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Abstract

Motivation: In multi-cohort machine learning studies, it is critical to differentiate between effects that are reprodu-
cible across cohorts and those that are cohort-specific. Multi-task learning (MTL) is a machine learning approach
that facilitates this differentiation through the simultaneous learning of prediction tasks across cohorts. Since multi-
cohort data can often not be combined into a single storage solution, there would be the substantial utility of an
MTL application for geographically distributed data sources.

Results: Here, we describe the development of ‘dsMTL’, a computational framework for privacy-preserving, distrib-
uted multi-task machine learning that includes three supervised and one unsupervised algorithms. First, we derive
the theoretical properties of these methods and the relevant machine learning workflows to ensure the validity of
the software implementation. Second, we implement dsMTL as a library for the R programming language, building
on the DataSHIELD platform that supports the federated analysis of sensitive individual-level data. Third, we demon-
strate the applicability of dsMTL for comorbidity modeling in distributed data. We show that comorbidity modeling
using dsMTL outperformed conventional, federated machine learning, as well as the aggregation of multiple models
built on the distributed datasets individually. The application of dsMTL was computationally efficient and highly
scalable when applied to moderate-size (n< 500), real expression data given the actual network latency.

Availability and implementation: dsMTL is freely available at https://github.com/transbioZI/dsMTLBase (server-side
package) and https://github.com/transbioZI/dsMTLClient (client-side package).

Contact: emanuel.schwarz@zi-mannheim.de or carl.herrmann@bioquant.uni-heidelberg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The biology of many human illnesses is encoded in a vast number of
genetic, epigenetic, molecular, and cellular parameters. The ability
of Machine Learning (ML) to jointly analyze such parameters and
derive algorithms with potential clinical utility has fueled a massive

interest in biomedical ML applications. One of the fundamental
requirements for such ML algorithms to perform well is the avail-
ability of biological data at a large scale (Jahanshad et al., 2013;
Kochunov et al., 2014; Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014). As data can often not be
freely exchanged across institutions due to the need for the
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protection of an individual’s privacy, the utility of ‘bringing the al-
gorithm to the data’ is becoming apparent. Technological solutions
for this task have risen in popularity and exist in various forms.

One of the most straightforward approaches is federated ML,
where algorithms are simultaneously learned at different institutions
and optimized through a privacy-preserving exchange of parame-
ters. In biomedicine, this approach has been applied in several im-
portant applications to prevent data leakage. For example, a
federated solution based on the secure multi-party computation was
proposed for whole-genome variant-querying (Akgun et al., 2022),
and the identification of disease-associated variants (Akgun et al.,
2021) by combing multiple distributed genomic data resources.
Another work (Zolotareva et al., 2021) explored the possibility of
the federated learning approach for differential gene expression ana-
lysis of multiple resources and highlighted its utility with regard to
its robustness against class imbalance. A recently developed ‘swarm-
learning’ approach (Warnat-Herresthal et al., 2021) introduced the
blockchain technique in a distributed ML scenario in order to pro-
tect the security of data, and has been successfully applied for a
large-scale analysis related to COVID-19. A detailed review of fed-
erated learning in biomedicine can be found in Rieke et al. (2020).

One commonality of most ML approaches, federated or not, is
the assumption that all investigated observations (e.g. illness-
affected individuals) represent the same underlying population (IID
assumption). However, in multi-modal, biomedical data analysis,
this is rarely the case, as biological and technological factors fre-
quently induce modality-specific effects that are difficult to capture
by federated ML. Multi-task Learning (MTL) can address this issue
through the simultaneous learning of outcome (e.g. diagnosis) asso-
ciated patterns across datasets with dataset-specific, as well as
shared, effects. MTL has numerous exciting application areas, such
as comorbidity modeling, and has already been applied successfully
for, e.g. disease progression analysis (Zhou et al., 2013).

Here, we describe the development of dsMTL (‘Federated Multi-
Task Learning for DataSHIELD’), a package of the statistical soft-
ware R, for Federated Multi-Task Learning (FeMTL) analysis
(Fig. 1). dsMTL was developed for DataSHIELD (Gaye et al.,
2014), a platform supporting the federated analysis of sensitive
individual-level data that remains stored behind the data owner’s
firewall throughout analysis (Wilson et al., 2017).

We explored the utility of the dsMTL algorithms for comorbid-
ity analysis based on simulation data. Using data with variable
degrees of cross-dataset heterogeneity aimed at quantifying the abil-
ity of the MTL algorithms to suitably characterize shared and specif-
ic biological signatures. We then showed the scalability of dsMTL
methods for up to 20 servers compared to the federated ML

methods. In addition, we analyzed actual RNA sequencing and
microarray data in order to show that: (i) such analysis can be per-
formed in an acceptable runtime using dsMTL given the real
network latency, and (ii) federated MTL can capture more reprodu-
cible genes signatures compared to federated ML.

2 Materials and methods

2.1 Modeling
All methods of dsMTL share the identical form,

min
h
L hð Þ þ kS hð Þ þC@ hð Þ

where L hð Þ is the data fitting term (or loss function), the major de-
terminant of the solutions obtained from model training. Theta rep-
resents the parameters of the model. @ hð Þ and SðhÞ are the penalties
of h with the aim to incorporate the prior information. S hð Þ is a non-
smooth function and able to create sparsity, while @ðhÞ is smooth, in
order to stabilize the solution. k and C are the hyper-parameters to
control the strength of the penalties.

Using this framework, four federated MTL algorithms were
derived, including three supervised and one unsupervised algo-
rithms, that represent extensions of previously developed non-
federated MTL implementations (Cao et al., 2019; Quintero et al.,
2020; Yang and Michailidis, 2016). When analyzing multi-cohort
data, these methods can be seen as tools to differentiate between an
effect shared among all cohorts and cohort-specific effects.
Specifically, the dsMTL_L21 approach allows for cross-task regular-
ization, building on the popular LASSO method, in order to identify
outcome-associated signatures with a reduced number of features
shared across tasks while remaining variability for each model to
learn the respective disease-specific patterns. The non-federated ver-
sion of this approach was previously applied to simultaneously pre-
dict multiple oncological outcomes using gene expression data (Xu
et al., 2011). The dsMTL_trace approach constrains the coefficient
vectors in a shared low-dimensional space during the training pro-
cedure while retaining a sufficient amount of variability for each co-
efficient vector to learn a given, cohort-specific pattern, resulting in
improved generalizability of the models. In a non-federated imple-
mentation, this method has previously been used to predict the re-
sponse to different drugs, and the identified models showed a high
degree of interpretability in the context of the represented drug
mechanism (Yuan et al., 2016). dsMTL_Net incorporates a task-
task network as the shared structure in order to improve biological
interpretability. In a non-federated version, this technique has

Fig. 1. Schematic illustration of dsMTL using comorbidity modeling of schizophrenia and cardiovascular disease as an example. Multiple datasets stored at different institu-

tions are used as a basis for federated MTL. dsMTL was developed in the DataSHIELD ecosystem, which provides functionality regarding data management, transmission and

security. Data are analyzed behind a given institution’s firewall and only algorithm parameters that do not disclose personally identifiable information are exchanged across

the network. dsMTL contains algorithms for supervised and unsupervised multi-task machine learning. The former aims at identifying shared, but potentially heterogeneous

signatures across tasks (here, diagnostic classification for schizophrenia and cardiovascular disease). Unsupervised learning separates the original data into shared and cohort-

specific components, and aims to reveal the corresponding outcome-associated biological profiles
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previously been used for the integrative analysis of heterogeneous
cohorts (Cao et al., 2018) and for predicting disease progression
(Zhou et al., 2011). The dsMTL_iNMF approach is an unsuper-
vised, integrative non-negative matrix factorization method that
aims at factorizing the cohorts’ data matrices into components,
where one component is considered to be a superposition of a shared
and a disease-specific structure. Such modeling has been applied to
explore dependencies in multi-omics data for biomarker identifica-
tion (Fujita et al., 2018; Yang and Michailidis, 2016). In addition to
the federated MTL methods, we also implemented a federated ver-
sion of the conventional Lasso (dsLasso) (Tibshirani, 1996) in the
dsMTL package due to its wide usage in biomedicine and as a
benchmark for testing the performance of the federated MTL algo-
rithms. The derivation of the mathematical properties, optimization
procedure and machine learning workflows of each algorithm are
summarized in the Supplementary Methods.

2.2 Efficiency
Most dsMTL methods aim at training an entire regularization tree.
The determination of the k sequence controls the tree’s growth and
is essential for computational speed. The k sequence should be ac-
curately scaled to both capture the highest posterior and avoid over-
whelming computations. Inspired by a previous study (Friedman
et al., 2010), we estimate the largest and smallest k from the data by
characterizing the optima of the objective using the first-order opti-
mal condition and then interpolate the entire k sequence on a log
scale (see Supplementary Methods for more details). In addition,
several options are provided to improve the speed of the algorithms
by decreasing the precision of the results, i.e.: (i) the number of digits
of parameters for transformation can be specified to reduce the net-
work latency; (ii) several termination rules are provided, some of
which are relaxed; (iii) the depth of the regularization tree can be
shortened. More details can be found in the Supplementary
Methods. Besides the efficiency of the federated ML/MTL method-
ology, the import/export of the large dataset is efficient in dsMTL
(see the Supplementary Material for details).

2.3 Security
dsMTL was developed based on DataSHIELD (Wilson et al., 2017),
which provides comprehensive security mechanisms that are not
specific to machine learning applications. These security mecha-
nisms are summarized in the Supplementary Material and are inher-
ited by dsMTL. In addition, we considered potential ML-specific
privacy leaks, such as membership inference attacks (Hu et al.,
2021) and model inverse attacks (Fredrikson et al., 2014). Inverse
attacks aim at extracting the individual observation-level informa-
tion from the models. Membership inference attempts to decide if an
individual was included in a given training set using the model. All
these techniques require a complete model for inference. Since MTL
returns multiple matrices, returning an incomplete model could be
one strategy against these attacks. For example, dsMTL_iNMF in
dsMTL only returns the homogenous matrix (H), whereas the
cohort-specific components (Vk; Wk) never leave the server. For ex-
ample, in a two-server scenario, one (H) out of five output matrices
is transmitted between the client and the servers. With such an in-
complete model, the inverse construction of the raw data matrix
becomes difficult, and the risk of an inverse attack and membership
inference is reduced. For most biomedical analyses, the H matrix is
sufficient for subsequent studies. In addition, if the analyst was
authorized to access the raw data of the server, the so-called ‘data
key mechanism’ (see Supplementary Material) would allow the ana-
lyst to retrieve all component matrices. For supervised multi-task
learning methods in dsMTL, all models have to be aggregated with-
in the clients, and thus we suggest the data providers enable the op-
tion on the server that rejects a returned coefficient vector
containing parameter numbers exceeding the number of subjects. In
this way, the model is not saturated and more robust to an inverse
attack.

2.4 Proof of concept with simulation and actual data
Simulation and actual data analysis were conducted to demonstrate
the suitability of dsMTL methods to analyze heterogeneous cohorts,
compared to federated ML methods and the ensemble of local mod-
els regarding the prediction performance, interpretability and com-
putational speed. An overview of methodological aspects related to
these analyses is detailed below. For an extensive methodological
description, please see the Supplementary Material.

Two simulation studies were conducted to illustrate the utility of
dsMTL for analyzing multi-cohort data with shared and cohort-
specific signatures, for example in the case of comorbidity analysis.
In case study 1, we considered a comorbidity scenario between two
conditions that show changes in the same set of genes, albeit in po-
tentially different directions (i.e. up- versus down-regulated). Here,
we call these signatures ‘heterogeneous’. In contrast, ‘homogeneous’
signatures relate to the same features and signs across datasets. We
aimed to capture this shared information using the supervised
dsMTL method dsMTL_L21 and assessed its predictive perform-
ance as well as model interpretability. In case study 2, we assumed
that the outcome-associated signature was the sum of the comorbid-
ity signature and two disease-specific signatures. This mixed struc-
ture can be disentangled by the unsupervised dsMTL method
dsMTL_iNMF. A detailed description of the simulated data can be
found in the Supplementary Material.

In addition, a scalability analysis was conducted using simula-
tion datasets to show the dependence of dsMTL’s efficiency on the
number of servers. The efficiency was quantified as the communica-
tion cost, i.e. the number of network accesses, which has been recog-
nized as the primary bottleneck of efficiency for federated
applications (Li et al., 2020). We scaled the number of participating
servers from 1 to 20 and trained the dsMTL_L21 (federated MTL)
as well as dsLasso (federated ML) models for each given number of
servers. The number of network accesses was counted as the basis
for the comparison. Furthermore, we varied the number of subjects,
in order to explore the dependency of the communication cost on
the sample size.

Two studies were performed on real gene expression datasets, in
order to investigate the efficiency and interpretability of dsMTL. For
supervised analysis, a three-server MTL analysis was conducted to as-
sess the running speed. For the unsupervised analysis, we simultaneous-
ly investigated data from patients with schizophrenia and bipolar
disorder, and quantified the running speed on two actual servers. In
order to explore the biological plausibility of the identified gene signa-
tures, we performed a pathway enrichment analysis. Furthermore, in
order to demonstrate the reproducibility of the gene signatures found
by dsMTL, the overlap of the signatures found by dsMTL using differ-
ent datasets for training was investigated. For this analysis, the ensem-
ble of local models was used as the baseline. A detailed description of
the preprocessing, as well as the analysis of real gene expression data
can be found in the Supplementary Material.

3 Results

3.1 Simulation data analysis
3.1.1 Case study 1—distributed MTL for identification of

heterogeneous target signatures

With the aim to identify ‘heterogeneous’ signatures, we compared
the performance of dsMTL_L21, dsLasso and the bagging of glmnet
models. As part of this, we explored the sensitivity of these methods
to different sample sizes (n) relative to the gene number (p). Figure 2
shows the resulting prediction performance and gene selection ac-
curacy, each averaged over 100 repetitions. dsLasso showed the
worst prediction performance in this heterogeneous setting, and
dsMTL_L21 slightly outperformed the aggregation of local models
(glmnet). Similarly, the gene selection accuracy of dsLasso was infer-
ior to that of dsMTL_L21 and glmnet-bagging, which showed simi-
lar performance when the sample size is sufficiently large, e.g. the
number of subjects approximately equal to the number of genes (n/p
�1). However, with a decreasing n/p ratio, dsMTL_L21 showed an
increasing superiority over the other methods, especially for
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n/p¼0.15, where the gene selection accuracy of dsMTL_L21 was
more than 2.8 times higher than that of the bagging technique.

3.1.2 Case study 2—distributed iNMF for disentangling shared

and cohort-specific signatures

Figure 3 shows the performance of distributed and aggregated local
NMF methods for disentangling shared and cohort-specific signatures
from multi-cohort data, given different ‘severities’ of the signature het-
erogeneity. For both types of signatures, dsMTL_iNMF outperformed
the ensemble of local NMF models for any heterogeneity severity set-
ting. Notably, even with increasing heterogeneity, the accuracy of
dsMTL_iNMF to capture shared genes remained stable at approxi-
mately 100%, illustrating the robustness of dsMTL_iNMF against the
heterogeneity’s severity shown in Figure 3c. In contrast, for the ensem-
ble of local NMF, the gene selection accuracy of the shared signature
continuously decreased to approximately 50% (20% of outcome-
associated genes were shared among cohorts), while the gene selection
accuracy of cohort-specific signatures continuously increased to 75%
(20% of outcome-associated genes were shared among cohorts) as
shown in Figure 3a and b.

3.1.3 Scalability analysis

Figure 4 shows the dependency of the communication cost, i.e. the
number of network accesses, on the number of servers and subjects
included in the analysis. An increasing communication cost of dsLasso
(federated ML) was observed with an increasing number of servers, as
shown in Figure 4b. However, for dsMTL_L21 (federated MTL), the
communication cost was not dependent on the number of servers
(Fig. 4a). This might be due to the fact that the gradient information, a
major determining factor of the ML/MTL solution, can be calculated
locally on each server for the federated MTL algorithm but needs infor-
mation aggregation via the internet for the federated ML algorithm.
Moreover, Figure 4a shows that for federated MTL, the communica-
tion cost decreased with an increasing subject number. Such a clear pat-
tern was not found for federated ML, as shown in Figure 4b. This may
suggest that a larger sample size might help to reduce the communica-
tion cost of the federated MTL algorithm.

3.2 Actual data analysis
3.2.1 Computational speed analysis and biological enrichment

Supervised dsMTL. We first explored the efficiency of dsMTL using
real molecular data of patients with schizophrenia, given the actual

latency of a distributed network, and then investigated the biological
relevance of the identified gene signatures. The efficiency was quan-
tified for a three-server scenario (see Supplementary Table S3, two
servers at the Central Institute of Mental Health, Mannheim; one
server at BioQuant, Heidelberg University). We analyzed four case-
control gene expression datasets of patients with schizophrenia and
controls (median n¼80; 8013 genes). Table 1 shows the compari-
son between dsLasso and mean-regularized dsMTL_Net, which
were trained (cross-validation þ training) and tested in approxi-
mately 8 min and 10 min, respectively. The time-difference might be
due to the high heterogeneity of the brain gene expression that can
be disentangled by dsMTL_Net but that is ignored by dsLasso.
Thus, a larger number of iterations were used by dsMTL_Net. To
demonstrate the cross-cohort prediction performance of
dsMTL_Net and dsLasso, we predicted the models on an independ-
ent brain expression dataset (HBCC). As shown in Table 1, the pre-
diction accuracy of dsMTL_Net (misclassification rate: 0.29) was
slightly higher than that of dsLasso (0.34), consistent with our previ-
ous study (Cao et al., 2018). To explore biological interpretability
and cross-tissue reproducibility, respectively, we performed
pathway-related enrichment analysis of the top-ranked gene signa-
tures and predicted the signatures in data from blood samples of
patients with schizophrenia. The pathway enrichment analysis
yielded 12 significant pathways, including pathways related to ion
homeostasis, including ‘zinc ion homeostasis’ (FDR¼0.0015) and
‘response to zinc ion’ (FDR¼0.016), which have previously been
associated with psychosis (Petrilli et al., 2017). The complete list of
significant pathways can be found in the Supplementary Material.
Pathway enrichment analysis was based on the top 200 genes identi-
fied by dsMTL_Net, and strong overlap of pathways were observed
when the top 300 (12/12 pathways) or 100 (7/12 pathways) genes
were used, respectively. The cross-tissue prediction in data from
blood samples of 859 subjects showed that patients could be signifi-
cantly differentiated from controls (t¼2.7, P¼0.0055), suggesting
that the brain-derived signatures were partly mirrored in blood
samples.

Unsupervised dsMTL. The cohorts and server information is
shown in Supplementary Table S4. It took 34.9 min (1003 net-
work accesses) to train a dsMTL_iNMF model with five random
initializations (�7 min for each initialization). The factorization
rank k¼4 was selected as the optimal parameter. In
Supplementary Figure S4, the objective curve shows that the
training time was sufficient for model convergence. In this ana-
lysis, a shared signature comprising 1971 genes between SCZ and

Fig. 2. Analysis of ‘heterogeneous’ signatures of continuous outcomes in simulated data stored on three servers. The figure shows the: (a) prediction accuracy expressed as the

mean squared error and (b) the feature selection accuracy for different subject/feature number ratios. The respective values were averaged across the three servers, and across

100 repetitions, in order to account for the effect of sampling variability
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BIP was identified, while two disease-specific signatures contain-
ing 60 genes for SCZ and 1341 genes for BIP, respectively, were
found. These genes were enriched for biologically plausible path-
ways. For example, for the schizophrenia-specific signature, the
enriched pathways included ‘L1 cell adhesion molecule interac-
tions (Kurumaji et al., 2001)’, ‘chaperone mediated autophagy
(Schneider et al., 2016)’ and other relevant processes. The path-
ways linked to bipolar-specific signatures included several terms
related to neuronal and synaptic processes, like ‘transmission
across chemical synapses’ or ‘neurexins and neuroligins’, which
have been related to psychotic disorders and in particular bipolar
disorders (Cuttler et al., 2021).

Fig. 4. Scalability analysis for up to 20 servers. (a) The result of the dsMTL_L21 method. (b) The result of the dsLasso method. Both panels show the communication cost (e.g.

the number of network accesses) with an increasing number of servers, and for different subject numbers by feature number ratios

Table 1. Performance of dsML/MTL models on real data in real

network

dsLasso dsMTL_Net

Misclassification rate 0.34 0.29

Time consumed

5-fold CV 7.5 min 7.3 min

Training 1.7 min 2.9 min

Number of network accesses for training 70 137

Non-zero coefficients 38 173

Fig. 3. The gene identification accuracy for shared and specific signatures using simulated data. (a) The identification accuracy of cohort-specific genes for cohort 1. (b) The

identification accuracy of cohort-specific genes for cohort 2. (c) The identification accuracy of genes comprised in the shared signature. Local-NMF1 and Local-NMF2 were

the cohort-specific gene sets identified by local NMF, which were combined into ‘NMF-bagging’ for the shared gene set. dsMTL_iNMF-H was the predicted shared gene set

using dsMTL_iNMF. dsMTL_iNMF-V1 and dsMTL_iNMF-V2 were the predicted cohort-specific gene sets identified using dsMTL_iNMF. The proportion of genes harbored

by the shared signature varied from 20% to 80%, illustrating the impact of the heterogeneity severity. The model was trained using rank¼ 4 as the model parameter. The

results for a broader spectrum of rank choices can be found in Supplementary Figure S5, illustrating that the superior performance of dsMTL_iNMF was not due to the choice

of ranks
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3.2.2 Reproducibility analysis of gene signature identification

Table 2 shows that the gene signatures found by dsMTL_Net were
more reproducible in independent data cohorts than the ones found
by the glmnet-bagging method. As indicated in Table 2, four data-
sets were categorized into two distinct dataset groups, and the gene
signatures were compared across these groups. For glmnet-bagging,
on an average, around nine gene signatures were reproducibly found
in the two distinct dataset groups. The number of overlapping genes
with consistent association direction was slightly lower (8 on an
average). However, for dsMTL_Net, on an average 13 genes were
found simultaneously in the two dataset groups, and 12 genes on an
average demonstrated the same direction. This showed that feder-
ated MTL had a stronger ability to identify reproducible gene signa-
tures among heterogeneous datasets. To explore the cross-cohort
predictive ability of these gene signatures, we predicted the model,
which was trained on a given dataset group, in the respectively
other. The average prediction accuracy was around 0.67 for both
methods.

4 Discussion

We here present dsMTL—a secure, federated multi-task learning
package for the programming language R, building on DataSHIELD
as an ecosystem for privacy-preserving and distributed analysis.
Multi-task learning allows the investigation of research questions
that are difficult to address using conventional ML, such as the iden-
tification of heterogeneous, albeit related, signatures across datasets.
The implementation of a privacy-preserving framework for the dis-
tributed application of MTL is an essential requirement for the
large-scale adoption of MTL. Using such a distributed server setup,
we demonstrate the applicability and utility of dsMTL to identify
biomarker signatures in different settings. For applications where
the target biomarker signatures are different, but relate to an over-
lapping set of features (explored here as the ‘heterogeneous’ case),
conventional machine learning would not be a meaningful algorithm
choice. We show that MTL is able to identify the target signatures
with high confidence and may thus be a reasonable choice for a di-
verse set of interesting analyses. As mentioned above, a particularly
noteworthy application is comorbidity modeling, where the target
signatures index the shared (although potentially heterogeneously
manifested) biology of multiple, clinically comorbid conditions.
Such analyses could potentially be a powerful, machine learning-
based extension of comorbidity modeling approaches based on uni-
variate statistics that have already been very useful for characteriz-
ing the shared biology of comorbid illness (Lichtenstein et al.,
2009). Meanwhile, we showed the communication cost of federated
MTL was independent of the number of servers, highlighting the
scalability of dsMTL. Surprisingly, we found that an increasing sub-
ject number reduces the communication cost for federated MTL
methods. This might be due to the fact that the network communi-
cation in federated MTL is aimed at identifying the shared effect
among tasks, and such effect would be more efficiently identified in
a large sample. In the actual data analysis, we showed that federated
MTL was able to capture reproducible and biologically plausible

gene signatures. Despite this reproducibility, the number of repro-
duced genes (e.g. overlapping genes: 13 on an average) was com-
paratively low, likely a reflection of the pronounced heterogeneity
of the brain tissue expression datasets. We show that unsupervised
MTL could disentangle the shared from cohort-specific effects, dem-
onstrating its potential utility for comorbidity analysis. Other appli-
cations for this method include the analysis of biological patterns
shared across or specific to diverse single-cell measurements (Welch
et al., 2019).

We selected R as the major implementation language to make
dsMTL able to cooperate with other DataSHIELD-based or CRAN
packages, based on the concept of a ‘freely composing script’. This
means the dsMTL workflow was formed as a composition of
dsMTL, DataSHIELD, and local R commands (e.g. R base func-
tions, customer-defined functions and CRAN packages) into a
script, such that the geo-distribution of datasets and the federated
computation are transparent to users. This concept is similar to that
of the ‘freely composing apps’ used in a recently presented federated
ML application (Matschinske et al., 2021), which allows flexible
scheduling of functions in the form of apps and improves the feder-
ated data analysis flexibility for users. Considering there are thou-
sands of well-established packages already on CRAN for different
analysis aims, this will significantly broaden the potential applicabil-
ity of dsMTL. All DataSHIELD-based packages are listed here
(Consotia, 2019).

Interesting future developments of the dsMTL approach could
include the implementation of asynchronous gradient descent, which
provides a probabilistically approximate solution but faster conver-
gence (Xie et al., 2017; Zhang and Liu, 2020). Furthermore, the in-
tegration of other popular systems for ML, such as tensorflow (Dahl
et al., 2018), for which interfaces with the R language already exist,
would provide valuable additions to the DataSHIELD system. In
addition, the re-implementation of gradient calculation functions on
the server side into a low-level language, i.e. Cþþ would significant-
ly improve the efficiency.

Finally, a noteworthy consideration is an architecture underlying
the distributed data infrastructure. DataSHIELD builds on a central-
ized (‘client-server’) architecture and each data provider needs to in-
stall a well-configured data warehouse. Such infrastructure is
suitable for long-term collaboration scenarios and large consortia
projects that conduct a broad spectrum of complex analyses requir-
ing high flexibility. However, in other scenarios that require more
temporary and easy-compute collaboration setups, a server-free or
decentralized architecture (Warnat-Herresthal et al., 2020) might be
more suitable, because the cost of data provider for participating is
low.

In conclusion, the dsMTL library for R programming provides
an easy-to-use framework for privacy-preserving, federated analysis
of geographically distributed heterogeneous datasets. Due to its abil-
ity to disentangle shared and cohort-specific effects across these
datasets, dsMTL has numerous interesting application areas, includ-
ing comorbidity modeling and translational research focused on the
simultaneous prediction of different outcomes across datasets.

Table 2. The result of reproducibility analysis of signature identification

Methods Criteria Experiment 1 Experiment 2 Experiment 3

Datasets split a; bf g c; df g a; cf g d; bf g a; df g c; bf g

Validation of selected genes on

independent cohorts

dsMTL_Net Overlapping genes 11.68 11.78 14.81

Consistent direction 10.28 11.24 14.69

glmnet-bagging Overlapping genes 7 6.75 12.89

Consistent direction 6 6.57 11.89

Note: Four datasets were split into two distinct dataset groups. The model was trained on each dataset group individually. Then the top selected genes (200)

from both models were compared to assess the signature reproducibility. The ‘overlapping genes’ referred to the gene signatures identified in all dataset groups.

The ‘consistent direction’ referred to the overlapping genes demonstrating a consistent direction of outcome-associations. To address sampling variability, the

analysis was repeated 100 times and results were averaged across repetitions. The notation of datasets is a: GSE53987, b: GSE21138, c: GSE35977, d: HBCC.
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