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methylation profile of WNT5A promoter and undetectable expression of WNT5A 
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ABSTRACT
Genome methylation profiles define naïve-like (n-CLL), memory-like (m-CLL), and intermediate 
(i-CLL) subsets of chronic lymphocytic leukaemia (CLL). The profiles can be easily determined by 
the analysis of the five-CpG signature. m-CLL, i-CLL, and n-CLL with the good, intermediate, and 
poor prognoses, respectively, differ by the somatic hypermutation status of the immunoglobulin 
heavy chain variable gene (IGHV), a widely used prognostic predictor in CLL. We have previously 
shown that the expression of WNT5A, encoding a ROR1 ligand, distinguishes patients with the 
worse outcome within the prognostically favourable IGHV-mutated subgroup. To analyse the 
mechanisms controlling WNT5A expression, we investigated the methylation status of 54 CpG 
sites within the WNT5A promoter and its relation to the WNT5A gene expression. In a cohort of 59 
CLL patients balanced for combinations of IGHV and WNT5A statuses, we identified three pro
moter CpG sites whose methylation level correlated with the WNT5A expression within the IGHV- 
mutated subgroup. Further, we complemented our data with the methylation status of the five- 
CpG signature. IGHV-mutated/WNT5A-negative and IGHV-mutated/WNT5A-positive cases over
lapped with m-CLL and i-CLL methylation subgroups, respectively, while most IGHV-unmutated 
samples were assigned to n-CLL. Median methylation levels of all the three CpG sites in the 
WNT5A promoter were lowest in i-CLL. Finally, a detailed analysis of m-CLL and i-CLL showed that 
undetectable WNT5A expression predicts longer treatment-free survival with higher statistical 
significance than the classification according to the five-CpG signature. To conclude, a 
favourable m-CLL subgroup is associated with mutated IGHV and undetectable WNT5A expression 
due to its promoter methylation.
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Background

DNA methylation plays a vital role during the 
maturation of B-cells, and it is crucial for their 
normal functioning [1–3]. During the maturation 
process, DNA undergoes global hypomethylation 
with local hypermethylation, and a similarly 
occurring process is even more pronounced in 
cells of chronic lymphocytic leukaemia (CLL) 
[3,4]. Aberrant changes in the methylation profile 

of CLL cells accumulate during early leukaemo
genesis; afterwards, the overall profile remains 
more or less stable [1,3–6]. The methylation status 
of the five-CpG signature was shown to divide 
patients into subgroups based on their similarity 
to B-cell developmental stages [6]: (i) Naïve-like 
CLL (n-CLL) with a high methylation level, asso
ciated with a poor prognosis of the patients, (ii) 
memory-like CLL (m-CLL) with a low methylation 
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level, associated with a good prognosis, and (iii) 
intermediate-CLL (i-CLL) with both methylation 
and prognosis in-between [6,7]. These three 
methylation subgroups partially overlap with prog
nostic categories defined by the somatic hypermu
tation status of the immunoglobulin heavy chain 
variable gene (IGHV), an important prognostic 
predictor [8–11]. CLL patients with IGHV identity 
to germline ≥98% (IGHV-unmutated) have a poor 
prognosis. However, even within the prognosti
cally favourable IGHV-mutated subgroup, there 
is a subset of patients with an aggressive disease 
course [12,13].

We have previously shown that the expression of 
WNT5A, a gene encoding a ligand activating WNT/ 
Planar Cell Polarity pathway via the ROR1 receptor, 
varies significantly among CLL patients, from high 
levels in some patients to undetectable levels in 50% 
of IGHV-unmutated and 85% of IGHV-mutated 
cases (marked as WNT5A-negative) [13]. WNT5A 
expression is a strong and overtime-stable prognostic 
predictor, distinguishing cases with worse prognosis 
within otherwise favourable IGHV-mutated CLL 
better than the percentage of IGHV identity [12,13].

Considering the absence of WNT5A expression 
in more than half of tested patients [13], together 
with reports of a correlation between the WNT5A 
expression and its promoter methylation in other 
cancer types [14–16], we hypothesized that the 
WNT5A expression might be regulated by methy
lation also in CLL. Further, taking advantage of the 
current understanding of the CLL methylation 
profiles, we explored how methylation within the 
WNT5A promoter correlates with the global 
methylation profile, IGHV status, and WNT5A 
expression.

Material and methods

Patient samples

CLL cells were isolated from peripheral blood of 
59 CLL patients monitored and treated at the 
University Hospital Brno. All samples were 
obtained after written informed consent in con
cordance with the Declaration of Helsinki, and the 
study was approved by the Ethical Committee of 
the University Hospital Brno. B-cells from patient 
samples were separated using B-cell Enrichment 

RosetteSep kits (StemCell Technologies). The ori
ginal cohort consisted of 39 patients; another 20 
IGHV-mutated patients were added to refine the 
results. The assessment of WNT5A expression and 
IGHV gene mutational status were processed as 
previously described [13].

DNA isolation and bisulphite conversion

DNA was isolated on QIAcube (Qiagen) and dis
solved in TE buffer with 0.1 M EDTA. DNA (200 
ng) was treated with an EZ DNA MethylationTM kit 
(Zymo Research) according to the manufacturer’s 
recommendation and eluted into 22 μl of water.

Primer design for WNT5A promoter analysis

The sequences of three CpG Islands (CGI1–CGI3) 
located within the WNT5A promoter (Ensembl 
databases, version GRCh37.p13) were used for pri
mer design. The sequences were modified to match 
bisulphite-converted DNA. The Primer3 tool 
(http://bioinfo.ut.ee/primer3-0.4.0/) was used for 
primer design. The parameters of the primers were 
tested with OligoAnalyzer 3.1 (https://eu.idtdna. 
com/calc/analyser) and ePCR (http://bisearch. 
enzim.hu/) tools. Primers were synthesized by 
Generi Biotech (Table S1). The location of the exam
ined regions is illustrated in the scheme in Figure 1a.

PCR and sequencing

Bisulphite-treated DNA was amplified with PCR 
using HotStarTaq DNA Polymerase (Qiagen) in 
reaction conditions: 5 min 95°C, (30 sec 95°C, 
30 sec 60°C, 1 min 72°C) x 35 cycles, 
7 min 72°C. PCR products were sequenced either 
by GATC Biotech or in-house using ABI PRISM® 
3700 Genetic Analyser according to the manufac
turer’s instructions (Big Dye terminator v1.1 kit, 
Applied Biosystems). Primer sequences for the 
WNT5A promoter regions are listed in Table S1; 
primers for the five-CpG signature analysis were 
used as published previously [6].

Statistical analyses

The following tests were used to verify distribution 
normality: Kolmogorov–Smirnov test, Shapiro– 
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Wilk test, or D´Agostino-Pearson normality test. 
Parametric and non-parametric tests (for normally 
and non-normally distributed variables, respec
tively) were used to evaluate the relationships 
between variables (unpaired t-test and Mann 
Whitney test) and correlation between two vari
ables (Pearson and Spearman correlation). 
Differences in survival were analysed by the log- 
rank test. The level of statistical significance was 
set to P < 0.05. In multiple testing, the P-value was 
adjusted using the Holm–Bonferroni method. All 
assays were performed as two-tailed using 
GraphPad Prism 8 (GraphPad Software Inc., La 
Jolla, CA, USA) and R program (http://www.r-pro 
ject.org; univariate and multivariate survival ana
lysis). Within TFS, treatment or death due to CLL 
was treated as an event.

Results:

Using ENSEMBL GRCh37, we identified 54 CpG 
sites in three regions within the WNT5A promoter 
localized in three CpG Islands (CGI1–CGI3): 
region 1 (R1) in CGI1, region 2 (R2) in CGI2, 
and region 3 (R3) in CGI3 (Figure 1a). For 
the initial experiment, 39 previously untreated 
CLL patients were classified based on IGHV 
status and WNT5A expression: IGHV-mutated/ 
WNT5A-negative (MW-), IGHV-mutated 
/WNT5A-positive (MW+), IGHV-unmutated 
/WNT5A-negative (UW-), IGHV-unmutated 
/WNT5A-positive (UW+) (Figure S1 and num
bered samples in Figure 1b). In separated B-cells, 
we explored the methylation status of the 54 indi
vidual CpG sites using bisulphite conversion (EZ 
DNA Methylation kit; Zymo Research) followed 
by Sanger sequencing. We used a more precise 
approach that provides information about the 
methylation level of individual CpG sites com
pared to other studies using methylation-specific 
PCR, providing only the overall methylation status 
of the whole measured locus [14–17]. We identi
fied three CpG sites within R1 (further indicated 
as R1_CpG1, R1_CpG2, and R1_CpG3), whose 
methylation levels negatively correlated with 
WNT5A expression within the IGHV-mutated 
subset. We detected high methylation levels of 
these three CpG sites in MW-patients, while in 
MW+ patients, the methylation level decreased 

with increasing WNT5A expression. We extended 
the cohort of IGHV-mutated patients (10 MW- 
and 10 MW+; Figure 1b) and confirmed signifi
cant differences in methylation of these three CpG 
sites (Figure 1c; R1_CpG1: P = 0.0014, R1_CpG2: 
P = 0.0001, R1_CpG3: P = 0.0005; Mann–Whitney 
test). We also confirmed the negative correlation 
between WNT5A methylation and expression 
(MW+ cohort; Figure 1d: R1_CpG1: P = 0.001, 
R1_CpG2: P = 0.0013, R1_CpG3: P = 0.0028; 
Spearman correlation).

We observed high methylation levels in UW- 
patients with a median methylation level being 
even higher than in MW-patients (Figure 1b and 
S2A). In contrast, we have not seen any specific 
dependency between WNT5A methylation and the 
expression levels in UW+ patients (Figure S2B). It 
implies that the WNT5A expression in the IGHV- 
unmutated subset is driven by different mechan
isms than mere WNT5A promoter methylation.

Furthermore, when we compared our classifica
tion based on the combination of IGHV status and 
WNT5A expression to the classification based on 
the five-CpG signature described by Queirós et al. 
[6], we found that both largely overlapped. The 
two prognostically distinct IGHV-mutated sub
groups, MW- and MW+ that differed by WNT5A 
promoter methylation and WNT5A expression, 
corresponded to the memory-like (m-CLL) and 
intermediate (i-CLL) methylation subgroups, 
respectively (Figure 2a). In contrast, except for 
two patients belonging to i-CLL, all IGHV- 
unmutated patients from our cohort were assigned 
to the naïve-like CLL methylation subgroup. In 
agreement with published data [6], we detected 
significant differences in the IGHV somatic hyper
mutation load. All n-CLL patients had IGHV iden
tity above 99.1%, the two i-CLL IGHV-unmutated 
cases had identity below 99%, and the rest of 
i-CLL (18 of 20) and all m-CLL were IGHV- 
mutated with identity below 98%; i-CLL patients 
had mostly borderline IGHV identity (Figure 2b). 
The WNT5A promoter methylation levels also sig
nificantly varied among individual methylation 
subgroups: m-CLL vs. i-CLL (P < 0.0001) 
and m-CLL vs. n-CLL (P = 0.0183) (Figure 2c-e). 
This data suggests that hypomethylation of CpG 
regions in the WNT5A promoter largely overlaps 
with i-CLL.
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Figure 1. Methylation analysis of WNT5A promoter. (a) Schematic location of the regions R1, R2, R3 amplified with PCR within 
the CpG Islands CGI1/2/3 of the WNT5A promoter. (b) Heatmap displaying the results of the methylation analysis of the region R1 
within CpG Island CGI3 in the total cohort of 59 CLL patients divided into four groups based on IGHV status and WNT5A expression. 
The initial cohort of 39 patients (described with numbers; see Figure S1 for initial analysis of regions R1, R2 and R3), was extended 
with 10 patients per MW- and MW+ cohorts each (described with letters). Arrows point to the three CpG sites R1_(3:55,521,124), R1_ 
(3:55,521,134), and R1_(3:55,521,145), the methylation status of which correlated with the WNT5A expression in the IGHV-mutated 
subset. *Sample taken in relapse after treatment. (c) Comparison of the methylation level between MW- and MW+ samples for all 
three CpG sites (Mann–Whitney test). (d) The negative correlation between the WNT5A expression and methylation status of the 
three CpG sites (Spearman correlation) within the IGHV-mutated subset.
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Since the vast majority of m-CLL and i-CLL 
corresponded to IGHV-mutated CLL, we also 
decided to analyse treatment-free survival (TFS) 
and overall survival (OS) based on the WNT5A 
expression in the cohort consisting of m-CLL and 
i-CLL subgroups. Both the WNT5A-positivity 
(Figure 2f) and classification into i-CLL methyla
tion subgroup (Figure 2g) distinguished patients 
with shorter TFS; the WNT5A positivity was 
a stronger prognostic factor than global epige
netics (i-CLL vs. m-CLL) (P = 0.0009 vs. 
P = 0.0311). Neither classification system showed 

a significant difference in OS for these subgroups 
of patients (Figure S3).

Discussion

The Wnt5a ligand signals via the ROR1 receptor 
that is highly expressed on CLL cells [18–20]. The 
Wnt5a/ROR1 axis has been shown to regulate 
multiple aspects of CLL biology – including cell 
survival, migration, and proliferation [13,21–25]. 
Importantly, a high activity of the non-canonical 
Wnt pathway has been connected to the poor 

Figure 2. CLL patient classification into three methylation subgroups n-CLL, i-CLL, m-CLL, and treatment-free survival. (a) 
CLL patients were classified into the three subgroups based on the methylation profile of the five-CpG signature identified by 
Queirós et al. [6]. The three methylation subgroups were further investigated for the association with IGHV identity (b) and with the 
methylation levels of the three CpG sites in the WNT5A promoter (c-e). Treatment free-survival prediction in the cohort of m-CLL and 
i-CLL subgroups (N = 41 patients) according to the WNT5A expression (f) and the five-CpG signature (g).
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outcome of CLL patients [13,21,26]. Following our 
previous work, here we verified that the WNT5A 
expression is a robust prognostic marker distin
guishing CLL patients with worse prognosis within 
the prognostically favourable subset of IGHV- 
mutated patients.

In CLL, multiple epigenetic changes have been 
associated with the Wnt pathway (for review, see 
[27]). Interestingly, there is no direct evidence for 
epigenetic silencing of ‘activators’ such as WNT 
ligands and FZD receptors. This contrasts with 
Wnt pathway inhibitors such as members of the 
SFRP family or WIF1 that have been found methy
lated in CLL [28–31]. Our study thus represents the 
first observation of the epigenetic control of a Wnt 
ligand in CLL as we demonstrated that the WNT5A 
expression is associated with DNA methylation 
changes of WNT5A promoter in a significant pro
portion of CLL patients. The methylation status of 
three CpG sites within the WNT5A promoter corre
lated with WNT5A expression only in the IGHV- 
mutated but not in the IGHV-unmutated subgroup, 
suggesting that WNT5A expression in these two CLL 
subgroups is controlled via different mechanisms.

Furthermore, we confirmed that the five-CpG 
signature divides patients into the three prognos
tically distinct subgroups: m-CLL, i-CLL, and 
n-CLL [6,7]. The i-CLL epitype had been poorly 
characterized until recently when it was linked to 
specific biological and clinical features, namely the 
usage of IGLV3-21R110 [32,33], stereotyped BCR 
immunoglobulins (mainly of subset #2), increased 
frequency of SF3B1 and ATM mutations, and 
unfavourable prognosis [34,35]. Very recently 
published paper recognized WNT5A/B overex
pression as a specific signature of patients carrying 
IGLV3-21R110 [35]; this corresponds to our results 
and our previous work showing that among 
IGHV-mutated patients, the WNT5A expression 
is high in patients with borderline number of 
IGHV somatic hypermutations and SF3B1 muta
tions and more aggressive disease compared to 
WNT5A-negative patients [13].

While the majority of patients with unmutated 
IGHV from our cohort were assigned to n-CLL, 
the WNT5A expression and methylation status of 
patients with mutated IGHV was strongly related 
to their distribution between the m-CLL and i-CLL 

subgroups. In our study, the classification based on 
the WNT5A expression distinguished patients with 
shorter TFS with even a higher significance than 
their classification into the m-CLL and i-CLL sub
groups defined by the five-CpG signature.

To summarize, the level of WNT5A expres
sion has been associated with CLL clinical beha
viour [13,35]. Our current findings shed light on 
the interconnection of the varying WNT5A 
expression with the methylation profile of 
IGHV-mutated patients, prevalently comprising 
the m-CLL and i-CLL subsets as based on the 
five-CpG signature. While the methylated CpG 
sites in the WNT5A promoter of the m-CLL 
subtype patients correlated with undetectable 
WNT5A expression, the demethylation of these 
WTN5A promoter sites was shown in the i-CLL 
subset and associated with the high WNT5A 
expression. Together with previously published 
observations, our present results could serve for 
future designing better stratification models dis
tinguishing patients with different prognoses.
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