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Tuberculosis (TB) is a leading cause of global child mortality. Until the turn of the 21st century, Mycobacterium bovis bacille Calmette-
Guerin (BCG) was the only vaccine to prevent TB. The pediatric TB vaccine pipeline has advanced in the past decade to include the 
evaluation of novel whole cell vaccines to replace infant BCG and investigation of subunit and whole cell vaccines to boost TB im-
munity during adolescence. We describe the history of BCG, current TB vaccine candidates in clinical trials, and the challenges and 
opportunities for future TB vaccine research in children. Children are a critical target population for TB vaccines, and expansion of 
the pediatric TB vaccine pipeline is urgently needed to end the TB pandemic.
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The year 2021 commemorated the 100th-year anniversary of 
Mycobacterium bovis bacille Calmette-Guérin (BCG), the first 
and only licensed vaccine against tuberculosis (TB) [1]. The 
first human to receive BCG was a neonate born to a mother 
with TB; now, over 200 million doses of BCG are given annually 
throughout the world [2]. BCG vaccination in newborns provides 
~90% protection against disseminated TB disease during the first 
year of life and up to 2-fold reduction in all-cause child mortality 
[1, 3–5]. Despite these successes, variable BCG vaccine efficacy 
against pulmonary TB and waning protection beyond infancy re-
sult in over 10 million new TB cases and 1.5 million TB-related 
deaths (230 000 among children) each year [6]. Innovative TB 
vaccine candidates, trial design, and implementation strategies 
are needed to end the TB pandemic. This review describes the 
lessons learned from the first era of pediatric TB vaccines, recent 
advances in the pediatric TB vaccine pipeline, and challenges and 
opportunities for future TB vaccine research in children.

THE FIRST ERA OF PEDIATRIC TB VACCINATION: 
INFANT PRIMARY BCG AND SUBUNIT BOOSTERS 

Infants experience higher TB morbidity and mortality than 
adults and accordingly have been a priority target population 
for TB vaccines [7]. Most countries currently administer BCG 
at birth or upon a child’s first contact with health services [1, 8]. 
Despite the relative immaturity of the neonatal immune system, 
BCG vaccination elicits robust CD4 T cell responses producing 

Th1 cytokines, including interferon-gamma (IFN-γ), tumor 
necrosis factor (TNF), and interleukin 2 (IL-2) [9]. Vaccine-
induced protection is highest and most consistent against he-
matogenous TB including meningitis and miliary TB among 
young children, but BCG efficacy to prevent pulmonary TB 
is variable (ranging from 0% to 80%) and differs by sex, geo-
graphic distance from the equator, and preexisting exposure to 
Mycobacterium tuberculosis and other mycobacteria [1]. BCG is 
a live attenuated vaccine, which poses safety risks for children 
with acquired or primary cell-mediated immunodeficiency 
who can develop disseminated or aggressive regional BCG dis-
ease after vaccination [10]. Prior to the antiretroviral therapy 
(ART) era, children with HIV had 3- to 4-fold increased risk for 
disseminated BCG resulting in high mortality [11]. The lack of 
standard manufacturing procedures in the early stages of dis-
tribution led to heterogeneity of vaccine strains used globally, 
a problem that persists today and may account for variation in 
BCG efficacy [12]. Moreover, an inconsistent supply chain has 
resulted in frequent BCG vaccine shortages, particularly in low- 
and middle-income countries [2].

To address these challenges, the start of the 21st century 
marked the development of novel TB subunit vaccines to boost 
BCG immunogenicity. The 2 types of TB subunit vaccines in-
clude (1) viral vectors expressing M. tuberculosis antigens and 
(2) recombinant M. tuberculosis fusion proteins delivered with 
an adjuvant (Figure 1). Subunit vaccines have more limited M. 
tuberculosis antigenic targets compared with whole cell vac-
cines, such as BCG, but offer an improved safety profile and 
standardized manufacturing. The viral vector vaccine, mod-
ified vaccinia virus Ankara expressing immunodominant M. 
tuberculosis antigen Ag85A (MVA85A), was the first novel TB 
vaccine to be evaluated in a large efficacy trial among infants 
[13]. In this placebo-controlled trial, BCG-vaccinated infants 
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who received a MVA85A booster at 4-6 months of age dem-
onstrated modest induction of Ag85A-specific Th1 and Th17 
CD4 cellular immunity, but no additional protection against 
clinically asymptomatic M. tuberculosis infection or TB disease 
compared with BCG alone. Other subunit vaccines, including 
M72/AS01E, AERAS-402, and H4:IC31, have been evaluated 
as BCG boosters among infants (Table 1). While these sub-
unit candidates were safe, infant immunogenicity was modest 
in comparison to parallel studies in adults [14, 15, 16]. A re-
verse prime-boost strategy has also been evaluated among HIV-
exposed uninfected infants. In this study, primary vaccination 
with MVA85A at birth only elicited modest immunity and did 
not significantly enhance immunogenicity of an infant BCG 
booster [17].

RECENT STRATEGIC ADVANCEMENTS IN PEDIATRIC 
TB VACCINATION TRIALS

In the past decade, 11 new candidates have been evaluated in 
pediatric TB vaccine trials (Figure 1). Strategic advancements 
in trials in children have included: (1) evaluation of novel whole 
cell candidates to replace infant BCG vaccination, (2) prioriti-
zation of adolescents as a target population, and (3) use of inno-
vative trial endpoints beyond prevention of TB disease. While 
infants are particularly vulnerable to TB disease and need a vac-
cine with better safety and efficacy than BCG, they are not the 
main drivers of M. tuberculosis transmission. Adolescents have 
emerged as a target age group for new TB vaccine trials due 
to the sharp increase in TB incidence between 15 and 25 years 
of age [28]. Adolescents develop adult-type cavitary TB disease 
that is more readily transmissible compared with infants [29]. 
Modeling studies suggest that a TB vaccine with modest efficacy 
would have a larger impact on the TB epidemic when admin-
istered to adolescents and adults instead of infants, preventing 
17 million TB cases vs 0.89 million cases over a 25-year time 
period, respectively [30].

Prevention of microbiologically confirmed TB disease re-
mains the gold standard efficacy endpoint for TB vaccine trials 
[31, 32]. Prevention of TB disease can be measured more easily 
among adolescents using culture or polymerase chain reaction 

(PCR)-based microbiological assays from respiratory speci-
mens. However, this endpoint is particularly difficult to ascer-
tain in younger children due to the paucibacillary nature of TB 
and challenges of respiratory sample collection in this age group 
[29, 31].

Prevention of clinically asymptomatic M. tuberculosis in-
fection is an endpoint used more recently in TB vaccine trials, 
which provides opportunities to lower cost and more rap-
idly inform the advancement of vaccine candidates to larger 
trials measuring prevention of TB disease. Mycobacterium 
tuberculosis infection is measured indirectly by blood-based 
immunodiagnostic tests and interferon-gamma release as-
says (IGRA; eg, QuantiFERON-TB Gold Plus or T-Spot 
TB) [33]. Measuring incident M. tuberculosis infection (ie, 
IGRA conversion) as a trial endpoint is biologically relevant, 
since individuals with recent M. tuberculosis infection have 
a higher risk of developing TB disease than those with re-
mote infection [34]. Mycobacterium tuberculosis infection 
also occurs at much higher rates than TB disease; therefore, 
prevention of M. tuberculosis infection trials can provide 
proof of vaccine-mediated effects using smaller sample sizes 
than trials powered to detect TB disease. Limitations of trials 
using M. tuberculosis infection as the primary endpoint in-
clude imprecision of IGRA assays to measure M. tuberculosis 
infection, resulting in possible misclassification of M. tuber-
culosis infection status at enrollment or post-vaccination, and 
interpretation of longitudinal changes in IGRA results, which 
can revert from positive to negative [33]. The potential epi-
demiological impact of preventing M. tuberculosis infection 
and its correlation with preventing TB disease must still be 
determined [35].

CURRENT NOVEL PEDIATRIC TB VACCINE CANDIDATES

Subunit Vaccines

Subunit TB vaccines currently being evaluated in adolescent 
phase 1 and 2 trials include M72/AS01E, ID93 + GLA-SE, and 
ChAdOx1 85A prime + MVA85A boost (Figure 2; Table 1).

M72/AS01E is a fusion of 2 proteins (Mtb39a and Mtb32a) de-
livered in an adjuvant containing an organic saponin and lipid. 

Figure 1.  Pediatric TB vaccine approaches. Summary of previous and current approaches to TB vaccines in children under 18 years of age. Vaccine can-
didates that have completed testing in phase 1 or higher trials are indicated in italics. Created with BioRender.com. 
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Two doses of M72/AS01E administered 1 month apart showed 
49.7% (95% CI 2.1%-74.2%) efficacy to prevent TB disease 
among IGRA-positive adults and were safe and immunogenic 
among adolescents [14, 36]. Although this candidate has not 
been further tested in infants, a phase 2 trial among adolescents 
≥16 years and adults with HIV is ongoing (NCT04556981), and 
a large phase 3 trial is being planned.

ID93 + GLA-SE is a fusion protein of 4 M. tuberculosis 
antigens associated with virulence and latency (Rv2608, Rv3619, 

and Rv3620 and Rv1813) with a synthetic toll-like receptor 
4 adjuvant in oil-in-water emulsion [37]. Three doses of ID93 
+ GLA-SE elicited cellular and humoral immune responses in 
adults [38]. A phase 1 safety and immunogenicity trial is ongoing 
in adolescents (NCT03806699). Testing of the efficacy of ID93 + 
GLA-SE to prevent M. tuberculosis infection (NCT03806686) or 
recurrent TB disease is being planned in adults [39].

A heterologous “prime-boost” vaccination strategy using 
adenoviral vector-based vaccines demonstrated promising 

Table 1.  TB Vaccine Trials in Pediatric Populationsa

Vaccine Phase Purpose Age Range Start Date NCT Number [Reference]

Infant BCG Prime + Boost

MVA85A 2 Safety & Immunogenicity 24 wks to 11 y 2008 NCT00679159
[18]

MVA85A 2 Safety, Immunogenicity, & Efficacy (prevention of disease) 18-26 wks 2009 NCT00953927[13]

AERAS-402 1, 2 Safety & Immunogenicity 16-26 wks 2010 NCT01198366
[19]

M72/AS01E 2 Safety & Immunogenicity 8-28 wks 2010 NCT01098474
[20]

MVA85Ab,c 2 Safety & Immunogenicity 0-4 days 2012 NCT01650389
[17]

H4:IC31 1, 2 Safety & Immunogenicity 24-28 wks 2013 NCT01861730

Infant BCG Replacement

VPM1002 2 Safety & Immunogenicity 0-8 days 2011 NCT01479972
[21]

VPM1002c 2 Safety & Immunogenicity 0-12 days 2015 NCT02391415
[22]

MTBVAC 1, 2 Dose-Escalation Safety & Immunogenicity 0-4 days 2015 NCT02729571
[23]

MTBVAC 2 Dose-Defining Safety & Immunogenicity 0-4 days 2019 NCT03536117

VPM1002c 3 Safety & Efficacy (prevention of infection) 0-14 days 2020 NCT04351685

MTBVACc 3 Safety, Immunogenicity, & Efficacy (prevention of disease) 0-7 days 2022 NCT04975178

Child & Adolescent Vaccination

M72/AS01E 2 Safety & Immunogenicity 13-17 y 2009 NCT00950612
[14]

M. vaccae (Vaccae) 3 Safety & Efficacy (prevention of disease) 15-65 y 2013 NCT01979900

MVA85A 2 Immunogenicity 12-17 y 2014 NCT02178748
[24]

BCG
H4:IC31

2 Safety, Immunogenicity, & Efficacy (prevention of infection) 12-17 y 2014 NCT02075203
[25]

BCG
H4:IC31
H56:IC31

1 Safety & Immunogenicity 12-17 y 2015 NCT02378207
[26]

DAR-901 2 Safety & Efficacy (prevention of infection) 13-15 y 2016 NCT02712424
[27]

ID93 + GLA-SE 1 Safety & Immunogenicity 14-18 y 2019 NCT03806699

BCG
ChAdOx1 85A
MVA85A

1, 2 Safety & Immunogenicity 12-49 y 2019 NCT03681860

BCG 2 Safety, Immunogenicity, & Efficacy (prevention of infection) 10-18 y 2019 NCT04152161

VPM1002
M. indicus pranii

3 Safety & Efficacy (prevention of disease) 6-99 y 2019 CTRI/2019/01/017026

M72/AS01E
d 2 Safety & Immunogenicity 16-35 y 2020 NCT04556981

aExcluding trials of primary BCG vaccination and trials evaluating a new manufacturing source of BCG.
bReverse prime boost (MVA85A prime + BCG boost).
cTrial included infants born to mothers living with HIV.
dAll participants in the trial are living with HIV.
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immunogenicity in a malaria vaccine trial of young African 
children, and this approach is now being applied to the TB vaccine 
field [40]. While MVA85A alone was only modestly immunogenic 
as a booster to BCG among infants, administration of chimpanzee 
adenovirus expressing M. tuberculosis antigen 85A (ChAdOx1 
85A) followed by an MVA85A boost generated M. tuberculosis-
specific CD4 and CD8 immune responses in adults and is being 
evaluated in a phase 1/2 trial among adolescents (NCT03681860) 
[41].

Whole Cell Vaccines

Four whole cell vaccines are being assessed in phase 2 and 3 
trials in children, including live attenuated M. tuberculosis 
(MTBVAC), live recombinant BCG (VPM1002), BCG revac-
cination, and heat-killed non-tuberculous mycobacterium 
Mycobacterium indicus pranii (Figure 2).

Among infants, trials to replace primary BCG vaccination 
with either MTBVAC or VPM1002 are ongoing (Figure 1). 
MTBVAC is an attenuated clinical strain of M. tuberculosis, 
modified by removing 2 virulence genes phoP and fadD26 
[42]. MTBVAC contains a higher number of M. tuberculosis 
antigenic targets than BCG, as it retains approximately 25% of 
M. tuberculosis human T cell epitopes that are deleted in BCG 
[43]. MTBVAC was safe in an infant phase 1 trial and achieved 
a higher frequency of CD4 cells expressing Th1 cytokines than 
BCG at 1-year follow-up [43]. A dose-finding phase 2 trial has 
been completed (NCT03536117), and a phase 3 trial to prevent 
TB disease is due to begin in 2022 (NCT04975178). A consider-
ation for the MTBVAC vaccine is that it contains antigens that 
cross-react with currently available IGRAs, which may interfere 

with the clinical utility of IGRAs to identify M. tuberculosis in-
fection after vaccination and could limit the use of M. tubercu-
losis infection as an endpoint until new immunodiagnostic tests 
are available.

VPM1002 is a genetically modified strain of BCG subtype 
Prague (BCGΔureC::hly), expressing the listeriolysin gene 
(hly) from Listeria monocytogenes in the absence of urease 
C. These modifications enhance the translocation of myco-
bacterial antigens into the cytosol, which improves antigen 
presentation to CD8 T cells and elicits robust Th1 and Th17 
responses [44]. A phase 1 trial among infants demonstrated 
no severe adverse events and lower rates of injection site ab-
scesses than BCG [21]. A multi-center phase 2b safety trial was 
completed in 2018 [22], and a phase 3 trial evaluating the effi-
cacy of VPM1002 to prevent M. tuberculosis infection in HIV-
exposed and unexposed infants is ongoing (NCT04351685).

The current TB vaccine pipeline for adolescents includes BCG 
revaccination, VPM1002, and M. indicus pranii (Table 1). While 
BCG revaccination did not offer protection from clinical TB dis-
ease in historical trials of adolescents and adults, a recent trial 
measuring the prevention of M. tuberculosis infection among 
IGRA-negative adolescents demonstrated that BCG revaccina-
tion had ~45% efficacy to prevent 2 endpoints: (1) sustained IGRA 
conversion (>0.35 IU/mL through 6 months post-conversion) 
and (2) high magnitude of IFN-γ (>4.0 IU/mL) among IGRA 
converters [25, 45, 46]. High magnitude of IFN-γ (>4.0 IU/mL) 
has been associated with a 30- to 40-fold increased risk for TB 
disease among M. tuberculosis-infected children and adults [47, 
48], suggesting that BCG revaccination may have clinical bene-
fits. A confirmatory phase 2b trial of BCG revaccination among 
children aged 10-18 years is underway (NCT04152161), and 
a phase 1/2 trial comparing BCG revaccination and VPM1002 
is being planned among IGRA-negative and IGRA-positive 
children aged 8-14 years with and without HIV [49].

Heat-killed M. indicus pranii (previously named 
Mycobacterium w) shares antigens from M. leprae and M. tuber-
culosis. Mycobacterium indicus pranii prevented leprosy among 
household contacts and shortened treatment duration in leprosy 
patients [50]. Secondary analysis of a large leprosy household con-
tact trial demonstrated lower rates of TB disease over 13 years of 
follow-up of study participants in the M. indicus pranii arm [51]. 
VPM1002 and M. indicus pranii are currently being evaluated in 
a placebo-controlled prevention of TB disease trial among child 
and adolescent TB household contacts (CTRI/2019/01/017026).

CURRENT CHALLENGES AND PRIORITY AREAS FOR 
FUTURE PEDIATRIC RESEARCH

Immune Correlates of Protection and Animal Models

Human immune correlates of protection against M. tuberculosis 
infection and TB disease have not been clearly defined, which con-
tinues to hinder the rational design and evaluation of novel TB 
vaccine approaches. Given the dynamic nature of immune system 

Figure 2.  Currently active pediatric TB vaccine trials. Trials are indicated 
according to trial phase, age group, and primary endpoint. Bullet points 
indicate 2 separate arms within a given trial. *Combined phase 1/2 trial; 
**Not yet recruiting; ***Includes children ≥6 years of age. Created with 
BioRender.com.
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development during early childhood, consideration of age at the 
time of vaccination is needed to better define immune correlates of 
vaccine-induced protective immunity, which may differ across the 
lifespan [52]. There is an abundance of immune cell populations with 
suppressive activity in neonates, including regulatory T cells, regula-
tory B cells, regulatory neutrophils, and myeloid-derived suppressor 
cells [53], which may differentially shape vaccine immunogenicity 
in neonates compared with adolescents and adults. Animal models 
afford an opportunity to identify candidate immune correlates of 
protection yet have not been extensively developed in the context of 
pediatric TB. Recently, M. tuberculosis-specific immunoglobulin M 
(IgM) was identified as a potential immune correlate of protection 
in rhesus macaques vaccinated intravenously with BCG [54]. This 
finding points to the great potential to further develop infant non-
human primate models to more rapidly advance the preclinical eval-
uation of novel TB vaccine candidates. Mycobacterium tuberculosis 
challenge studies in young animals could facilitate the identification 
of immune correlates of protection that may be unique to children.

High-Risk Populations: HIV

HIV is the leading risk factor for TB disease, especially in 
children. In the pre-ART era, the incidence of TB was incredibly 
high among children with HIV; for example, in South Africa, 
a high TB burden setting, TB incidence was reported at 23 TB 
cases per 100 person-years among children with HIV [55]. 
While early ART initiation halved the incidence of TB in a ran-
domized ART trial of young South African children with HIV, 
older children with HIV maintain a 4-fold increased risk for 
TB disease despite prolonged ART and immune reconstitution 
(median CD4 >700 cells/μL) [56, 57]. Although HIV-exposed 
uninfected infants, who are at higher risk for M. tuberculosis 
infection [58], are included in several current clinical trials, no 
TB vaccines have been adequately evaluated in children with 
HIV (Table 1). Observational studies showed that HIV infec-
tion and, to a lesser extent, vertical exposure are associated with 
impaired BCG immunogenicity in children, which may be as-
sociated with the lower vaccine-mediated protection against TB 
reported in retrospective epidemiological studies [59–62]. In 
addition to universal early initiation of ART, TB prevention in 
children with HIV has been limited to index case identification 
and TB preventive therapy, neither of which are easily imple-
mented. Children with HIV on stable ART with well-controlled 
viral load and acceptable immune reconstitution should not 
be excluded from clinical trials of new TB vaccines. An early 
study showed that anti-BCG immune responses were restored 
after a year of ART in children with advanced HIV, supporting 
studying the benefits of TB vaccines in this population [63].

Inadequate Vaccine Pipeline

As illustrated in Figure 1, the current pipeline of clinical de-
velopment of TB vaccines for children is fundamentally unbal-
anced. The overall shift to new trials on adolescents has resulted 

in inadequate advancement of new infant vaccines; no phase 
1 trials targeting infants are currently active. Should MTBVAC 
and VPM1002 phase 3 trials show no additional benefit over 
BCG, no other candidates are available for testing in this key 
population. Despite increased recognition that preventing TB 
in adolescents is critical to reduce M. tuberculosis transmission, 
only 1 active phase 3 trial includes older children and adoles-
cents and is likely under-powered to assess efficacy among pe-
diatric age groups alone (Figure 2, Table 1). Future plans for 
TB vaccine development should be more inclusive and specif-
ically: (1) test new vaccine candidates in infants; (2) include 
adolescents in efficacy trials with sufficient numbers to estimate 
protection in this key population; and (3) perform safety, im-
munogenicity, and feasibility trials in pre-adolescents, which 
would allow wide-scale global programmatic rollout of a new 
TB vaccine administered in conjunction with human papillo-
mavirus (HPV) vaccine and tetanus booster given around age 
10 years.

Trial Design and Longitudinal Follow-up

An ideal TB vaccine would be administered to IGRA-negative 
children and have long-term efficacy to prevent TB disease 
through adulthood. Yet, phase 3 trials evaluating the preven-
tion of TB disease in IGRA-negative populations are a high-
risk investment, since they require very large sample sizes and 
prolonged longitudinal follow-up. Innovative trial designs and 
planning for long-term surveillance could provide valuable in-
sights beyond traditional phase 3 trials. Extended follow-up 
of historical TB vaccine trials has yielded valuable data; the 
Karonga trial recently reported modest TB disease protection 
30 years after childhood BCG revaccination, and a trial of pri-
mary BCG among Native Americans demonstrated 52% effi-
cacy to prevent TB disease after 60 years [64, 65]. Assessment 
of long-term efficacy through linkage to routinely collected 
data is more feasible with the expanded use of electronic med-
ical records and notifiable disease registries [66]. Promising 
vaccine candidates that demonstrate efficacy to prevent M. 
tuberculosis infection could be evaluated head-to-head in 
cluster randomized community trials measuring TB disease as 
the primary endpoint, with longer passive follow-up of large 
numbers of participants to complement the standard phase 3 
trial design.

CONCLUSION

Despite over 100 years of research and significant advances over 
the past decade, major challenges and opportunities remain in 
developing new, effective TB vaccines for children, who are a 
critical target population to reduce TB morbidity and mortality 
and to diminish TB transmission. Acceleration and expansion 
of the pediatric TB vaccine pipeline are urgently needed to end 
the TB pandemic.
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