversity—which we report as the number
of unique sequence variants (i.e., the number of unique taxa) per sam-
ple. To reduce potential bias stemming from imbalanced replication of
sequence reads during PCR steps, we rarefied our measure of within-
sample intestinal microbial diversity (i.e., we normalized sequencing
depth to 3000 sequence reads per sample) (34). Per published methods,
we retained only “non-rare” taxa (i.e., those that were present in ≥25%
of samples) (35).

We conducted a rigorous literature review to identify genus- and
species-level SCFA-producing taxa. (13, 17, 36–38). We detected the
following SCFA-producing taxa in the stool of our study participants:
Akkermansia, Alistipes, Anaerostipes, Bacteroides, Bifidobacterium, two
members of the Clostridium genus (Clostridium sensu stricto cluster
1 and Clostridium innocuum), Dialister, three members of the Eubac-
terium genus (E. eligens, E. hallii, and E. ventriosum), Faecalibacterium,
Intestinimonas, Lachnospira, two members of the Prevotella genus (Pre-
votella clusters 7 and 9), Roseburia, four members of the Ruminococcus
genus (Ruminococcus gnavus, Ruminococcus torques, and Ruminococcus
clusters 1 and 2), Sutterella, Streptococcus, and Veillonella. We removed
three taxa that were present in <25% of samples (Sutterella and Pre-
votella clusters 7 and 9).

SCFA analysis.
We analyzed total and specific fecal SCFAs using GC-MS (Agilent 7820),
as previously described. Values were expressed in micromoles per gram
(39).

CGM.
Study participants wore a blinded CGM (Freestyle Libre Pro; Abbott Di-
abetes Care Inc) for 2 weeks following each measurement visit. We com-
puted percentage of time in target glucose range (70–180 mg/dL), per-
centage of time above target range (i.e., hyperglycemia, >180 mg/dL),
and percentage of time below range (i.e., clinical hypoglycemia, 54–
69 mg/dL) for use as outcome variables in the present analysis. We
did not use CGM values in the range of clinically serious hypo-
glycemia (<54 mg/dL) (25) because factors related to insulin dosing
are likely to cause clinically serious hypoglycemic events, and because
the amount of time in clinical hypoglycemia was limited (1.8%; IQR,
0.73%; 4.1%). We included observations with ≥1 wk of CGM data
(i.e., ≥168 h regardless of gaps in readings) based on a recent consensus
statement (25).

DXA.
We quantified body fat percentage and percentage lean mass using a
DXA scan (UNC: GE Lunar iDXA, GE Medical Systems Ultrasound &
Primary Care Diagnostics; Stanford: Horizon Model A, Hologic).

HbA1c.
We collected venous blood samples in person prior to COVID-19 and
sent them to the Northwest Lipid Metabolism and Diabetes Research
Laboratories at the University of Washington School of Medicine for de-
termination of HbA1c. During COVID-19, participants obtained capil-
lary blood samples at home using provided kits (BIO-RAD Hemoglobin
Capillary Collection System for HbA1c Testing) with live instruction
from study staff via Zoom. Participants mailed home kits to the Dia-
betes Diagnostic Lab at the University of Missouri, Columbia for deter-
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mination of HbA1c. In a prior study of 122 participants with T1D or
type 2 diabetes at 22 clinical centers, venous HbA1c was highly corre-
lated with capillary HbA1c (R2 = 0.993), and 96.7% of measurements
differed by ≤0.2% (2.2 mmol/mol) (40).

Anthropometrics.
Weight (to the nearest 0.1 kilograms) was measured in person pre-
COVID-19 at each measurement visit following standard procedures.
During COVID-19, participants measured weights at home using Body-
Trace Bluetooth scales, which were provided at study enrollment for vol-
untary weight tracking. We used baseline height measurements (to the
nearest 0.1 cm) and the weight at each measurement visit to calculate
BMI (kg/m2).

Demographic and clinical covariates.
Participants self-reported demographic data including age, gender,
race and ethnicity, and insulin regimen (twice daily, 3 times daily,
>3 times daily injections, or insulin pump) using standardized ques-
tionnaires. Self-reported race categories included African American,
American Indian/Alaska Native, Asian, Native Hawaiian/Other Pa-
cific Islander, Other race, or white. Ethnicity was classified as Span-
ish/Hispanic/Latino or not. Given sample size limitations, we collapsed
race and ethnicity into a single indicator variable: Other race and eth-
nicity or non-Hispanic White. We provide information about raw race
and ethnicity in all relevant table legends. We imputed 3 missing ob-
servations for insulin regimen forwards or backwards from the closest
visit in time. Insulin regimen was dichotomized as insulin pump or in-
jections due to sample size limitations.

Dietary intake.
Trained UNC NIH/National Institute of Diabetes and Digestive and
Kidney Diseases Nutrition Obesity Research Center (NORC) staff ad-
ministered 24-h dietary recalls via telephone at each measurement visit
using a multipass method (41, 42). Staff collected recalls following a
standard script on nonconsecutive days, ideally including 1 weekday
and 1 weekend day. If 2 dietary recalls were available for a participant at
a given measurement visit, the nutrient values were averaged across the
2 d. We removed unreliable dietary recalls according to the interviewer
or that participants described as being “a lot more” or “a lot less” than
they usually ate from analysis. NORC used the Nutrition Data System
for Research (NDSR, version 2019; Nutrition Coordinating Center, Uni-
versity of Minnesota) (43) to derive nutrients associated with recalled
foods and beverages.

Design covariates.
We constructed an indicator variable denoting whether each visit was
completed during COVID-19; the duration (months) of each diet pe-
riod given increased variability during COVID-19; the diet period (1,
2, or 3) to account for a likely greater impact of the intervention in the
first diet period; diet assignment; and study site.

Statistical analysis
We compared the baseline demographic and clinical characteristics of
ACT1ON study participants included and excluded from the analysis to
assess representativeness. We conducted sensitivity analyses for outlier
observations that were ≥2 SDs from the mean by rerunning the mod-

els without the outlier. If the outlier had undue influence on the results,
the outlying value was truncated (winsorized) to 10% above or below
than the next highest or lowest absolute value (44). We chose this pro-
cess because even when an outlier was determined not to be the result
of measurement error, we did not want a single value to have undue in-
fluence on the results. We winsorized outlier values for fecal butyrate
and the normalized abundance of Anaerostipes. An additional sensitiv-
ity analysis tested whether exclusion of 2 outlier observations for fecal
acetate influenced results. They did not, so fecal acetate outliers were
not winsorized.

Effect size and power.
After correction for multiple comparisons, we were powered to detect
an R2 of 0.07 with 80% power and an R2 of 0.10 with 90% power given
a sample size of n = 101 (the sample size for all available HbA1c or
weight data when SCFA data were also available). Using the sample size
of n = 58 for available DXA data (similar to the sample size for pre-
COVID-19 data), we were powered to detect an R2 of 0.13 with 80%
power and an R2 of 0.16 with 90% power. The magnitude of these effect
sizes is smaller than those found in prior studies of the intestinal mi-
crobiota and adiposity (Spearman ρ = 0.28–0.6) with smaller sample
sizes than ours (n = 30–39), suggesting that we were powered to detect
observable effects (45, 46).

Modeled analysis.
We fit separate generalized estimating equation (GEE) models predict-
ing outcomes (percentage of time in target glucose range, percentage
of time above range, percentage of time below range, body fat percent-
age, percentage lean mass, BMI, and HbA1c) from each exposure vari-
able [abundance of each SCFA-producing taxon, fecal SCFA (butyrate,
propionate, acetate, and total) concentrations, and intestinal microbial
diversity (number of unique taxa per sample)] using data from the 4
measurement timepoints (time 0 and roughly at 3, 6, and 9 mo).

We elected to use GEEs because they account for nonindependence
of repeated measures. Although linear mixed models also have this ca-
pability, GEEs can better handle zero-inflated gut microbiome data (47).
Because the adult fecal microbiome has high interindividual variabil-
ity and temporal stability (48–50), substantial changes to diet are nec-
essary to observe changes in the fecal microbiome; therefore, because
ACT1ON was a free-living diet study, we designed this analysis as a
repeated measures interindividual comparison rather than an intrain-
dividual longitudinal analysis of how changes in the gut microbiome
predict changes in glycemia and adiposity. We computed standardized
β coefficients by dividing each β estimate from GEE models by its SE to
allow for comparability across estimates and report these unitless stan-
dardized coefficients in the figures (51).

We repeated all modeled analyses restricted to pre-COVID-19 data,
given changes in the mode of intervention delivery, in the assessment
methods for the primary ACT1ON parent study outcomes of glycemia
and weight, and reduced study retention and adherence to diet assign-
ments during COVID-19. Analysis of the larger parent study outcomes
revealed that the statistically significant ∼5-lb (∼2.27-kg) mean weight
loss at the end of the first diet period pre-COVID-19 was attenuated, al-
though not to nonsignificance, when including participants who com-
pleted the first diet period during COVID-19 (D Igudesman, J Crandell,
KD Corbin, DP Zaharieva, A Addala, JM Thomas, A Casu, MS Kirk-
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TABLE 1 Baseline characteristics among ACT1ON study participants included or excluded from the analytic sample (total
n = 68)1

Included (n = 45) Excluded (n = 23) P value

Age, mean ± SD, y 25.4 ± 3.3 25.6 ± 2.8 0.73
Female gender, n (%) 31 (68.9) 18 (78.3) 0.42
Non-Hispanic White race and ethnicity,2 n (%) 34 (75.6) 11 (47.8) 0.02
UNC site, n (%) 27 (62.8) 12 (48.0) 0.23
Diabetes duration, mean ± SD, y 15.1 ± 6.4 11.8 ± 5.7 0.03
Insulin pump use, n (%) 25 (58.1) 15 (60.0) 0.88
BMI, median (Q1, Q3) 30.8 (28.2, 34.0) 29.7 (27.1, 33.2) 0.33
HbA1c, mean ± SD, % 7.8 ± 1.4 8.0 ± 1.3 0.52
Body fat percentage, median (Q1, Q3) 41.6 (34.7, 45.1) 39.2 (32.6, 43.8) 0.46
Percentage lean mass, median (Q1, Q3) 55.2 (52.3, 62.1) 57.6 (54.0, 64.2) 0.40

Included (n = 39)3 Excluded (n = 19)3

Total fiber intake, grams 12.9 (9.3, 22.1) 14.2 (10.5, 19.3) 0.76

Included (n = 38)3 Excluded (n = 19)3

Time in range (70–180 mg/dL), mean ± SD, % 52.6 ± 22.0 44.1 ± 20.5 0.16
Time above range (>180 mg/dL), mean ± SD, % 40.2 ± 25.2 50.4 ± 22.8 0.14
Time below range (54–70 mg/dL), median (Q1, Q3), % 3.7 (1.7, 7.4) 3.3 (1.0, 5.5) 0.39
1Group differences in continuous variables were tested using independent t-tests for normally distributed variables or Mann–Whitney U (Wilcoxon rank sum test) for
nonnormally distributed continuous variables. Group differences in categorical variables were tested using the χ2 test for independence or the Fisher exact test if any cell
sizes were less than n = 5. Note: Body composition measures were only available pre-COVID-19 due to discontinuation of DXA after the transition to a virtual protocol
during COVID-19. ACT1ON, Advancing Care for Type 1 Diabetes and Obesity Network; HbA1c, glycated hemoglobin; Q1, quartile 1; Q3, quartile 3; UNC, University of
North Carolina at Chapel Hill.
2Race and ethnicity were collapsed into non-Hispanic white and Other due to sample size limitations. To avoid the possibility of participant identification, we express
frequencies with <3 individuals as “n <3” rather than disclosing the absolute number: of those included in the analytic sample, n = 4 (8.9%) identified as African American,
n < 3 identified as Asian, n < 3 identified with >1 race; n = 36 (80.0%) identified as White; n = 6 (13.3%) identified as Hispanic or Latino. Of those excluded from the
analytic sample, n <3 identified as African American, n <3 identified as Native Hawaiian/Other Pacific Islander, n <3 identified as Asian, n <3 identified as Other race,
n = 4 (17.4%) identified with >1 race; n = 13 (56.5%) identified as White; n = 5 (21.7%) identified as Hispanic or Latino.
3Six and 7 participants included in the analysis were missing data for diet and continuous glucose monitoring, respectively, at the baseline visit.

man, T Pokaprakarn, MC Riddell, K Burger, RE Pratley, MR Kosorok,
DM Maahs, EJ Mayer-Davis, unpublished results, 2022).

Model 1 was unadjusted but accounted for within-subject corre-
lations of repeated measures. To maximize utility of this pilot study
sample, we used stepdown approaches to evaluate which nondesign
potential confounders (age, gender, race and ethnicity, BMI, insulin reg-
imen, and dietary fiber intake) to retain in statistical models (52). We
retained age, gender, race and ethnicity, diabetes duration, and fiber in-
take in Model 2 because these were the informative variables (P < 0.1).
Model 2 also included the design covariates of diet assignment, study
site, the COVID-19 indicator, diet duration, and diet period. We did
not adjust Model 2 for the COVID-19 indicator or diet duration when
restricting to pre-COVID-19 visits.

Given the hypothesis-generating nature of this study and our conser-
vative method of correction for multiple comparisons, we considered
Bonferroni-corrected (53) P values to be statistically significant at an
α level <0.1. We estimated power calculations with R software version
4.1.1. We conducted all other analyses using SAS version 9.4.

Human participants
This study was approved by the UNC and Stanford Institutional Re-
view Boards (IRBs) and study participation did not begin until partic-
ipants signed informed consent. The procedures followed were in ac-
cordance with the ethical standards of the UNC and Stanford IRBs.
Participants signed an informed consent form stating that their data
would be used anonymously in future publications. Participants were
compensated ≤$780.00 for taking part in the parent ACT1ON study.
Additionally, participants received $30, $50, $70, and $90 for voluntar-

ily providing a stool sample at the baseline visit and measurement visits
2, 3, and 4, respectively.

Study physicians reviewed all laboratory findings in a timely fash-
ion. Research staff received formalized guidance (“alert values”) for
when to proactively contact the study physician. The intervention-
ists (Registered Dietitians) and study physicians communicated reg-
ularly (verbally and in writing per protocol) regarding blood glucose
values so that any changes in medical management were made in
a timely fashion. Study coordinators immediately reported any ad-
verse events to the study physician at the local site and to the study
investigators, who kept a log of adverse events and serious adverse
events.

All collected data were anonymized by using a participant identifi-
cation number, which was stored in a secure location and could only be
linked to participant identifiers by select study staff. The study project
manager oversaw data security. Potential benefits of participation in-
cluded (but did not guarantee) improved blood glucose management
and weight loss. Participants were provided with ample time to review
and ask questions about the informed consent form. Study coordina-
tors administered an informed consent comprehension checklist to each
study participant as part of enrollment.

Results

At enrollment, the 45 participants included in the present analysis had
a mean age of 25.4 ± 3.3 y, a median BMI of 30.8 (IQR: quartile 1, 28.2;
quartile 3, 34.0), mean HbA1c of 7.8 ± 1.4%, and a mean diabetes dura-
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FIGURE 1 Heatmaps with standardized β estimates from covariate-adjusted GEE models for associations of SCFA-producing microbes,
fecal SCFAs, and α-diversity with glycemia and adiposity. (A) Results using all available data; (B) Results restricted to pre-COVID-19 data. P
values were Bonferroni corrected and statistically significant at P < 0.1 (denoted by asterisks). Units are micromoles per gram for SCFAs,
normalized abundance for gen us-level intestinal microbes, and the number of unique taxa from the phylum to the genus level for
intestinal microbial diversity. DXA was only performed prior to COVID-19. BFP, body fat percentage; GEE, generalized estimating
equation; HbA1c, glycated hemoglobin; PLM, percentage lean mass; TAB, percentage of time above target glucose range (>180 mg/dL);
TBR, percentage of time below target glucose range (54–69 mg/dL); TIR, percentage of time in target glucose range (70–180 mg/dL).

tion of 15.1 ± 6.4 y (Table 1). Over two-thirds of included participants
identified with a female gender (68.9%), 62.8% were enrolled at UNC,
and 58.1% used insulin pump therapy for their diabetes management.
ACT1ON study participants who were included (n = 45) or excluded
(n = 23) from analysis did not differ with respect to age, gender, enroll-
ment across study sites, BMI, insulin pump use, dietary fiber intake, or
any of the study outcomes related to glycemia or adiposity at the baseline
visit (all P > 0.05). ACT1ON participants included in the analytic sam-
ple had a longer diabetes duration (15.1 ± 6.4 y) and were less racially
and ethnically diverse (75.6% had a non-Hispanic white race and eth-
nicity) than those excluded (diabetes duration 11.8 ± 5.7 y, P = 0.03;
47.8% had a non-Hispanic white race and ethnicity, P = 0.02).

Mean or median values for SCFAs and the outcomes of glycemia
and adiposity across all timepoints of the ACT1ON gut microbiome
pilot study are displayed in Table 2. Collapsing across visits, the
mean ± SD values for fecal SCFAs were 54.7 ± 20.3 μmol/g for acetate,
16.7 ± 6.6 μmol/g for propionate, and 6.9 ± 1.9 μmol/g for butyrate.

Using all available data, the only associations among SCFA-
producing microbes, fecal SCFA, and α-diversity with glycemia and adi-
posity that remained statistically significant after adjustment for poten-
tial confounders and Bonferroni correction were: 1) a negative associ-
ation of the abundance of Eubacterium hallii with BMI (unstandard-
ized β estimate −0.70 [95% CI:−1.2,−0.24] P=0.07); and 2) a nega-
tive association of the abundance of Anaerostipes with percentage of
time in target glucose range (unstandardized β estimate −8.9% [95%
CI −13.1,−4.0; P=0.01).

Using pre-COVID-19 data, 4 covariate-adjusted and Bonferroni-
corrected associations remained statistically significant for outcomes of
glycemia, and 8 associations remained statistically significant for out-
comes of adiposity. All statistically significant associations for glycemia
used CGM data and had the following unstandardized β estimates: a
1 SD increase in fecal propionate or in total fecal SCFA was associated

with a 11.7% (95% CI 5.6, 17.7) and an 11.7% (95% CI 4.9, 18.5) increase
in the percentage of time spent in hyperglycemia (>180 mg/dL), respec-
tively; and a 1 SD increase in fecal propionate was associated with a 1.6%
(95% CI 2.6, 0.69) reduction in the percentage of time spent in clinical
hypoglycemia (54–69 mg/dL) and a 9.3% (95% CI 14.8, 3.8) reduction
in the percentage of time spent in target glucose range (70–180 mg/dL),
respectively. The increased abundance of 3 SCFA-producing intestinal
taxa (Ruminococcus gnavus, Eubacterium ventriosum, and Lachnospira)
was associated with reduced body fat percentage; of these, increased
Ruminococcus gnavus and Eubacterium ventriosum were also associ-
ated with increased percentage lean mass, and increased Ruminococcus
gnavus was associated with reduced BMI. The normalized abundance of
the SCFA producer Anaerostipes was associated with increased BFP, and
with reduced percentage lean mass. The largest unstandardized β esti-
mates corresponding to a 1 unit increase in the normalized abundance
of the intestinal microbiota were a 1.7 (95% CI 0.92, 2.5) percentage
point increase in body fat percentage with increasing Anaerostipes and
a −1.6 (95% CI −2.4, −0.78) percentage point reduction in body fat
percentage with increasing Ruminococcus gnavus. Heatmaps with stan-
dardized β coefficients for covariate-adjusted and Bonferroni-corrected
estimates are shown in Figure 1A (all data) and Figure 1B (pre-COVID-
19 data). Crude unadjusted estimates are not presented due to major
confounding by dietary fiber intake, whose inclusion in the adjusted
models changed some point estimates by ∼5-fold or more.

Scatterplots of raw data for statistically significant associations of fe-
cal SCFA with measures of glycemia are shown in Figure 2.

Discussion

To our knowledge, our hypothesis-generating study is the first to rig-
orously assess advanced metrics of glycemia and adiposity in associa-
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FIGURE 2 Scatterplots of raw pre-COVID-19 data for associations of fecal SCFAs with measures of glycemia that were statistically
significant after adjustment for potential confounders and correction for multiple hypothesis testing. (A, B) Increased total fecal SCFAs and
fecal propionate were associated with reduced percentage of time in target glucose range. (C, D) Increased fecal propionate was
associated with reduced percentage of time above target glucose range (C) and percentage of time in clinical hypoglycemia (D).

tion with measures of the intestinal microbiota and SCFAs in individu-
als with longstanding T1D. Whereas we surmised from preclinical ev-
idence and from limited evidence in individuals without T1D that an
increased SCFA-producing capacity of the intestinal microbiota is asso-
ciated with improved glycemia but with increased adiposity, the results
of our covariate-adjusted models suggested the opposite: increased fe-
cal propionate, total fecal SCFAs and the abundance of the butyrogenic
genus Anaerostipes were associated with more percentage of time in hy-
perglycemia and less percentage of time in target glucose range, whereas
the abundance of several SCFA-producing enteric microbial genera that
are known SCFA producers was inversely associated with percentage
body fat or BMI or positively with percentage lean mass. There was one
exception: the abundance of the SCFA producer Anaerostipes was asso-
ciated with increased adiposity.

Our results suggesting that propionate may have a net nega-
tive impact on glycemia are unanticipated, given evidence from

preclinical models and humans with metabolic syndrome that SC-
FAs, including propionate, can improve blood glucose homeosta-
sis and help to resolve inflammation (54–59). Of note, although
propionate was associated with a modest reduction in percentage
of time in hypoglycemia, this was likely due to increased percent-
age of time in hyperglycemia. Therefore, we do not consider pro-
pionate to be protective from hypoglycemia. One preclinical study
found that provision of propionate to healthy human-derived hepa-
tocytes activated 5′-activated AMP kinase, which downregulated the
expression of gluconeogenic enzymes and reduced gluconeogene-
sis, suggesting a potential benefit to glycemia (60). In a rat model,
propionate decreased hepatic gluconeogenesis purportedly through
stimulation of intestinal gluconeogenesis (61). However, several
glucoregulatory mechanisms are disrupted in T1D, including deficient
insulin, glucagon, and amylin production (62). This raises the possibil-
ity that propionate’s ability to regulate blood glucose is blunted in T1D.
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The observed estimates for the association of propionate with hy-
perglycemia are clinically relevant if it is possible to manipulate the diet
or the SCFA-producing capacity of the intestinal microbiota such that
propionate is reduced by 1–2 SDs (i.e., a ∼10–20% reduction in hyper-
glycemia). However, these associational data must be interpreted with
caution and require confirmation in proof-of-mechanism studies to as-
sess the direct biological effect of propionate administration on blood
glucose excursions in individuals with T1D. Of note, calcium propi-
onate is sometimes added to foods as a mold inhibitor (e.g., in certain
bread products) (63) but is not calculated by the NDSR software, so we
were unable to determine its dietary contribution. We assume that the
major source of propionate is microbe-derived, although this requires
further investigation (64).

Our results suggest that SCFAs may function differently in people
with T1D than in those with metabolic syndrome. Prior use of fecal mi-
crobiota transplantation (FMT), or transfer of healthy donor stool to
individuals with metabolic syndrome, suggests the potential to improve
insulin sensitivity or energy expenditure through FMT, presumably
through the action of the intestinal microbiota or its effector metabo-
lites including SCFAs (20, 55, 57, 65). It is surprising that we did not
find associations of butyrate (57, 66) with measures of glycemia or adi-
posity in our study, given its prior associations with metabolic benefits
in preclinical models and humans with obesity or type 2 diabetes (67–
69). Butyrate might indeed function uniquely in people with T1D: a re-
cent randomized crossover study of 30 participants with longstanding
T1D aged 18–65 y (BMI 18.5–25.0), did not find a benefit of daily oral
supplementation with 4 g butyrate for 1 mo on immune or glycemic pa-
rameters (70). In people with non-alcoholic fatty liver disease, the abun-
dance of butyrogenic Anaerostipes was associated inversely with fast-
ing blood glucose (PMID: 31177662); however, in line with our results,
Anaerostipes was associated positively with blood glucose among chil-
dren with T1D from China (PMID: 34040330). Longer-term studies,
including those that enroll adults with T1D and overweight or obesity,
are required to fully understand the influence of SCFAs in the clinical
management of T1D.

Although our results should be interpreted with caution, they sug-
gest that SCFA-producing gut microbes may uniquely protect against
adiposity in people with T1D. However, these observational results
should be interpreted with caution, especially given that the SCFA
producer Anaerostipes was associated with increased adiposity in our
study. Contrary to our results, a preclinical study in mice and a clin-
ical study in people without T1D both found an increased abun-
dance of Ruminococcus gnavus in a group with overweight or obe-
sity compared with their lean counterparts, which the authors at-
tributed to the microbe’s SCFA-producing (i.e., energy-harvesting)
abilities (71, 72). In another preclinical mouse model of malnutri-
tion, Ruminococcus gnavus ameliorated an impaired growth phenotype,
potentially owing to its production of acylcarnitines—an energy
source—from fermentation of branched-chain amino acids (73). Eubac-
terium ventriosum was similarly elevated in Japanese individuals with
obesity compared with those who were lean (74), and Lachnospira de-
creased with decreasing body weight during a 3-mo weight loss in-
tervention (75). Nonetheless, a well-established function of SCFAs is
their ability to stimulate satiety hormone secretion (e.g., peptide YY and
GLP-1) from intestinal epithelial L-cells, which signal to central homeo-
static satiety regions (16, 76–78). It is possible that in people with T1D,

the SCFA-stimulated increase in satiety hormones predominates over
energy-accumulating pathways. Ultimately, novel strategies are needed
to determine the net ecosystem-wide effects of the gut microbiota and
its metabolites on host physiology and energy balance, particularly in
people with T1D.

The results of our study should be interpreted in the context of its
limitations. Given the hypothesis-generating nature of this study, its
observational design, our conservative method of correction for mul-
tiple comparisons, modest sample size, and the small effect sizes that
characterize associations with the intestinal microbiota, we cannot rule
out the possibility of type I or type II error (79) or reverse causality.
We focused on the SCFA-producing capacity of the intestinal micro-
biota, but other metabolic capabilities of the gut microbes we studied
might have contributed to their inverse associations with adiposity—
which can be investigated using whole-genome sequencing in future
research.

We included individuals if they had not taken antibiotics in the
prior month, which is long enough for many, but not all, intestinal mi-
crobes to reconstitute the intestinal tract (80). Thus, we cannot exclude
the possibility that antibiotic use >1 mo prior to stool collection in-
fluenced the gut microbial composition such that it was not “usual.”
Generalizability of our findings to individuals with T1D who do not
have overweight or obesity, who are racially or ethnically more diverse
than our study participants, who are middle-aged or older adults, or
who were recently diagnosed with T1D could be limited. We lacked
sufficient statistical power to adjust for race and ethnicity in their
raw form and therefore used a combined binary specification of these
variables.

The greater number of statistically significant findings when using
pre-COVID-19 data compared with all available data might be due to
changes in the composition of the intestinal microbiota and SCFAs dur-
ing COVID-19 due to reduced exposure to the external environment,
changes to diet, and other lifestyle factors such as physical activity, use
of antibiotics, inflammatory responses to the COVID-19 virus or other
infections, and changes to hygiene practices (81). It is also possible
that participants’ management of glycemia and weight changed dur-
ing COVID-19 (82), or that there was variability in study dropout ac-
cording to variability in success with managing glycemia or adiposity.
We used fecal SCFAs as a proxy for production, which is common in
other studies but is not a direct measure (83, 84). SCFAs are absorbed
across the intestinal epithelium with high efficiency and therefore repre-
sent ∼5–10% of total SCFAs produced (85). Future in vivo tracer stud-
ies can directly measure SCFA production by the intestinal microbiota
(86).

Our study also includes several strengths. We addressed a substan-
tial gap in the literature by assessing the links among the intestinal
microbiota, SCFAs, and clinical outcomes in people with longstand-
ing T1D. We used novel and rigorous methods of analyzing the in-
testinal microbiota in association with advanced metrics of glycemia
and adiposity, and we carefully adjusted models for potential con-
founding and design covariates. All statistically significant associa-
tions of the intestinal microbiota and SCFAs with glycemia were de-
tected using CGM-based metrics, which highlights the utility of pars-
ing hyper-, hypo-, and euglycemia from HbA1c—a 3-mo average that
is less informative for day-to-day management (87). The majority of
statistically significant associations with adiposity used DXA-based
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metrics—which measure body composition directly and better pre-
dict metabolic risk than BMI (88)—so the contribution of intestinal
microbes and SCFAs to adiposity may be better approximated using
DXA.

Given that overweight status and glycemia have not improved or
have worsened in people with T1D in the United States over the past
several decades (3, 4, 89, 90), our hypothesis-generating study assessed
whether the intestinal microbiota and SCFAs warrant further research
in the clinical management of T1D. We identified 4 candidate mi-
crobes whose abundance was inversely associated with adiposity; and
1 SCFA (i.e., propionate) whose abundance was associated with a po-
tential harm to glycemia. Additionally, the increased abundance of bu-
tyrogenic Anaerostipes was associated with more hyperglycemia and a
higher body fat percentage, so additional studies should examine this
gut microbe in people with T1D and overweight or obesity specifically.
These findings require confirmation in additional observational and
mechanistic research, which could ultimately determine whether the
intestinal microbiota or SCFAs are worthy of investigation in interven-
tional trials to reduce the cardiometabolic risk factors of dysglycemia
and adiposity in people with T1D.
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