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Whole‑cell tumor vaccines desialylated 
to uncover tumor antigenic Gal/GalNAc 
epitopes elicit anti‑tumor immunity
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Abstract 

Background:  Aberrant sialoglycans on the surface of tumor cells shield potential tumor antigen epitopes, escape 
recognition, and suppress activation of immunocytes. α2,3/α2,6Gal- and α2,6GalNAc (Gal/GalNAc)-linked sialic acid 
residues of sialoglycans could affect macrophage galactose-type lectins (MGL) mediated-antigen uptake and presen-
tation and promote sialic acid-binding immunoglobulin-like lectins (Siglecs) mediated-immunosuppression. Desia-
lylating sialoglycans on tumor cells could present tumor antigens with Gal/GalNAc residues and overcome glyco-
immune checkpoints. Thus, we explored whether vaccination with desialylated whole-cell tumor vaccines (DWCTVs) 
triggers anti-tumor immunity in ovarian cancer (OC).

Methods:  Sialic acid (Sia) and Gal/GalNAc residues on OC A2780, OVCAR3, and ID8 cells treated with α2-3 neurami-
nidase (α2-3NA) and α2-6NA, and Sigec-9 or Siglec-E and MGL on DCs pulsed with desialylated OC cells were identi-
fied using flow cytometry (FCM); RT-qPCR determined IFNG expression of T cells, TRBV was sequenced using Sanger 
sequencing and cytotoxicity of αβ T cells was measured with LDH assay; Anti-tumor immunity in vivo was validated 
via vaccination with desialylated whole-cell ID8 vaccine (ID8 DWCTVs).

Results:  Gal/GalNAc but not Sia residues were significantly increased in the desialylated OC cells. α2-3NA-modified 
DWCTV increased MGL but decreased Siglec-9 or Siglec E expression on DCs. MGLbright/Siglec-9dim DCs significantly 
up-regulated IFNG expression and CD4/CD8 ratio of T cells and diversified the TCR repertoire of αβ T-cells that showed 
enhanced cytotoxic activity. Vaccination with α2-3NA-modified ID8 DWCTVs increased MGLbright/Siglec-Edim DCs in 
draining lymph nodes, limited tumor growth, and extended survival in tumor-challenged mice.

Conclusion:  Desialylated tumor cell vaccine could promote anti-tumor immunity and provide a strategy for OC 
immunotherapy in a clinical setting.

Keywords:  Sialoglycans, Gal/GalNAc, Siglec-9, MGL, Tumor vaccine, TCR-Vβ repertoire

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Cell surface glycans on membrane-bound proteins are 
essential regulators of the immune system that regu-
late immune cell development and function, modulate 
immune receptor interactions, and serve as ligands for 
glycan-binding proteins (lectins) expressed by immune 
cells [1, 2]. Terminal sialic acid residues are abundant 
in glycan chains of glycoproteins and glycolipids on the 
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surface of all live cells forming an outer layer of the cell 
known initially as glycocalyx [3]. Moreover, they medi-
ate several of the regulatory functions of glycans in the 
immune system. Sialic acid-containing glycans (sialogly-
cans) are involved in numerous molecular interactions at 
the cell surface and have several direct and indirect func-
tions in the immune system [4, 5].

Tumor antigens produced by somatic DNA mutations 
due to the inherent genetic instability are glycosidically 
hypersialylated. Aberrant glycosylation is a common fea-
ture of many cancers. Alteration of cell surface sialyla-
tion is seen with transformation to a tumor cell. Altered 
glycosylation sites in epithelial cancer cells may play an 
essential role in tumor progression, as they may affect 
tumor cell migration and antigen presentation by anti-
gen-presenting cells (APCs) [6–8]. Altered sialylation has 
long been associated with the malignancy of carcinoma. 
High expression of sialic acids has been proposed to pro-
tect cancer cells from recognition and eradication by the 
immune system [9].

It has been demonstrated that sialic acids linked to 
galactose (Gal) and N-acetylgalactosamine (GalNAc) 
via a-2,3- and a-2,6-linkages significantly increased in 
cancer compared to normal tissues [10, 11]. They allow 
tumor cells to become ’invisible’ to avoid immune recog-
nition by DCs as APCs and attack by anti-tumor T cells. 
The macrophage galactose-type lectin (MGL) on DCs 
has been shown to induce immunosuppressive responses 
upon recognizing aberrant sialylation on cancer cells 
[12, 13]. MGL is the lectin that exclusively binds termi-
nal Gal/GalNAc epitopes of tumor-associated glycan [14, 
15]. It is an antigen-uptake receptor for the internaliza-
tion of Gal/GalNAc carrying immunogens delivered into 
MHC class I and II compartments, thus improving DC 
performance to facilitate MHC-restricted antigen pres-
entation to T cells and, most importantly, increasing anti-
gen-specific CD8 + T-cell activation [16–19].

Sialoglycans are recognized by sialic acid-specific 
receptors on immune cells, such as sialic acid-binding 
immunoglobulin-like lectins (Siglecs). The human Siglec 
family consists of 15 members that are broadly expressed 
by the majority of immune cells. They can be categorized 
as structurally conserved Siglecs (Siglec-1, -2, -4, and -15) 
and CD33-related Siglecs (CD33 or Siglec-3, Siglec-5, 
-6, -7, -8, -9, -10, -11, -12, -14, and -16). As numerous 
human malignancies express ligands for both Siglec-7 
and Siglec-9, the CD33-related Siglec-7 and Siglec-9 are 
of special importance in the context of tumor immuno-
therapy [20, 21]. Siglec-7 and Siglec-9 are reported to 
influence NK cell-dependent tumor immunosurveillance 
[20]. Siglec-7 binds to 2,8-sialyl residues with the high-
est affinity, while Siglec-9 preferentially binds to 2,6-sia-
lyl and 2,3-sialyl residues [22]. The sialoglycan-Siglec 

interaction suppresses an immune response as sialic 
acids are considered self-associated molecular patterns 
[20, 23–25]. The surface glycan profile of human tumor 
cells was dominated by α-2,3- and α-2,6-linked sialic 
acid-capped complex N-glycans and bi-antennary N-gly-
cans. Sialic acids can trigger immune inhibitory Siglecs 
on DCs, affecting antigen presentation to CD4 + and 
CD8 + T cells [26]. Gal/GalNAc-linked sialic acids of 
sialoglycans are known to interact with Siglec 9, an inhib-
itory immune checkpoint expressed broadly on immune 
cells, including DCs, which can impede T cell-mediated 
anti-tumor responses through immunoreceptor tyrosine-
based inhibitory motifs (ITIM) [27–31].

Poor presentation of tumor antigens to the immune 
system remains a major obstacle to effective anti-tumor 
vaccine therapy [32]. Aberrant sialylation of tumor anti-
gens enhances immune evasion and reduces the efficacy 
of several types of available immunotherapies, including 
tumor vaccine therapy [9, 33].

These findings suggest that removing α-2,3Gal- and 
α-2,6GalNAc-linked sialic acid residues from sialoglycans 
on the surface of tumor cells could improve tumor anti-
gen presentation by DCs, block Siglec-sialic acid inter-
actions, and boost anti-tumor immune responses. Thus, 
targeted desialylation of sialoglycan on tumor cells can 
be used to design novel anti-tumor vaccines [29, 34–36]. 
Here, we selectively removed the α-2,3- and α-2,6-linked 
sialic acids on OC cells by α2-3 and α2-6 neuramini-
dases, respectively, to generate desialylated whole-cell 
tumor vaccines (DWCTVs), resulting in the novel deliv-
ery approach for tumor antigens with Gal/GalNAc 
epitopes. Increased Gal/GalNAc epitopes accompanied 
the decrease of sialic acids on OC cells. DWCTVs could 
mature and activate DCs, reduce Siglec-9 and elevate 
MGL on DCs. These Sigec-9dim/MGLbright DCs diversified 
the TCR-Vβ repertoires of T cells, resulting in enhanced 
cytotoxicity against the parental OC cells in  vitro. Vac-
cination with DWCTVs could delay tumor formation, 
limit tumor growth, and prolong the survival of mice 
inoculated with tumor cells. The "win–win" effects of 
DWCTVs might be their blocking of Siglec-sialic acid 
interaction and increasing MGL-Gal/GalNAc interaction 
between immune cells and OC cells. DWCTVs in our 
study provided a promising therapeutic option to render 
tumors permissive to immune attack to reduce or pre-
vent tumor recurrence.

Methods
Cell lines and animals
Human OC cell lines (OVCAR-3 and A2780) and the 
mouse OC cell line (ID8) were purchased from the Com-
mittee on Type Culture Collection of the Chinese Acad-
emy of Sciences. OVCAR-3 cells were maintained in 
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McCoy’s 5A (Sigma), containing1% human insulin and 
15% fetal calf serum (FCS). A2780 and ID8 cells were 
cultured with RPMI-1640 (Gibco) and DMEM (Gibco), 
respectively, supplemented with 10% FCS. Penicillin 
(100 IU mL−1) and gentamicin (40 IU mL−1) were added 
to the mediums for these three cells. All cells were cul-
tured in a humidified incubator at 37 °C with 5% CO2.

Specific pathogen-free, 6–8-week-old female C57BL/6 
littermate mice (20 ± 2  g) (Dossy Experimental Animals 
Co. LTD Chengdu, China) were used for tumorigenicity 
studies. Animal studies were carried out following proto-
cols approved by the Ethics Committee of Sichuan Can-
cer Hospital (SCCHEC-04-2019-004).

Preparation and characterization of DWCTVs
The cells (1 × 106 cells/mL) were pre-treated with 
100 ng mL−1 of mitomycin C (R&D, 3258/10) in serum-
free medium for 3 h at 37  °C, washed and resuspended, 
and then desialylated with 100  mU  mL−1 of α2-3 and 
α2-6 neuraminidases (NAs) from Clostridium perfringens 
(Sigma, N2876) and Arthrobacter ureafaciens (Roche, 
10269611001) in the same medium for 30 min at 37  °C, 
respectively. The terminal α2,3/α2,6 sialic acid and Gal/
GalNAc residues on the resultant cells were identified 
using flow cytometry (FCM) with Biotinylated MALII/
DyLight 488 streptavidin (B-1265-1/SA-5488-1), Fluo-
rescein labeled SNA (FL-1301), and Cy5 labeled PNA 
(CL-1075-1).

DC cultures and maturation
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from the healthy adult female volunteer by Ficoll-
Hypaque (1.077  g  mL−1) gradient centrifugation and 
plated in a complete RPMI-1640 medium in culture 
plates for 4  h at 37  °C. The adherent monocytes were 
cultured in a complete RPMI-1640 medium with 500 
U mL−1 interleukin 4 (IL 4) (R&D, 204-IL-010) and 
150  ng  mL−1 granulocyte–macrophage colony-stimulat-
ing factor (GM-CSF) (R&D, 215-GM-010) for 7 consecu-
tive days. After then, the immature DCs (imDCs) were 
harvested, washed, and pulsed with an equal number of 
WCTV cells in the same medium containing 250 U mL−1 
IL 4 and 75  ng  mL−1 GM-CSF for 3  days. The mature 
DCs (mDCs) were then analyzed by flow cytometry for 
DC-surface maturation and activation markers (CD86, 
CD83), Siglec-9, and MGL expression.

T cell stimulation with the mDCs
The nonadherent cells of PBMCs were harvested, washed 
twice with PBS, and then incubated with the mDCs at 
a 10:1 ratio of cell number overnight. The stimulated 
lymphocytes were harvested to detect IFNG expression 
by RT-qPCR and CD4/CD8 ratio by FCM. Then these 

lymphocytes were expanded in the same medium with 
500 U mL−1 IL-2 (Solarbio, GMP-11848-HNAE) for 
5  days. The TCR-Vβ sequences and cytotoxicity of the 
resultant T cells were identified by Sanger sequencing 
and LDH assay, respectively.

Real‑time quantitative PCR for IFNG expression of human 
T cells
Total RNA was extracted from human T cells using TRI-
zol reagent (Invitrogen, 15596026). A total of 2 μg RNA 
was reverse transcribed using Eastep RT Master Mix Kit 
(Promega, LS2052), and 1 μL cDNA was used for qPCR 
using Eastep qPCR Master Mix Kit (Promega, LS2062), 
and the primer pairs for human IFNG: forward: 5′-TCG​
GTA​ACT​GAC​TTG​AAT​GTCCA-3′, reverse: 5′-TCG​
CTT​CCC​TGT​TTT​AGC​TGC-3′ and the primer pairs 
for human GAPDH: forward 5′-CAA​GGT​CAT​CCA​TGA​
CAA​CTTTG-3, reverse 5′-TCG​CTT​CCC​TGT​TTT​AGC​
TGC-3′

FCM assay
All lectins and antibodies were obtained directly from 
Vector Labs or BD Pharmingen, R&D, Biolegend, Abcam, 
and Servicebio. According to the manufacturers’ pro-
tocols, cells were incubated with antibodies for 30  min, 
and analysis was performed on a BD FACS Canto II flow 
cytometer.

TCR‑Vβ repertoire sequencing
TCR beta-chain variable (TRBV) gene of human T 
cells was PCR-sequenced. Briefly, to PCR-amplify and 
clone the sequences of TCR β-chains, 5′RACE was per-
formed with 1.0 μg of total RNA from human T cells co-
incubated with mDCs using RLM-RACE Kit (Thermo, 
AM1700) and primers specific for the gene (inner primer 
5′-TTC​TGA​TGG​CTC​AAA​CAC​-3′ and outer primer 
5′-GGT​CCA​CTC​GTC​ATT​CTC​CGA-3′). Then, 4 μL of 
the recovered and purified DNA fragments larger than 
400 bp were ligated into 1 μL pEASY T3 cloning vector 
(TRANS, CT301). The cloned DNA was sequenced using 
Sanger sequencing and analyzed using the IMGT/V-
QUEST online tool (IMGT-the international ImMuno-
GeneTics information system, http://​www.​imgt.​org) [37, 
38]. The entire full length of TRBV is defined as a clus-
ter containing all three complementarity determining 
regions (CDRs).

Cytotoxicity assay
Cytotoxicity of T cells was measured by the LDH assay kit 
(Promega, CytoTox 96®-G1780). Briefly, T cells and OC 
cells were mixed by the ratio of effect and target at 1:1, 
5:1, and10:1 in 1% FCS RPMI 1640 medium in a 96-well 
V-bottom for 4  h at 37  °C. The subsequent operations 

http://www.imgt.org
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were performed according to the manufacturer’s proce-
dure. The percentage of cytotoxicity is calculated with 
the following formula, % cytotoxicity = (experimental-
effector spontaneous-target spontaneous)/(target maxi-
mum-target spontaneous) × 100.

IL‑2 and IFNγ ELISA
Mice were vaccinated with whole-cell ID8 vaccines, 
and the serum was frozen at − 80  °C. IL-2 and IFNγ in 
serum were quantified using mouse IL-2 and IFNγ ELISA 
plates (R&D VAL607 and VAL602). Plates were analyzed 
with an Infinite Tecan M200 PRO microplate reader 
(Switzerland).

Mouse T cell subsets and DCs assay
Single-cell suspensions from tumor-draining lymph 
nodes of the vaccinated mice with whole-cell ID8 vac-
cines were prepared. FCM analysis of T cell subsets and 
DCs were performed with antibodies specific for CD3e 
(BD, 553061), CD4 (BD, 553051), CD8a (BD, 552877), 
and antibodies specific for Siglec E (R&D, FAB5806A), 
MGL1/2 (R&D, FAB4297P), CD11c (Biolegend, 117324), 
CD86 (Biolegend, 105116).

Fluorescent microscopy
Mice ID8 tumor tissue sections with antigen repair were 
immunostained with primary antibodies against murine 
CD8 and CD39, and FITC and Cy3 fluorescein-conju-
gated secondary antibodies against primary antibodies 
for imaging with fluorescent microscopy and analysis of 
the intensity of staining with Image J (Fiji) software.

Tumorigenicity studies
Animals were randomly grouped, and all animals were 
included in the data analysis except those who unexpect-
edly died. Female mice were inoculated subcutaneously 
(s.c.) once a week for three consecutive weeks at one side 
axilla with 2 × 105 whole-cell ID8 vaccines prepared with 
ID8 tumor tissue as stated above or PBS before subcuta-
neous challenge with 1 × 106 parental ID8 cells in 100 μL 
PBS at the opposite axilla. Tumor volume at the opposite 
axilla was determined using calipers. Mice were sacri-
ficed when tumor diameter exceeded 1  cm. The tumor 
growth and survival outcome were used to evaluate the 
efficiency of desialylated whole-cell ID8 vaccines in 
inducing specific anti-tumor immunity.

Statistical analysis
All statistical analyses were performed using GraphPad 
Prism 8. Statistical analysis was carried out using a paired 
t-test, unpaired t-test, and the log-rank (Mantel-Cox) 
test. A P-value of less than 0.05 was considered statisti-
cally significant.

Results
Characterization of DWCTVs with Gal/GalNAc epitopes
There are four hydroxyl groups on Gal and GalNAc 
that may form glycosidic bonds (Fig.  1a). 1-hydroxyl of 
GalNAc is attached to the hydroxyl group of the pro-
tein serine (Ser) or threonine (Thr) residues for initia-
tion of glycosylation, and 3- and 6-hydroxyls of GalNAc 
could be linked with sialic acids to terminate glycosyla-
tion. To uncover Gal/GalNAc epitopes on OC cells, we 
desialylated sialic acids on intact cells by hydrolysis with 
α2-3NA and α2-6NA following mitomycin C to generate 
DWCTVs (Fig.  1b; Additional file  1: Fig. S1, Additional 
file 2: Fig. S2).

FCM showed that there was a significant decrease of 
α-2,3Sia and α-2,6 Sia residues and an increase of Gal/
GalNAc epitopes on the surface of DWCTVs compared 
to the corresponding controls (P < 0.0001) (Fig.  1c–e; 
Additional file 3: Fig. S3).

Maturation and activation of DCs induced by DWCTVs 
in vitro
To explore the impact of α-2,3Sia and α-2,6Sia shed-
ding on DC performance, we co-cultured immature DCs 
(imDCs) with DWCTVs (Fig. 2a). As shown in Fig. 2b–
d, DCs (CD14-imDCs) from monocytes of the healthy 
female were pulsed with DWCTVs (Additional file 4: Fig. 
S4) derived from A2780 but not OVCAR3 cells exhib-
ited that the expression of differentiation marker CD83, 
co-stimulatory molecule CD86, and MGL (P < 0.05) 
were remarkably increased, but Siglec-9 was decreased 
(P < 0.01), as compared to the corresponding controls. 
Interestingly, the phenotypic alterations of DCs stimu-
lated with α2-3NA modified DWCTVs were more obvi-
ous than those with α2-6NA modified ones, suggesting 
that the removal of α-2,3-linked sialic acids on the termi-
nal galactosyl of GalNAc may play an important role for 
activation and performance of DCs.

DCs loaded with DWCTVs activate T cells in vitro
To test whether DCs loaded with DWCTVs could acti-
vate T cells, the CD4/CD8 ratio and IFNG expression of 
T cells were detected following exposure of PBLs to DCs 
loaded with DWCTVs (Fig. 3a). The results showed that 
CD4/CD8 ratio and IFNG expression in CD3 + T cells 
were markedly increased, as compared to the controls 
(P < 0.05), and that DCs loaded with α2-3NA modified 
DWCTVs could prime activation of T cells more effec-
tively than α2-6NA modified DWCTVs (Fig. 3b–e).

DCs loaded with DWCTVs change TCR‑Vβ repertoire
To prove the immunogenicity of DCs loaded with 
DWCTVs, we examined whether these DCs modulate 
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the TCR-Vβ repertoire diversity of αβ T cells. As shown 
in Table  1, TRBV gene sequencing identified no dif-
ference in TRBV sequences between the control T 
cells and T cells co-incubated with imDCs. The TRBV 
sequences of T cells co-incubated with DCs pulsed with 
primary whole-cell tumor vaccines derived from A2780 
(9.52% of CDR1/CDR2 AA sequences) and OVCAR3 
cells (85.71% of CDR1/CDR2/CDR3 AA sequences) 
were partially identical to that of the control T cells. 
Interestingly, there was a great diversity in TRBV 
sequences between T cells stimulated with DCs loaded 
with DWCTVs and the control T cells. The T cells stim-
ulated with DCs loaded with DWCTV derived from 
A2780 and OVCAR3 cells fell into 12 and 6 distinct 
TRBV sequences, respectively (Table  1). These dem-
onstrated that the immunogenicity of DCs conferred 
by DWCTVs could modulate the TCR-Vβ repertoire 
diversity of αβ T cells.

DWCTVs enhance DC‑mediated cytotoxicity of T cells 
in vitro
To further prove the anti-tumor activity of αβ T cells with 
the diversified TCR-Vβ repertoires by the DCs loaded 
with DWCTVs, we test the cytotoxicity of the activated 
αβ T cells on A2780 and OVCAR3 cells. The LDH assay 
showed that the killing efficiencies of these T cells signifi-
cantly improved as compared to the corresponding con-
trols (P < 0.05) (Fig. 3f, g). Together, our findings showed 
that DCs pulsed with DWCTVs not only induced the 
activation of T cells with high-affinity tumor antigen-spe-
cific TCRs but also enhanced their killing activity against 
parent tumor cells.

Activation of immune cells by DWCTVs in vivo
To verify whether DWCTVs can elicit activation of 
immune cells in vivo, female mice were vaccinated with 
the inactivated DWCTVs derived from ID8 cells to test 
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the plasma IFNγ and IL-2, T cell subtypes, and MGL 
and Siglec E of DCs in draining lymph nodes (DLNs) 
(Fig. 4a). Our results showed that the plasma levels of 
IFNγ and IL-2 reached the peak, and the CD4/CD8 
ratio of T cells in DLNs increased from 1.25 ± 0.05 

to 1.37 ± 0.10 (P < 0.05) (Fig.  4d) around 14  days after 
the vaccination. Meanwhile, vaccination with α2-3NA 
modified ID8 DWCTV induced an increased expres-
sion of MGL, not Siglec E of CD11c + /CD86 + DCs, 
while vaccination with α2-6NA modified ID8 DWCTV 
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induced an increased expression of both MGL and 
Siglec E; however, inoculation with primary ID8 
WCTVs induced an increased expression of Siglec 
E but not MGL (Fig.  4e, f ). These findings suggest 
that vaccination with DWCTVs rather than primary 
WCTV could evidently elicit immune activation in 
vivo.

Vaccination with DWCTVs limits tumor growth 
and prolongs survival of mice bearing tumor
To determine whether ID8 DWCTVs elicit anti-
tumor immunity in vivo, tumorgenicity of parental 
ID8 cells, tumor growth, and survival of mice bear-
ing ID8 tumor were evaluated after vaccination with 
ID8 DWCTVs once a week for 3 weeks in challenging 
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mouse tumor models (Fig.  5a). Vaccinations with 
α2-3NA and α2-6NA modified ID8 DWCTVs signifi-
cantly delayed tumor formation time (27.60 ± 2.79 days 
and 9.00 ± 3.16  days, respectively) compared to the 
parental ID8 cells and primary ID8 WCTV controls 
(5.00 ± 1.00  days and 6.20 ± 1.48  days, respectively, 
both P < 0.05) (Fig.  5b; Additional file  5: Fig. S5), also 
clearly limited the tumor growth (Fig. 5c). Interestingly, 
vaccination with α2-3NA modified ID8 DWCTVs had 
more significant effects than α2-6NA modified ID8 
DWCTV in postponing tumor progression (Fig.  5c). 
Furthermore, vaccination with α2-3NA, not α2-6NA 
modified ID8 DWCTV notably prolonged overall sur-
vival of mice bearing ID8 tumor (median OS 119 days, 
n = 5) compared to the primary WCTV control 
(median OS 90 days, n = 5) (Fig. 5d) (P < 0.05), suggest-
ing that α2-3NA modified DWCTV could prime the 
anti-tumor immunity against OC.

Moreover, CD8 + T cells and MGL not Siglec E of 
DCs from DLNs significantly increased in vaccinated 

mice inoculated with parental OC cells for 7  days 
(Fig.  5e–g), suggesting that ID8 DWCTVs could be 
able to induce the proliferation and activation of 
memory CD8 + cells. Immunofluorescence histochem-
istry (IFHC) revealed that vaccination with α2-3NA 
modified ID8 DWCTV significantly increased effector 
CD8 + T cells and decreased CD8 + /CD39 + exhausted 
T cells in tumor-infiltrating lymphocytes (TILs) of ID8 
tumor tissues compared to the corresponding controls 
(Fig.  5h–j), suggesting that DWCTVs could also con-
tribute to the anti-tumor immune effect on the local 
tumor. These might indicate that DWCTVs could acti-
vate immune cells in the draining lymph node, and 
these immune cells circulate to tumor tissues and exert 
anti-tumor effects (Fig. 6).

Discussion
Tumor-derived sialoglycans can target different aspects 
of the immune system to promote evasion responses 
[39]. Tumor cells mask their specific antigens by glycan 

Table 1  The TCR-Vβ repertoires of αβ T cells

TCR β-chains of control T cells and T cells stimulated by imDC and NA modified/unmodified A2780/OVCAR3 cells antigen-loaded DCs were determined by TRBV gene 
sequencing. Each row represents one clone, and its frequency (Freq.) in its group is indicated to the right. *Stop codon, Spec: specimen

Spec V_gene J_gene D_gene CDR1 CDR2 CDR3 Freq (%)

Control TRBV30 TRBJ2-5 TRBD2 GTSNPN SVGIG AWR​TGA​GQY 100.0

imDC TRBV30 TRBJ2-5 TRBD2 GTSNPN SVGIG AWR​TGA​GQY 100.0

Unmodified TRBV30 TRBJ1-5 TRBD1 GTSNPN SVGIG AWSHGNNQPQH 4.76

(A2780) TRBV30 TRVJ2-2 TRBD2 GTSNPN SVGIG AWSNWRGGPGELF 4.76

TRBV5-1 TRBJ2-7 TRBD1 SGHRS YFSETQ ASSLRLGDEQY 23.81

TRBV6-6 TRBJ1-1 TRBD2 MNHNY SVGAGI ASSYEGGPGTEAF 14.29

TRBV20-1 TRBJ1-4 TRBD1 DFQATT​ SNEGSKA SASGLLEEKLF 52.38

α2-3 NA TRBV24-1 TRBJ1-2 - KGHDR SFDVKD ATSYT 5.00

(A2780) TRBV20-1 TRBJ2-3 TRBD1 SLARSH SNEGSKA SANTGSTDTQY 5.00

TRBV7-2 TRBJ2-3 TRBD2 SGHTA FQGNSA ASSSRSRLAGAEDTQY 5.00

TRBV28 TRBJ2-7 TRBD1 MDHEN SYDVKM ASSHRYEQY 5.00

TRBV10-1 TRBJ2-7 TRBD2 CVCW SYGVQD ASCSGSDPILRAV 10.00

TRBV11-3 TRBJ2-5 TRBD2 SGHNT YENEEA ASSPQLAGVFKTQY 10.00

TRBV28 TRBJ1-2 TRBD1 MDHEN SYDVKM ASTAGSNYGYT​ 10.00

TRBV2 TRBJ1-5 TRBD2 SNHLY FYNNEI ASSAPLSNQPQH 50.00

α2-6 NA TRBV29-1 TRBJ2-2 TRBD1 SQVTM ANQGSEA SAVLRGTGELF 14.29

(A2780) TRBV6-6 TRBJ2-1 TRBD2 MNHNY SVGAGI ASRKAEGIYNEQF 19.04

TRBV20-1 TRBJ1-5 TRBD1 DFQATT​ SNEGSKA SARVQANQPQH 23.81

TRBV7-8 TRBJ1-5 TRBD1 SGHVS FQNEAQ ASSAGWGPQH 42.86

Unmodified TRBV27 TRBJ1-1 TRBD2 MNHEY SMNVEV ASSFQRGTEAF 14.29

(OVCAR3) TRBV30 TRBJ2-5 TRBD2 GTSNPN SVGIG AWR​TGA​GQY 85.71

α2-3 NA TRBV6-2 TRBJ2-1 TRBD1 MNHEY SVGEGT ASSPTSPRTPEQF 50.00

(OVCAR3) TRBV5-6 TRBJ2-5 TRBD2 SGHDT YYEEEE ASAPGGMHEQY 50.00

α2-6 NA TRBV3-1 TRBJ2-6 TRBD1 LGHDT YNNKEL ASSLLGYSGANVLT 9.52

(OVCAR3) TRBV21-1 TRBJ1-5 TRBD1 TISF* SQNEEL ASSKIRTGVAISPS 14.29

TRBV29-1 TRBJ2-6 TRBD2 SQVTM ANQGSEA SAAASGANVLT 23.81

TRBV2 TRBJ2-1 TRBD1 SNHLY FYNNEI ASSDQSGQGEF 52.38
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modification which is one of the molecular recognition 
patterns of immune evasion [34]. Moreover, the tumor-
derived sialoglycans serve as potent immunomodula-
tory, forming an invisibility cloak shielding tumor cells 
from immune recognition [34, 39, 40]. The dense layer 
of sialoglycans on tumor cell surfaces avoids the normal 
occurrence of immunological synapses between can-
cer and immune cells [9, 41]. Such reduced recognition 
is believed to be enhanced by hypersialylation of tumor 
ligands for CLRs expressed by immune cells [42].

The aberrant sialylation forms complex glycoca-
lyx lattices on the tumor cell surface, reducing tumor 

immunogenicity [39, 43, 44]. However, the underly Gal/
GalNAc epitopes interact with MGL on DCs to trig-
ger an immune response [12, 45]. Here, DWCTVs could 
expose tumor antigenic Gal/GalNAc epitopes and reduce 
sialic acids, conferring them with immunostimulatory 
potential. The 1-hydroxyl of GalNAc is attached to the 
hydroxyl group of the protein serine (Ser) or threonine 
(Thr) residues for initiation of glycosylation by N-acetyl-
galactosaminyltransferase (ppGalNAc-T) [46], and 3- and 
6-hydroxyls of GalNAc could be linked with sialic acids 
to terminate glycosylation by α-2,3-sialyltransferase 
(ST3GAL ΙΙ) and α-2,6-sialyltransferase (ST6GAL I) [47]. 
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(See figure on next page.)
Fig. 5  Effects of DWCTVs on tumorigenicity studies. a The timeline of the in vivo tumor challenge experiment. b The tumor formation time after 
tumor challenge. c The tumor growth curve of tumor-bearing mice. d The survival curves of tumor-challenged mice. e, f Quantification of Siglec 
E and MGL expression on DCs located in DLNs at the 7th d after tumor injection. g CD4/CD8 ratio of T cells in DLNs at the 7th d after tumor 
inoculation. h Representative dual immunofluorescence images for TILs in tumor tissues after mice were sacrificed at 50th d. Red, CD8; Green, CD39; 
Scale bar 20 μm. i The Mean gray value of CD8 pixel for the tumor section. j The Mean gray value of CD8 and CD39 double-positive pixel for the 
tumor section. The control mice represent normal mice without vaccination and tumor injection. Unmodified, α2-3NA and α2-6NA represent the 
vaccination with unmodified WCTV, α2-3NA modified DWCTV, and α2-6NA modified DWCTV, respectively. Each plot of e–g represents the mean 
of three technical replicates of a mouse. Each plot of i, j represents the average of 3 fields of view per tumor section. The statistical test of (e–g, i, j) 
used is unpaired t-tests, while it is paired t-test for (c). The survival curve of (d) is analyzed using the log-rank test. *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001
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Tn (GalNAcα1-O-Ser/Thr), T (Galβ1-3GalNAcα1-O-
Ser/Thr), and STn (NeuAcα2-6GalNAcα1-O-Ser/Thr) 
antigens are widely expressed in several types of tumors 
[48]. Especially, the expression of STn on normal cells is 

limited but is abundant on OC, which makes STn a rela-
tively specific tumor-associated antigen for vaccination 
[48]. ST3GAL ΙΙ transfers sialic acid to the 3-position of 
the distal GalNAc leading to tumor progression in OC 
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[49–51]. Recently, the immunogenicity of GalNAc has 
paved its application in the targeted delivery of drugs [52, 
53]. Our study’s approach for DWCTVs production was 
desialylation of OC cells to expose Gal/GalNAc epitopes, 
which might have great potential to confer specific 
immunity to OC patients.

The glycan structures of tumor-associated sialoglycans 
on the surface of tumor cells could affect the interaction 
with MGL expressed on immature monocyte-derived 
DCs to orchestrate distinct immune responses. Aber-
rantly sialylated structures decorating cell surfaces on 
cancer cells have been shown to induce immunosup-
pressive responses of MGL on DCs [54]. In contrast, 
MGL-expressing APCs can take up Tn-derived peptide 
structures for antigen presentation and induction of T 
cell responses to elicit anti-tumor immunity [17, 55, 56]. 
Sialic acids on the termini of neighboring oligosaccha-
rides significantly limit the peptide region recognized by 
APCs. The 3- and 4-hydroxyl groups of Gal/GalNAc are 
essential for Ca2+ binding required for MGL binding. The 
2-acetamido group (NHAc) promotes the MGL bind-
ing, while the sialylation at 3-hydroxyl of GalNAc might 
interfere with MGL binding [16, 56], and exposure of 
the 3-hydroxyl group of GalNAc with α2-3NA treatment 
could enhance the affinity of binding MGL. The signifi-
cantly increased DWCTV-DC interactions could result 
from the removal of steric hindrance formed by sialic 
acids and/or generation of (specific) interaction sites 

between uncapped galactosyl residues of GalNAc-Ser/
Thr that could interact with MGL on the DCs [4].

Sialoglycans interact with Siglec-9 colocalized with the 
TCR-CD3 complex to inhibit TCR-mediated cell activa-
tion via recruitment of SHP-1 by ITIM phosphorylation 
to reduce ZAP 70 phosphorylation [57]. In addition, 
sialoglycans as alternative ligands of CD28 bind to CD80 
on APCs, attenuating co-stimulatory signals of antigen-
mediated activation of T cells [54]. Previous studies have 
found that aberrant sialic acid-Siglec interactions are 
associated with reduced anti-tumor immunity, which 
could be reversed by desialylation of tumor cells [29, 
30]. Siglec-9 is an immunosuppressive sialic acid binding 
receptor and is involved in immunoregulation through 
ligation with glycoconjugates with terminal sialic acids 
on cancer cells. Studies showed that the expression of 
Siglec-9 was up-regulated in the development of mono-
cytes into immature DCs and was decreased in mature 
DCs. Because Siglec-9 binds to both a2,3- and a2,6-sialic 
acid-linked glycoconjugates or sialoglycans, removal 
of terminal sialic acids from sialoglycans on the surface 
of cancer cells by α2-3 and α2-6NA or blocking of liga-
tion with Siglec-9 by anti-Siglec-9 mAb could ameliorate 
maturation and activation of DCs [31, 58]. Furthermore, 
CD86, expressed on DCs, is an activating ligand of co-
stimulatory receptor CD28 on T cells and is required for 
naiv̈e T cells to differentiate into functional effector cells 
[59]. Thus, by removing sialic acid ligands on the surface 
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of tumor cells, CD28 is better able to engage CD80, 
accounting for increased co-stimulation of T cells [54]. 
As shown in our study, DWCTVs could expose tumor 
antigenic Gal/GalNAc epitopes masked by aberrant 
sialoglycans and facilitate Gal/GalNAc-MGL-mediated 
internalization and presentation of tumor antigens by 
mature DCs for activation of T cells.

The interaction of CD86high DCs with T cells could 
induce the changes in T cell phenotypes and up-regu-
lation of IFNG expression by CD8 + cytotoxic T cells 
(CTLs) in our study, indicating that DCs loaded with 
DWCTVs achieve immunogenic property and is capa-
ble of initiating T cell activation and proliferation. It 
is known that the two-signal model of T cell activation 
needs both peptide-MHC-TCR interaction and co-stim-
ulatory CD28-CD80/CD86 interaction. The mature DCs 
with higher CD80/CD86 could induce co-stimulatory 
signals of antigen-mediated activation of naiv̈e T cells 
and a higher proportion of CD8 + CTLs [54].

As we know, conventional tumor vaccines target 
tumor-associated antigens (TAAs) overexpressed in 
cancers that are also expressed in normal tissues and 
can potentially induce central and peripheral tolerance 
responses, which results in low vaccination efficiency 
[60]. Moreover, the vaccines generated by intact tumor 
cells or tumor cell lysates also usually fail to elicit an 
effective immune response. Thus, DWCTV modified 
with α2-3NA could enhance the immunogenicity of DCs 
and provide co-stimulatory signals to activate T cells [61, 
62]. CD8 + T cells are the critical effector cells that con-
tribute to the anti-tumor immune response. They com-
prise various T-cell clones with diverse antigen-specific 
TCRs. Thus, elucidating the overall anti-tumor responses 
of diverse T-cell clones is an emerging challenge in tumor 
immunology. As we know, the lack of cellular immune 
response to tumor cells results from the poor presenta-
tion of antigens by DCs to CD8 + T cells and the inabil-
ity of tumor vaccines to elicit sufficient DC activation to 
evoke the DC-derived co-stimulatory signals required 
to initiate effector CD8 + T-cell responses [63]. Fully 
effective tumor vaccines must elicit a diverse repertoire 
of CD8 + T-cell responses. The highly variable CDR3 of 
the TCR β chain is unique to individual T cell clones and 
can therefore be used to identify the T cell repertoire 
responses to the immunogenicity of DCs [64]. TCR-Vβ 
repertoire diversity of αβ T cells in our study demon-
strates that DWCTVs could confer the immunogenicity 
of DCs. TCR diversity within antigen-specific T cell rep-
ertoires is essential for effective immunity to eliminate 
tumor cells [64]. The TCR repertoire of T cells is diversi-
fied at the initial phase and proliferated into the "best-fit" 
clonotypes by continuing exposure once they recognize 
the tumor antigens presented by the DCs. The enhanced 

killing activity here might indicate that the DCs could 
induce TCRs with optimal structural and affinity charac-
teristics. Cancers with low TCR diversity are reported to 
be unable to recognize and eliminate tumor cells specifi-
cally [65]. Anti-tumor immune responses are highly indi-
vidualized for the intrinsic differences in TCR repertoire 
contributed to the heterogeneity of anti-tumor immu-
nity against the same tumors [66]. Together, our findings 
showed that DCs pulsed with DWCTVs induced the acti-
vation of T cells with high-affinity tumor antigen-specific 
TCRs and enhanced their killing activity against parent 
tumor cells.

Tumor vaccines are known to generate TH1-polarised 
CD4 + T cells to maintain and sustain anti-tumor 
CD8 + CTL responses. CD4 + T cells secrete IL-2 to 
directly activate CD8 + CTLs expressing the high-
affinity IL-2 receptor and indirectly induce CD8 + CTL 
responses through the expression of co-stimulatory 
signals (B7 family ligands and IL-12) by up-regulating 
CD40 ligand to interact with CD40 on DCs. Tumor 
vaccines also boost CD4 + T cell-derived secretion of 
TH1-characteristic tumoricidal cytokines (e.g., IFNγ), 
which have direct anti-tumor activity. CD4 + T cell 
responses against tumors tend to be against self-derived 
epitopes [67]. Desialylation of glycan structures of tumor-
associated antigens (self ) and tumor-specific antigens 
(non-self ) could facilitate MGL-mediated endocytosis 
and presentation by DCs [56]. The α2-3NA modified ID8 
DWCTV with low sialic acid residues and high tumor 
antigenic Gal/GalNAc epitopes in our study induced 
Siglec Elow/MGLhigh DCs and the increased CD4/CD8 
ratio in DLNs and the increased expression of IFNγ and 
IL-2 in peripheral plasma, indicating that vaccination 
with DWCTVs could activate both local and systemic 
immune responses.

Eliminating tumor cells by CD8 + T cells requires 
overcoming the immunosuppressive tumor environ-
ment. CD39 is a marker of exhausted tumor-infiltrating 
CD8 + T cells and co-expresses with multiple inhibitory 
receptors, such as PD-1, LAG-3, and Tim-3 [68, 69]. 
Siglec-9 is also reported to co-express with these inhibi-
tory receptors [70] and potently attenuate the anti-tumor 
function of NK cells and T cells by binding sialoglycans 
in trans on OC cells [71]. The anti-tumor effects exhib-
ited in vivo might demonstrate that ID8 DWCTVs desia-
lylated to expose tumor antigenic Gal/GalNAc epitopes 
via hydrolyzing tumor cells with NAs could increase the 
immunogenicity of tumors [34, 72] and induce T-cell 
clones with TCR-Vβ repertoire diversity that overcome 
tumor- suppressive niches and kill tumor cells. Desialyla-
tion is a suitable treatment that contributes to the expo-
sure of tumor-associated glycopeptide epitopes, which 
may be related to the immune recognition of tumor 
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antigens on the surface of tumor cells [4, 73]. Thus, vac-
cination with DWCTVs seems to be a favorable way to 
elicit an anti-tumor immune response. More impor-
tantly, T cells within the tumor microenvironment and 
peripheral are abolished and irreversibly dysfunctional 
in tumor development, including reduced T cell activa-
tion and attenuated antigen-presenting cell responses. T 
cell-targeted interventions do not rescue T cell dysfunc-
tion marked by CD8 + CD39 + T cell clonal expansion, 
while tumor resection is sufficient to revert the systemic 
immune landscape [74, 75]. Therefore, immunization 
with tumor vaccines after tumor load reduction- a way 
to revive systemic immune function- is an ideal strategy 
to fight residual tumor cells and induce long-lasting anti-
tumor immune responses to prevent disease recurrence 
[76].

Conclusion
In summary, we report that DWCTVs with Gal/GalNAc 
epitopes deliver tumor antigens on the surface of tumor 
cells to the host immune system. Our findings highlight 
that DWCTVs could overcome sialoglycan-Siglec inter-
action-mediated immunosuppression and potentiate 
DC-mediated T cell anti-tumor immunity against OC in 
vitro and vivo. Thus, vaccination with DWCTVs would 
become an attractive intervention in improving the sur-
vival of OC patients after cytoreductive surgery.
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