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A B S T R A C T   

During natural disasters or accidents, an emergency logistics network aims to ensure the distribution of relief 
supplies to victims in time and efficiently. When the coronavirus disease 2019 (COVID-19) emerged, the gov-
ernment closed the outbreak areas to control the risk of transmission. The closed areas were divided into high- 
risk and middle-/low-risk areas, and travel restrictions were enforced in the different risk areas. The distribution 
of daily essential supplies to residents in the closed areas became a major challenge for the government. This 
study introduces a new variant of the vehicle routing problem with travel restrictions in closed areas called the 
two-echelon emergency vehicle routing problem with time window assignment (2E-EVRPTWA). 2E-EVRPTWA 
involves transporting goods from distribution centers (DCs) to satellites in high-risk areas in the first echelon 
and delivering goods from DCs or satellites to customers in the second echelon. Vehicle sharing and time window 
assignment (TWA) strategies are applied to optimize the transportation resource configuration and improve the 
operational efficiency of the emergency logistics network. A tri-objective mathematical model for 2E-EVRPTWA 
is also constructed to minimize the total operating cost, total delivery time, and number of vehicles. A multi- 
objective adaptive large neighborhood search with split algorithm (MOALNS-SA) is proposed to obtain the 
Pareto optimal solution for 2E-EVRPTWA. The split algorithm (SA) calculates the objective values associated 
with each solution and assigns multiple trips to shared vehicles. A non-dominated sorting strategy is used to 
retain the optimal labels obtained with the SA algorithm and evaluate the quality of the multi-objective solution. 
The TWA strategy embedded in MOALNS-SA assigns appropriate candidate time windows to customers. The 
proposed MOALNS-SA produces results that are comparable with the CPLEX solver and those of the self-learning 
non-dominated sorting genetic algorithm-II, multi-objective ant colony algorithm, and multi-objective particle 
swarm optimization algorithm for 2E-EVRPTWA. A real-world COVID-19 case study from Chongqing City, China, 
is performed to test the performance of the proposed model and algorithm. This study helps the government and 
logistics enterprises design an efficient, collaborative, emergency logistics network, and promote the healthy and 
sustainable development of cities.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) outbreak has affected 
human lives and global economic activities considerably (Cheramin 
et al., 2021; Mitręga and Choi, 2021). According to WORLDMETER 
(2021), by December 2021, the COVID-19 pandemic had infected about 
260 million people in different countries. Each country applies different 
measures to control the spread of COVID-19, including border control 

and strict travel restrictions. Residents are encouraged to be vaccinated, 
group activities are restricted or prohibited and the affected areas are 
closed to reduce the risk of COVID-19 transmission (BSGUO, 2021). In 
several affected areas in China, residents are required to quarantine in 
homes and daily essential supplies are delivered to the corresponding 
nodes (e.g., community gate) by logistics enterprises. In addition, travel 
restrictions are implemented by setting up cross-regional quarantine 
inspection sites at the junctions of affected areas. Vehicles delivering 
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supplies across different affected areas must undergo cross-regional 
quarantine inspections, which increase the travel time of vehicles and 
the difficulty of timely delivery (Yang et al., 2021). Designing efficient 
emergency logistics networks in areas affected by COVID-19 and any 
future disaster is therefore imperative. 

The areas affected by COVID-19 are divided into two types, namely, 
high risk, and middle/low risk, on the basis of confirmed cases. Vehicles 
that need to pass areas with travel restrictions are subject to cross- 
regional quarantine inspections. Cross-regional quarantine inspection 
varies in different risk areas. For vehicles in middle-/low-risk areas, 
cross-regional quarantine inspection includes testing the body temper-
ature and traffic code of drivers, which can be performed by smart de-
vices and thus consumes little time. For vehicles in high-risk areas, cross- 
regional quarantine inspection adds disinfection and quarantine of ve-
hicles based on the inspection results in middle-/low-risk areas, and the 
inspection time cannot be neglected (Wang et al., 2021b). Measures 
should be adopted to reduce the time impact of cross-regional quaran-
tine inspections. Hence, in this study, a collaborative logistics network is 
established among distribution centers (DCs) to coordinate customer 
resources, and satellites, which serve as transfer nodes, are set up in 
high-risk areas, and then a two-echelon logistics network is formulated. 
Goods are transferred from DCs to the corresponding satellites in high- 
risk areas by semitrailer trucks, and the satellites deliver goods to cus-
tomers by vehicles (Wang et al., 2020b). Centralized transfer of goods by 
semitrailer trucks can reduce the cross-regional quarantine inspection 
time when entering high-risk areas. In middle-/low-risk areas, DCs serve 
customers using vehicles directly. 

To ensure the timeliness of delivery service and reduce the travel 
time of vehicles, a time window assignment (TWA) strategy, which as-
signs appropriate time windows to customers with irrational time win-
dows, is adopted in middle-/low-risk areas. The key points in the 
emergency delivery of supplies include the timeliness of the delivery 
service and the utilization of the available fleet of vehicles (Moreno 
et al., 2016; Choi, 2021; Gultekin et al., 2022). In an emergency logistics 
network, available transportation resources are limited (François et al., 
2016; Rivera et al., 2016). Thus, a major challenge in building efficient 
collaborative emergency logistics is to improve the utilization of vehi-
cles. To address this challenge, a vehicle sharing (VS) strategy is applied 
to maximize the utilization of transportation resources. Compared with 
the traditional vS strategy, which shares vehicles in different periods and 
logistics facilities (Wang et al., 2021a), in the vS strategy in this study, 
vehicles are shared in a single facility or area to decrease the risk of 
COVID-19 transmission. Each vehicle performs multiple trips from each 
DC or satellite to improve the utilization of vehicles. Hence, designing 
efficient delivery routes and assigning them to vehicles reasonably are 
key to achieving operational efficiency in a collaborative emergency 
logistics network. 

In this study, a two-echelon emergency vehicle routing problem with 
time window assignment (2E-EVRPTWA) is investigated to construct an 
efficient collaborative emergency logistics network. Collaboration 
among DCs is established to coordinate customer resources in emer-
gency modes. A tri-objective mixed-integer programming model that 
considers the risk level of each area and travel restrictions is formulated 
to minimize the total operating cost, total delivery time and number of 
vehicles in the emergency logistics network. Multi-objective adaptive 
large neighborhood search with the split algorithm (MOALNS-SA) is 
developed to optimize delivery routes in different risk areas for 2E- 
EVRPTWA. The split algorithm (SA) divides the delivery trips and as-
signs them to vehicles as a vS strategy. A non-dominated sorting strategy 
is used to evaluate the quality of each split solution and retain the 
optimal one. Moreover, the TWA strategy embedded in MOALNS-SA 
assigns candidate time windows to customers in middle-/low-risk 
areas to find the Pareto optimal solution. The application of 2E- 
EVRPTWA in the real world is demonstrated through a case study in 
Chongqing City, China, during the outbreak of COVID-19. The results 
indicate that TWA and vS strategies are useful for the design of the two- 

echelon collaborative emergency logistics network. 
Compared with previous researches, the main contributions to 2E- 

EVRPTWA in this study are as follows. (1) A two-echelon distribution 
system that considers travel restrictions in different areas is introduced 
to improve the response speed of the emergency logistics network. (2) 
TWA and vS strategies are developed to maximize the utilization of 
vehicles with limited transportation resources and to optimize vehicle 
schedules for enhancing the efficiency of the emergency logistics 
network. (3) A three-objective mixed-integer programming model is 
formulated to account for the operational modes of the two-echelon 
distribution system, TWA and vS strategies in different risk areas and 
minimization of the total operating cost, delivery time, and number of 
vehicles. (4) MOALNS-SA is proposed to solve the optimization model, 
split and assign trips to vehicles, assign appropriate time windows to 
customers, and find a near-optimal solution for 2E-EVRPTWA. 

The remainder of this study is organized as follows. Section 2 reviews 
the literature related to the multi-depot vehicle routing problem with 
time window (MDVRPTW), two-echelon vehicle routing problem with 
time window (2E-VRPTW), TWA and vS strategies, and emergency 
vehicle routing problem (EVRP). Section 3 presents 2E-EVRPTWA in 
detail with an example. Section 4 introduces definition and mathemat-
ical model of 2E-EVRPTWA. Section 5 proposes the MOALNS-SA algo-
rithm. Section 6 provides the algorithm comparison and numerical 
experiments on a real-world COVID-19 case study in Chongqing City, 
China. The conclusions and future research directions are discussed in 
Section 7. 

2. Literature review 

Several studies dedicated to vehicle routing optimization through 
different modes and strategies in logistics networks are reviewed in this 
section. MDVRPTW and 2E-VRPTW have been studied by many re-
searchers and received much attention in the past decades (Tu et al., 
2014; Calvet et al., 2016; Wang et al., 2018; Sadati et al., 2020; Xue 
et al., 2022). Different strategies, such as TWA and vS have been 
developed to improve the operational efficiency of logistics networks 
(Cattaruzza et al., 2014; Spliet and Gabor, 2015; Subramanyam et al., 
2018; Zhen et al., 2020; Wang et al., 2021c; Marques et al., 2022). In 
addition, disasters have occurred frequently in recent years, so studies 
have focused on improving the response speed and reducing the losses in 
emergency logistics networks ( Gentili, Mirchandani, Agnetis, & Ghe-
lichi, 2022; W. Wang, Wu, Wang, Zhen, & Qu, 2021d; Y. Wang et al., 
2021c; Wolfinger, Gansterer, Doerner, & Popper, 2021). Several studies 
related to 2E-EVRPTWA in MDVRPTW, 2E-VRPTW, TWA, vS and EVRP 
are reviewed. 

2.1. Multi-depot vehicle routing problem with time windows 

Many studies have examined MDVRPTW in the past decades (Tu 
et al., 2014; Wang et al., 2018; Li et al., 2019; Sadati et al., 2020). Ray 
et al. (2014) discussed a new integer linear programming model to 
minimize the total cost and developed a fast heuristic algorithm on the 
basis of knowledge gathering to find near-optimal solutions for 
MDVRPTW. Masmoudi et al. (2016) proposed an adaptive large neigh-
borhood search (ALNS) algorithm, hybrid bee algorithm with simulated 
annealing, and hybrid bee algorithm with deterministic annealing to 
address MDVRPTW; the results show that the proposed algorithms are 
effective in finding the optimal solution. Wang et al. (2018) constructed 
a multi-objective mathematical model to minimize the operating cost 
and number of vehicles for MDVRPTW and extended the k-means al-
gorithm and non-dominated sorting genetic algorithm-II to solve this 
problem. To avoid falling into the local optimal solution, Sadati et al. 
(2021) proposed a variable Tabu neighborhood search algorithm that 
includes granular local search and Tabu shaking mechanisms to solve 
MDVRPTW. The algorithm allows the violation of the constraints of a 
particular problem in the search process and converges to a feasible 
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solution of high quality. Meanwhile, Zhen et al. (2022) established a 
mixed-integer programming model to minimize the operating cost and 
developed a column generation-based algorithm to tackle MDVRPTW. 

2.2. Two-echelon vehicle routing problem with time windows 

2E-VRPTW has two levels that use different fleets of vehicles. The 
first echelon is the delivery from depots to satellites by first-echelon 
trucks, and the second echelon is the delivery from the satellites to 
customers by second-echelon vehicles (Li et al., 2016; Bevilaqua et al., 
2019; Sluijk et al., 2022). Grangier et al. (2016) investigated 2E-VRPTW 
by considering multiple trips on the second echelon and developed an 
ALNS algorithm that includes customer destruction and a repair heu-
ristic to solve the problem. A simulation-based Tabu search algorithm 
was proposed by Liu et al. (2017) to solve 2E-VRPTW. This algorithm 
uses the Monte Carlo sampling method to assess each movement in 
neighborhood search. Breunig et al. (2019) developed a large neigh-
borhood search (LNS) algorithm and an exact mathematical algorithm to 
solve 2E-VRPTW. The feasible first-level solutions are enumerated based 
on the bounding functions and second-level route enumeration in these 
algorithms. Bevilaqua et al. (2019) studied 2E-VRPTW on the basis of a 
real wholesale company in Brazil and aimed to minimize the travel cost 
in the two echelons. They combined an efficient island-based memetic 
algorithm with Lin–Kernighan local search to address 2E-VRPTW. 
Meanwhile, Li et al. (2020) investigated 2E-VRPTW for parcel de-
liveries in city transportation systems and designed an ALNS algorithm 
to tackle 2E-VRPTW. Yu et al. (2021) studied 2E-VRPTW in a last-mile 
distribution logistics network. They formulated a mixed-integer linear 
programming model and proposed an ALNS algorithm to tackle 2E- 
VRPTW. 

2.3. Vehicle sharing and time window assignment strategies 

Unlike the vehicles in traditional VRP, which are only served on a 
trip, each vehicle performs several trips in the vS strategy (François, 

Arda, Crama, & Laporte, 2016; He & Li, 2019; Wang, Peng, Zhou, 
Mahmoudi, & Zhen, 2020b; Marques et al., 2022). A hybrid genetic 
algorithm (GA) with a split algorithm that assigns trips to vehicles to 
realize the vS strategy was proposed by Cattaruzza et al. (2014). Coelho 
et al. (2016) developed a trajectory search heuristic algorithm consisting 
of iterated local search, variable neighborhood descent, and greedy 
randomized adaptive search to assign trips to vehicles to realize the vS 
strategy and minimize the total cost. He and Li (2019) developed a 
memetic algorithm that includes GA and a local search procedure to 
assign trips to shared vehicles, and the results showed that the proposed 
operators can split appropriate trips and yield high-quality solutions. 
Zhen et al. (2020) presented the labeling procedure in hybrid PSO and 
GA algorithms to assign trips to vehicles and obtain delivery routes. A 
segment-based evaluation scheme was developed by Pan et al. (2021) to 
accelerate computing time and assign trips to shared vehicles. Marques 
et al. (2022) proposed a branch-cut-and-price algorithm to assign mul-
tiple trips to shared vehicles. For vehicles, the vS strategy is imple-
mented under the premise of meeting the customer service time window 
and load capacity. 

Rational customer service TWA can improve the number of sharing 
vehicles (Spliet and Desaulniers, 2015; Dalmeijer and Spliet, 2018; 
Wang et al., 2021c). TWA with VRP (TWAVRP) was introduced by Spliet 
and Gabor (2015), who proposed a model to assign candidate time 
windows to customers to minimize travel costs. Neves-Moreira, Pereira 
da Silva, Guimarães, Amorim, and Almada-Lobo (2018) developed a 
new formulation for TWAVRP based on multiple product segments and a 
three-stage method to solve this problem. Subramanyam et al. (2018) 
studied a method that adapts to continuous and discrete feasible solu-
tions for TWA sets and a new scenario decomposition algorithm for 
addressing TWAVRP. Martins et al. (2019) incorporated a product- 
oriented time preference into the design of TWAVRP and proposed an 
ALNS to tackle the product-oriented TWAVRP. Jalilvand et al. (2021) 
proposed an optimization model for TWAVRP to minimize the operating 
cost and designed an efficient progressive hedging algorithm to address 
this problem. A robust framework based on requirement violation was 

Table 1 
Comparison between the relevant literature and this study.  

Literature 1E/ 
2E 

1D/ 
MD 

VS TWA Emergency Objective function Approach 

Cattaruzza et al. (2014) 1E 1D √ – – Minimize travel time Memetic algorithm 
Moreno et al. (2016) 1E 1D – – √ Minimize operating cost Relax-and-fix and fix-and-optimize heuristic 
Rivera et al. (2016) 1E 1D √ √ – Minimize travel time Adaptation of Bellman–Ford algorithm 
Liu et al. (2017) 2E 1D – – – Minimize operating cost Tabu search 
Subramanyam et al. 

(2018) 
1E 1D – √ – Minimize operating cost Scenario decomposition algorithm 

Zhou et al. (2018) 2E MD – – – Minimize operating cost Hybrid multi-population GA 
Martins et al. (2019) 1E 1D – √ – Minimize operating cost Adaptive large neighborhood search 
Li et al. (2019) 1E MD – – – Minimize operating cost Improved ant colony optimization algorithm 
Breunig et al. (2019) 2E 1D – – – Minimize operating cost LNS 
He and Li (2019) 2E 1D √ – – Minimize number of vehicles, cost and waiting 

times 
Memetic algorithm 

Zhen et al. (2020) 1E MD √ – – Minimize travel time Hybrid PSO and GA 
Wang et al. (2020a) 1E MD √ – – Minimize operating cost Hybrid Tabu and ALNS 
Wang et al. (2020b) 2E MD – – – Minimize operating cost and waiting time CW- NSGA-II and Lagrangian relaxation 
Liu et al. (2021) 1E MD – – √ Minimize travel time Multiple dynamic programming algorithm 
Jalilvand et al. (2021) 1E 1D – √ – Minimize operating cost Progressive hedging algorithm 
Wang et al. (2021c) 1E MD – √ – Minimize operating cost and number of 

vehicles 
Self-learning non-dominated sorting genetic 
algorithm-II (SNSGA-II) 

Wang et al. (2021a) 2E MD √ – – Minimize cost, waiting time and number of 
vehicles 

Improved reference point-based NSGA -III 

Wolfinger et al. (2021) 2E MD – – √ Minimize operating cost LNS 
Govindan et al. (2021) 2E MD – – √ Minimize operating cost and pollution risk Fuzzy goal programming approach 
Wang et al. (2021b) 2E MD √ – √ Minimize operating cost and delivery time CW-NSGA-II 
Zhen et al. (2022) 1E MD – – – Minimize operating cost Column generation-based algorithm 
Xue et al. (2022) 2E 1D – – – Minimize operating cost Improved genetic algorithm-tabu search 
This study 2E MD √ √ √ Minimize operating cost, delivery time and 

number of vehicles 
MOALNS-SA 

Abbreviations: 1E: One echelon; 2E: Two-echelon; 1D: One depot; MD: Multi-depot; VS: vehicle sharing strategy; TWA: time window assignment strategy; Emergency: 
emergency vehicle routing problem. 
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Fig. 1. An emergency logistics network in three different scenarios.  
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presented by Hoogeboom et al. (2021) to minimize travel time and the 
risk of time window violations in TWAVRP. 

2.4. Emergency vehicle routing problem 

Most previous studies related to EVRP focused on the emergency 
facility location and routing problem for post-disaster emergency relief 
supplies (Chang et al., 2014; Zhang et al., 2018; Wei et al., 2020; Gentili 
et al., 2022). Tuzkaya et al. (2014) investigated the location and routing 
problem in a multi-echelon emergency logistics network, and a multi-
criteria analysis was conducted to determine the locations of centers first 
and the delivery routes of emergency relief supplies second. Caunhye 
et al. (2016) proposed a two-stage non-linear model that considers the 
uncertainty of facilities and demands for EVRP, and the location and 
routing problem was addressed through this model. Zhang et al. (2018) 
studied the multi-depot emergency location and routing problem based 
on uncertain information. They established a multi-objective mathe-
matical model to minimize travel time, emergency relief costs, and CO2 
emissions and designed an intelligent algorithm to solve the model. 

From the perspective of humanitarian relief, several studies on EVRP 
focused on the optimization of delivery routes for daily life and medical 
supplies to ensure the normal operation of city systems (Ahmadi et al., 
2015; Kirac and Milburn, 2018; Rout et al., 2020; Govindan et al., 2021). 
Shin et al. (2019) proposed a mixed-integer linear model to minimize 
the last completed travel time and designed an ACO algorithm for the 
delivery routing problem of emergency relief goods. Rodríguez-Espín-
dola et al. (2020) presented a bi-objective model to minimize the 
number of customers without assistance and the total cost and designed 
a branch-and-cut method to solve this problem. Wang et al. (2021b) 
investigated the routing problem for daily life delivery routes in 
consideration of the obstruction and interruption of road traffic con-
nectivity in an emergency logistics network. In addition, a state-
–space–time bi-objective mathematical model was constructed, and a 
two-stage hybrid heuristic was proposed to obtain the Pareto optimal 
solution. Zhao et al. (2021) presented a bi-objective emergency routing 
optimization model considering the COVID-19 transmission risk to 
optimize the delivery routes for daily life supplies, and designed an 
ALNS to solve this problem. Table 1 lists the main characteristics and 
solution methods of previous studies that addressed MDVRPTW, 2E- 
VRPTW, vS TWA, and EVRP. 

The most relevant previous studies are summarized in Table 1. 
Despite the aforementioned efforts to address 2E-EVRPTWA, the 
following issues remain. (1) Research on the suitability of the two- 
echelon distribution system for multi-depot collaborative emergency 
logistics networks is lacking. (2) The TWA and vS strategies adopted in 
collaborative emergency logistics networks have not been well studied. 
(3) Single-objective models cannot adapt to the complex situations in 
collaborative emergency logistics networks and maintain stable perfor-
mance. (4) The algorithms for solving the multi-objective problem are 
not utilized to solve 2E-EVRPTWA in most studies. 

3. Problem statement 

Effective planning and devising of a collaborative emergency logis-
tics network can ensure the normal operation of urban logistics when an 
unpredictable occurrence occurs. In this study, TWA and vS strategies 

are applied in a two-echelon collaborative emergency logistics network 
with travel restrictions to improve operational efficiency. An emergency 
logistics network involves several DCs, satellites, and assigned cus-
tomers. Maximum utilization of limited transportation resources can be 
obtained through the vS strategy. Customers with irrational time win-
dows are reassigned new time windows in the collaborative emergency 
logistics network through the TWA strategy. Fig. 1 shows three scenarios 
in the collaborative emergency logistics network, and the waiting time 
window means that the vehicle arrives before the customer service time 
window starts, and needs to wait for the time window to start for service, 
while the delayed service time window means that the vehicle arrives 
after the end of the customer service time window. In addition, the 
initial emergency logistics network (i.e., Fig. 1(b)) is a network that adds 
travel restrictions on the basis of the initial logistics network (Fig. 1(a)). 

In Fig. 1 (a), DC1 and DC2 operate independently in the logistics 
network. Customer demands cannot be met timely due to the irrational 
design of delivery routes. In addition, when customers’ time windows 
are small, more vehicle usage further reduces the total delivery time. In 
Fig. 1(b), the distribution area is divided into middle-/low-risk and high- 
risk areas in emergency modes. DC1 and DC2 are located in the middle-/ 
low-risk areas and several customers are located in the high-risk area. 
Travel restrictions are constructed in the middle-/low-risk and high-risk 
areas to avoid cross-infection. When vehicles cross the travel restrictions 
to serve customers, namely, vehicles accept the cross-regional quaran-
tine inspection, the travel restriction time is generated. For example, 
Customer 8 (C8) in the route (e.g., DC1 → C4 → C7 → C11 → C8 → DC1) 
is located in a high-risk area, and the vehicle for the route needs to cross 
travel restrictions, which generate four per unit travel restriction times. 
As travel restrictions develop, the total travel time and the number of 
customers whose demands cannot be served on time are increased. 
Therefore, efficient emergency logistics network planning is required to 
enhance the response speed and operational efficiency. 

Fig. 1(c) shows the optimized collaborative emergency logistics 
network with TWA and vS strategies. The geographical location of Sat-
ellite 1 (S1) is similar to that of Customer 18 (C18), and S1 is viewed as a 
transfer station in the high-risk area. In the high-risk area, customer 
demands are transported in a centralized manner to S1 by semitrailer 
trucks, and the vehicles depart from S1 to serve customers. Compared 
with vehicles crossing travel restrictions, centralized transportation by 
semitrailer trucks can reduce the total travel restriction time. To reduce 
the risk of COVID-19 transmission, vehicles are shared in each DC or 
each satellite to maximize the utilization of transportation resources and 
minimize the transportation cost. In addition, a set of candidate time 
windows are assigned to customers with irrational time windows in 
middle-/low-risk areas to reduce time window violations and improve 
the operational efficiency of the emergency logistics network. Therefore, 
building an emergency logistics network is imperative to improving the 
emergency response speed and operational efficiency and reducing 
operating costs. 

The advantages of the two-echelon emergency logistics network with 
TWA and vS strategies can be proven through related optimization re-
sults. The centralized transportation time for semitrailer trucks from DCs 
to satellites is set as one unit time. The preparation time of vehicles for 
the next route is set as two unit time. Furthermore, we make the 
following assumptions. The transportation cost from DCs to satellites 
and the transportation cost from DCs or satellites to customers can be set 

Table 2 
Data sources for customers.  

Customer Demands Customer Demands Customer Demands Customer Demands 

C1 2 C6 1 C12 2 C17 2 
C2 1 C7 2 C13 3 C18 2 
C3 4 C8 5 C14 4 C19 5 
C4 4 C9 2 C15 1 C20 4 
C5 1 C10 4 C16 2 C21 2  
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to $20/unit time and $10/unit time, respectively. The penalty cost for 
waiting and lateness can be defined as $15/unit time, and the assign-
ment cost from the expected time windows to the assigned time win-
dows can be set to $10/unit time. The maximal capacity for a semitrailer 
truck and vehicle is 15 and 10 per unit demand, respectively. The rental 
cost of each semitrailer truck and each vehicle can be set to $300 and 
$200, respectively, in one planning period. The demands of customers 
and the related optimization results of the emergency logistics network 
are shown in Tables 2 and 3. 

As shown in Table 3, the two-echelon collaborative emergency lo-
gistics network with TWA and vS strategies has a lower cost ($1640) 
than the two other scenarios. When an emergency occurs, the delivery 
time is significantly increased due to travel restrictions. The number of 
delivery vehicles decreases from 6 to 3 when the vS strategy is adopted 
in the emergency logistics network. Through the TWA strategy, the sum 
of waiting and delayed time shows an obvious reduction that ensures the 
timeliness of delivery service. Therefore, the two-echelon distribution 
system with TWA and vS strategies is conductive to building an efficient 
emergency logistics network. 

4. Optimization model 

The limited transportation resources and the travel restrictions in 
areas where COVID-19 occurs may increase the operating cost and de-
livery time of logistics networks (Li, Zhou, Kundu, & Zhang, 2021a; Zhao 
et al., 2021). To mitigate the negative effect caused by COVID-19, a tri- 
objective optimization model with TWA and vS strategies is constructed 
to obtain the minimum total operating cost, delivery time, and number 
of vehicles in a two-echelon logistics network. Several essential and 
rational assumptions are considered in the design of the optimization 
model. 

Assumption 1. In high-risk areas, satellites are set up in areas without 
DCs. The DCs transport goods to the corresponding satellites, and customers 
are served by these satellites. 

Assumption 2. The total demand and total supply are equal, furthermore, 
although the capacity of a single semitrailer truck is limited, the trans-
portation between DC and high-risk area can be accomplished by multiple 
semitrailer trucks. 

Assumption 3. In an emergency situation, the geographical location of 
each satellite is given by the government in the corresponding high-risk area. 

Assumption 4. Considering the shortage of transportation resources and 
the risk of COVID-19 transmission in the emergency logistics network, the vS 
strategy is applied in each DC and each satellite, namely, vehicles in high-risk- 
areas can be shared within these areas and vehicles in middle-/low-risk areas 
can be shared within and among areas. 

Assumption 5. To improve the response speed of emergency logistics 
networks, a TWA strategy is adopted for customers in middle-/low-risk areas. 

A two-echelon emergency logistics network is established through 
the tri-objective mathematical model (Li et al., 2020; Wang et al., 
2021b). The definitions and explanations of several parameters and 
variables are shown in Table 4. 

A tri-objective optimization model that considers TWA and vS stra-
tegies is constructed to design an emergency logistics network. The 
mathematical model is formulated to minimize the total operating cost 
in Eq. (1), the total delivery time in Eq. (2), and the number of vehicles 
in Eq. (3). 

Min Z1 = TC1 +TC2 (1)  

Min Z2 =
∑

p∈D∪W

∑

q∈D∪W

∑

s∈S

(
tpqs+IT

)
×ypqs+

∑

i∈D∪W∪C

∑

j∈D∪W∪C

∑

v∈V

∑

k∈Ov

∑

a,b∈AH

tijv×xabk
ijv

+
∑

i∈D∪C

∑

j∈D∪C

∑

v∈V

∑

k∈Ov

∑

a,b∈AML

tijv×xabk
ijv +

∑

p∈D∪W

∑

s∈S
Wtqs+

∑

i∈W∪C

∑

v∈V

∑

k∈Ov

∑

a∈A
Wtka

iv

(2)  

Min Z3 =
∑

a,b∈AH

∑

v∈V

{
∑

q∈W

∑

j∈C

∑

k∈Ov

xabk
qjv , 1

}

+
∑

a,b∈AML

∑

v∈V

{
∑

p∈D

∑

j∈C

∑

k∈Ov

xabk
pjv , 1

}

(3) 

In Eq. (1), Z1 includes two components: TC1 and TC2. TC1 in Eq. (4) 
represents the costs including transportation, maintenance, and penalty 
costs, for overdue service of semitrailer trucks in the first echelon. TC2 in 
Eq. (5) represents the costs, including distribution, maintenance, and 
penalty costs for overdue service of vehicles and the TWA cost in the 
second echelon. In Eq. (2), Z2 expresses the total delivery time in the two 
echelons, 

∑
p∈D∪W

∑
q∈D∪W

∑
s∈S

(
tpqs + IT

)
× ypqs and 

∑
p∈D∪W

∑
s∈SWtqs 

represent the traveling and waiting times in the first echelon, 
∑

i∈D∪C
∑

j∈D∪C
∑

v∈V
∑

k∈Ov

∑
a,b∈AML

tijv×xabk
ijv and 

∑
i∈W∪C

∑
v∈V

∑
k∈Ov

∑
a∈A 

Wtka
iv indicate the traveling and waiting times in the second echelon. In 

Eq. (3), Z3 indicates the number of vehicles in the second echelon, 
∑

a,b∈AH

∑
v∈Vmin

{∑
q∈W

∑
j∈C

∑
k∈Ov

xabk
qjv ,1

}
and 

∑
a,b∈AML

∑
v∈Vmin

{∑
p∈D 

∑
j∈C

∑
k∈Ov

xabk
pjv , 1

}
represent the numbers of used vehicles in high-risk 

and middle-/low-risk areas. 

TC1 =
∑

p∈D∪W

∑

q∈D∪W

∑

s∈S
Spq × Us × ypqs× = +

∑

p∈D

∑

q∈W

∑

s∈S
ypqs × MCs

+
∑

p∈D∪W

∑

q∈W

∑

s∈S
max

{
eq − atqs, atqs − lq, 0

}
× ypqs × α

(4)    

Table 3 
Result comparison of the logistics network with and without emergency modes.  

Scenario Case Delivery 
time 

Waiting 
time 

Delayed 
time 

Assigned 
time 

Transportation 
cost ($) 

Assignment 
cost ($) 

NV NS Total rental 
cost ($) 

Total 
cost ($) 

Non- 
emergency 

Initial network 52 42 14 – 1360 – 6 
(0*) 

– 1200 2560 

Emergency Initial network 64 39 20 – 1525 – 6 
(0*) 

– 1200 2725 

Optimized 
network 

59 – – 9 650 90 3 
(3*) 

1 900 1640 

*: The number of shared vehicles; NV: Number of vehicles; NS: Number of semitrailer trucks. 
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Table 4 
Symbol definitions and explanations.  

Set Definition 

A Set of areas in the logistics network, A={a|a = 1,2,3…,ρ} and ρ is the total number of areas 
AH Set of high-risk areas in the logistics network, AH ⊆ A 
AML Set of middle-/low-risk areas in the logistics network, AML ⊆ A 
D Set of DC, D={p|p = 1,2,3…,η} and η is the total number of DCs 
W Set of satellites, W={q|q = 1,2,3…,σ} and σ is the total number of satellites 
C Set of delivery customers, C={i|i = 1,2,3…,λ} and λ is the total number of customers 
V Set of vehicles for delivery, V={v|v = 1,2,3…,δ} and δ is the total number of vehicles 
S Set of semitrailer trucks for transferring goods from DCs to satellites, S={s|s = 1,2,3…,φ} and φ is the total number of semitrailer trucks 
Ov Set of delivery routes of vehicle v, Ov ={k|k = 1,2,3…,ε},v ∈ V  

Input parameter Definition 
di Delivery demand quantity of customer i, i ∈ C 
dq Delivery demand quantity of satellite q, q ∈ W 
Sij Distance from customer i to customer j, i, j ∈ C 
Spq Distance from DC or satellite p to DC or satellite q, p,q ∈ D ∪ W 
MCv Maintenance cost for each vehicle v in one planning period, v ∈ V 
MCs Maintenance cost for each semitrailer truck s in one planning period, s ∈ S 
Us Usage cost of semitrailer truck s, s ∈ S (unit: dollar/km) 
Uv Usage cost of vehicle v, v ∈ V (unit: dollar/km) 
Qs Maximum capacity of semitrailer truck s, s ∈ S 
Qv Maximum capacity of vehicle v, v ∈ V 
Qp Maximum capacity of DC p, p ∈ D 
Qq Maximum capacity of satellite q, q ∈ W 
[ei,li] Time window of customer or satellite i, i ∈ C ∪ W 
[eai,lai] Candidate time window assigned to customer i, i ∈ C 
[Ep,Lp] Service time window of DC p, p ∈ D 
α Penalty cost for early or late arrival per unit time 
β Cost coefficient when customer’s time window changes to the assigned time window per unit time 
tijv Travel time of vehicle v between entities i and j, i, j ∈ D ∪ W ∪ C, v ∈ V 
tpqs Travel time of semitrailer truck s between entities p and q, p, q ∈ D ∪ W, s ∈ S 
BN Large number 
MaxT Maximal delivery time of a vehicle 
PT Preparation time of a vehicle for the next route 
IT Each cross-regional quarantine inspection time in high-risk areas 
= Working days in one planning period  

Decision 
variable 

Definition 

dtak qv Departure time of the kth route of vehicle v from DC or satellite q in area a, v ∈ V, q ∈ D ∪ W, 
k ∈ Ov, a ∈ A 

dtps Departure time of semitrailer truck s from DC p, s ∈ S, p ∈ D 
atak qv Arrival time of the kth route of vehicle v at DC or satellite q in area a, v ∈ V, q ∈ D ∪ W, k ∈ Ov, a ∈ A 
atak iv Arrival time of the kth route of vehicle v at customer i in area a, v ∈ V, i ∈ D ∪ W ∪ C, k ∈ Ov, 

a ∈ A 
atqs Arrival time of semitrailer truck s at satellite q, s ∈ S, q ∈ W 
Wtak iv Waiting time of the kth route of vehicle v at customer i in area a, i ∈ C, v ∈ V, k ∈ Ov, a ∈ A 
Wt qs Waiting time of the semitrailer truck s at satellite q, q ∈ W, s ∈ S. 
CLak qv Load of vehicle v in the kth route when it departs from DC or satellite q in area a, v ∈ V, k ∈ Ov, q ∈ D ∪ W, a ∈ A 
CLps Load of semitrailer truck s when it departs from DC q, s ∈ S, q ∈ D 
xabk ijv If the kth route of vehicle v travels from node i in area a to node j in area b, then xabk ijv = 1; otherwise, xabk ijv = 0, i,j ∈ D ∪ W ∪ C, v ∈ V, k ∈ Ov, a,b ∈ A 
ypqs If semitrailer truck s transports between DC or satellite p and DC or satellite q, then y pqs = 1; otherwise, y pqs = 0, p, q ∈ D, s ∈ S 
τabk qiv If vehicle v operates the kth route from DC or satellite q in area a to serve customer i in area b, then τabk qiv = 1; otherwise, τabk qiv = 0, v ∈ V, k ∈ Ov, i ∈ C, q ∈ D ∪

W, a,b ∈ A 
κpqs If semitrailer truck s departing from DC p serves satellite q, κ pqs = 1; otherwise, κ pqs = 0, s ∈ S, p ∈ D, q ∈ W 
CTa i If the candidate time window is assigned to customer i in area a, CTa i = 1;otherwise, CTa i = 0, i ∈ C, a ∈ A  

TC2 =
∑

i∈C∪D

∑

j∈C∪D

∑

v∈V

∑

k∈Ov

∑

a,b∈AML

Sij ×Uv × xabk
ijv ×=+

∑

i∈C∪W

∑

j∈C∪W

∑

v∈V

∑

k∈Ov

∑

a,b∈AH

Sij ×Uv × xabk
ijv ×=

+

[
∑

a,b∈AH

∑

v∈V
min

{
∑

q∈W

∑

j∈C

∑

k∈Ov

xabk
qjv ,1

}

+
∑

a,b∈AML

∑

v∈V
min

{
∑

p∈D

∑

j∈C

∑

k∈Ov

xabk
pjv ,1

}]

×MCv

+
∑

i∈D∪W∪C

∑

j∈C

∑

v∈V

∑

k∈Ov

∑

a,b∈A
max

{
ej − atkb

jv ,atkb
jv − lj,0

}
× xabk

ijv ×α

+
∑

a∈AML

∑

i∈C

[
CTa

i min{|ei − eai|, |li − lti|}
]
×β

(5)   
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Constraints on satellites: 
∑

p∈D

∑

s∈S
ypqs⩽1, ∀q ∈ W (6)  

∑

p∈D
ypqs = 1, ∀q ∈ W, s ∈ S (7)  

∑

q∈W
ypqs −

∑

q∈W
yqgs = 0,∀p, g ∈ W ∪ D, s ∈ S (8)  

∑

p∈D
yqps = 1, ∀q ∈ W, s ∈ S (9)  

CLps =
∑

q∈W
dq × κpqs, ∀s ∈ S, p ∈ D (10)  

CLps⩽Qs,∀p ∈ D, s ∈ S (11)  

dtps + IT + tpqs − BN(1 − ypqs)⩽atqs, ∀p ∈ D, q ∈ W, s ∈ S (12)  

dtps + IT + tpqs +BN(1 − ypqs)⩾atqs, ∀p ∈ D, q ∈ W, s ∈ S (13)  

atqs + IT + tqm − BN(1 − yqms)⩽atms,∀q ∈ W,m ∈ W ∪ D, s ∈ S (14)  

atqs + IT + tqm +BN(1 − yqms)⩾atms,∀q ∈ W,m ∈ W ∪ D, s ∈ S (15)  

atqs + IT + tqps⩽yqpsLp,∀q ∈ W, p ∈ D, s ∈ S (16) 

Constraint (6) ensures that each satellite is served once by one 
semitrailer truck. Constraints (7) and (9) indicate that the semitrailer 
truck should depart from the DC and return to the DC. Constraint (8) 
indicates the flow balance, which means the number of arrivals at the 

Start

Initial parameters and import the 
initial data of customers and 

DCs and satellites in different areas 

Generate initial solutions Zinit(Z1,Z2,Z3)through the 
selected method

Split and assign trips to vehicles and calculate three 
objectives through the SA algorithm mentioned in 

Section 5.1 based on the Zinit(Z1,Z2,Z3)

Zcurrent(Z1,Z2,Z3) Zbest(Z1,Z2,Z3) Zinit (Z1,Z2,Z3)

gen = 1

Apply roulette-wheel strategy choose a
 removal operator and a insertion operator 

based on the selective probability

 Apply removal  and insertion operations on the 
Zcurrent  (Z1,Z2,Z3) to obtain the Znew  (Z1,Z2,Z3)

Calculate three objectives of the new solution 
Znew  (Z1,Z2,Z3)and  judge the quality of  Znew  (Z1,Z2,Z3) 

through the non-dominated sorting strategy

If Znew  (Z1,Z2,Z3)  dominates 
Zbest  (Z1,Z2,Z3) 

 Zbest (Z1,Z2,Z3) Znew (Z1,Z2,Z3) and 
update the score of the selected 
removal and insertion operators

If Znew  (Z1,Z2,Z3)  
non-dominates Zbest  (Z1,Z2,Z3) and 

dominates Zcurrent (Z1,Z2,Z3) 

 Insert Znew  (Z1,Z2,Z3)  in A , and 
update the score of the selected 
removal and insertion operators

If Znew (Z1,Z2,Z3)  meets the 
acceptance criterions 

 Z*(Z1,Z2,Z3) Znew(Z1,Z2,Z3) , and 
update the score of the selected 
removal and insertion operators

Yes 

No 

Yes Yes 

No No 

Update and calculate Tm by Eqs. (35)-(37) and select a 
solution from (Z*, A) to be Zcurrent (Z1,Z2,Z3) randomly

If gen can be 
divisibled by  

Update adaptive weight of each 
operator by Eqs. (36)-(37) and 

reset the score to 0

Perform TWA operation on
 Zbest (Z1,Z2,Z3)   and update 

time windows of customers 
If gen <= genmax  

Yes 

No 

No 

gen=gen+1
Yes 

Output Pareto optimal 
solution Zbest(Z1,Z2,Z3) 

End 

Adaptive procedure

For each satellite or each DC

Assign customers in high-risk areas to the 
corresponding satellites and customers in 
middle-/low-risk areas to the nearest DCs

Check if  
customers in middle-/low-risk 

areas need to be adjusted 
among  DCs

Update the customers in middle-/low-risk 
areas of DCs 

Yes 

No 

run = 1

run =run+1If run <= runmax  
Yes 

No 

Fig. 2. Procedure of MOALNS-SA.  
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satellite equals the number of departures from the satellite for each used 
semitrailer truck. Constraint (10) calculates the transportation quantity 
of each semitrailer truck, and Constraint (11) refers to the maximal 
capacity of semitrailer trucks. Constraints (12) and (13) guarantee the 
continuous departure time of semitrailer trucks at DCs. Constraints (14) 
and (15) ensure the continuous arrival time of semitrailer trucks at 
satellites. Constraint (16) indicates that semitrailer trucks should respect 
the time windows of DCs. 

Constraints on customers: 
∑

j∈C

∑

v∈V

∑

k∈Ov

xabk
ijv ⩽1, ∀i ∈ W ∪ D ∪ C, a, b ∈ A (17)  

∑

i∈D∪W

∑

j∈C
xabk

ijv = 1, ∀i ∈ C ∪ D ∪ W, v ∈ V, k ∈ Ov, a, b ∈ A (18)  

∑

j∈C
xabk

ijv −
∑

j∈C
xbfk

jmv = 0, ∀i,m ∈ C ∪ W ∪ D, v ∈ V, k ∈ Ov, a, b, f ∈ A (19)  

∑

j∈C

∑

i∈D∪W
xbak

jiv = 1, ∀i ∈ C ∪ D ∪ W, v ∈ V, k ∈ Ov, a, b ∈ A (20)  

CLak
qv =

∑

i∈C
diτabk

qiv ,∀v ∈ V, k ∈ Ov, q ∈ W ∪ D, a, b ∈ A (21)  

CLak
qv⩽Qv, ∀q ∈ W ∪ D, v ∈ V, k ∈ Ov, a ∈ A (22)  

∑

s∈S
CLps +

∑

a∈A

∑

v∈V

∑

k∈Ov

CLak
pv⩽Qp, ∀p ∈ D (23)  

∑

v∈V

∑

k∈Ov

CLak
qv⩽Qq, ∀q ∈ W, a ∈ AH (24)  

∑

i∈C∪W

∑

k∈Ov

wtak
iv +

∑

i∈C∪W∪D

∑

j∈C∪W∪D

∑

k∈Ov

xabk
ijv × tijv +PT ×

⃒
⃒
⃒
⃒
⃒
1

−
∑

i∈W∪D

∑

j∈C

∑

k∈Ov

xabk
ijv

⃒
⃒
⃒
⃒
⃒
⩽maxT, ∀v

∈ V, a, b ∈ A (25)  

[(1− CTa
i )ei+CTa

i eai]
∑

j∈C∪W∪D
xabk

ijv ⩽atak
iv +wtak

iv ⩽[(1− CTa
i )li+CTa

i lai]
∑

j∈C∪W∪D
xabk

ijv ,

∀i∈C,v∈V,k∈Ov,a,b∈A
(26)  

Eqτabk
qiv ⩽dtak

qv⩽Lqτabk
qiv ,∀i ∈ C, q ∈ W ∪ D, v ∈ V, k ∈ Ov, a, b ∈ A (27)  

Eqτabk
qiv ⩽atak

qv⩽Lqτabk
qiv ,∀i ∈ C, q ∈ W ∪ D, v ∈ V, k ∈ Ov, a, b ∈ A (28)  

dtak
qv + tqiv − BN(1 − xabk

qiv )⩽atbk
iv ,∀q ∈ W ∪ D, i ∈ C, v ∈ V, k ∈ Ov, a, b ∈ A

(29)  

dtak
qv + tqiv +BN(1 − xabk

qiv )⩾atbk
iv ,∀q ∈ W ∪ D, i ∈ C, v ∈ V, k ∈ Ov, a, b ∈ A

(30)  

atak
iv + wtak

iv + tijv − BN(1 − xabk
ijv )⩽atbk

jv ,

∀i ∈ C, j ∈ C ∪ W ∪ D, v ∈ V, k ∈ Ov, a, b ∈ A
(31)  

atak
iv + wtak

iv + tijv + BN(1 − xabk
ijv )⩾atbk

jv ,

∀i ∈ C, j ∈ C ∪ W ∪ D, v ∈ V, k ∈ Ov, a, b ∈ A
(32)  

atak
qv +PT − BN(1 − τab(k+1)

qiv )⩽dta(k+1)
qv , ∀q ∈ W ∪ D, v ∈ V, k ∈ Ov, a, b ∈ A

(33) 

Constraint (17) ensures that each customer is served once by one 
vehicle. Constraint (18) indicates that vehicles depart from the DC 

(satellite) initially in each trip. Constraint (19) indicates the flow bal-
ance of each customer. Constraint (20) refers to vehicles’ return to the 
DC (satellite). Constraint (21) calculates the transportation quantity of 
vehicles in each trip. Constraint (22) refers to the maximal capacity of 
vehicles in each trip. Constraint (23) guarantees that the demands of 
customers and satellites served by a DC should not exceed their capacity. 
Constraint (24) guarantees that the demands of customers served by a 
satellite should not exceed its capacity. Constraint (25) indicates that the 
total travel time of vehicles should respect the maximal delivery time. 
Constraint (26) indicates that vehicles should respect the time window 
of customers. Constraints (27) and (28) ensure that vehicles respect the 
time windows of DCs (satellites). Constraints (29) and (30) guarantee 
the continuous departure time of vehicles at DCs (satellites). Constraints 
(31) and (32) ensure the continuous arrival time of vehicles at cus-
tomers, and Constraint (33) ensures the continuous departure time of 
shared delivery routes of each vehicle. 

Binary decision: 

xabk
ijv = {0, 1}, ∀p, q ∈ W ∪ D ∪ C, v ∈ V, k ∈ Ov, a, b ∈ A  

ypqs = {0, 1},∀p, q ∈ D ∪ W, s ∈ S  

τabk
qiv = {0, 1}, ∀i ∈ C, q ∈ W ∪ D, v ∈ V, k ∈ Ov, a, b ∈ A  

κpqs = {0, 1}, ∀p ∈ D, q ∈ W, s ∈ S  

CTa
i = {0, 1}, ∀a ∈ A, i ∈ C  

5. Multi-objective adaptive large neighborhood search with split 
algorithm 

As an extension of the LNS algorithm, ALNS was first proposed by 
Ropke and Pisinger (2006) to solve VRP, and has been widely applied to 
address many VRP variants in recent years (Azi et al., 2014; Ghilas et al., 
2016a; Kirac and Milburn, 2018; Sun et al., 2020). Unlike in the LNS 
algorithm where removal and insertion operations are performed by a 
single operator, the ALNS algorithm performs removal and insertion 
operations through a series of operators. The performance of removal 
and insertion operators is recorded at each iteration, and the well- 
performed operators have a high probability of being selected in the 
next iteration (Jie et al., 2019; Yu et al., 2021). The adaptive adjustment 
procedure of the ALNS can maintain a balance between intensification 
and diversification in each search process (Gu et al., 2019; Chen et al., 
2021; Mara et al., 2022). In this study, the ALNS framework is further 
improved to find the Pareto optimal solutions for the multi-objective 
function. The procedure of MOALNS-SA is shown in Fig. 2. run and 
runmax indicate the number of optimization runs and the maximal 
number of runs, gen and genmax represent the number of iterations and 
the maximal number of iterations, ϒ expresses the number of iterations 
needed to update the adaptive weight of operators and perform the TWA 
operation, Zinit (Z1, Z2, Z3) indicates the initial solution, and Zcurrent(Z1, 
Z2, Z3) denotes the current solution and Zbest(Z1, Z2, Z3) expresses the 
Pareto optimal solution. 

The main procedure of the proposed algorithm is shown in Fig. 2. In 
this algorithm, SA is developed based on Zhen et al. (2020) to realize 
vehicle sharing among different routes. The customer sequence of each 
neighborhood is split and transferred into initial solutions with multiple 
objective function values through SA. In each split procedure, new so-
lutions are generated first, and then a non-dominated sorting strategy is 
applied to remain the non-dominated solutions and remove the domi-
nated solutions, thereby speeding up the solution efficiency. Further-
more, the removal and insertion operators are selected by a roulette 
strategy to deconstruct the non-dominated solutions and repair them to 
generate new solutions. Different operators of removal and insertion 
operations in each iteration can effectively avoid being trapped in local 
optimal solutions. The traditional adaptive procedure evaluates new 
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Fig. 3. Three possible trips for serving a new customer.  
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solutions by measuring a single objective value with current and best 
solutions, which is not suitable for multi-objective optimization prob-
lems (Rifai et al., 2021). The improved adaptive procedure is proposed 
to evaluate new solutions with current and best solutions based on the 
multi-objective function values. Moreover, an efficient feasibility eval-
uation can decrease the computational burden and remain an elite so-
lution for the multi-objective optimization problem. The pseudo-code of 
MOALNS-SA is given in Algorithm 1. 

In Algorithm 1, each neighborhood has a sequence of n nodes and n is 
the total number of customers in this area (Cattaruzza et al., 2014). The 
sequence can be regarded as a TSP solution and split by SA to assign trips 

to vehicles. Three methods can be utilized to generate the initial solu-
tion, and each method is selected randomly in each run.  

1. Greedy insertion method (Ghilas et al., 2016b): This operator is 
performed based on distance. First, the customer closest to the DC or 
satellite is selected as the first node. Second, the customer closest to 
the previous node is selected as the next node. Third, the former step 
is repeated until all nodes are selected and a sequence S is generated.  

2. Median time window method: This operator ranks nodes based on 
the time windows of customers. Nodes are sorted in ascending order 
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by the values of median time windows, and a sorted sequence S is 
generated.  

3. Random method: This operator ranks nodes randomly and a random 
sequence S is generated to help diversify the initial solution. 

5.1. Split algorithm 

In recent years, SA has been used to split sequences and assign trips 
to vehicles (Cattaruzza et al., 2014; Zhen et al., 2020). In this problem, 

SA is associated with MOALNS to turn neighborhoods into solutions. For 
each neighborhood, labels are generated from the first node to the nth 
node in turn in accordance with the sequence S through SA, and the 

labels for n nodes include the trip assignments. Each label has (δ + 5) 
elements, and δ represents the number of vehicles. The first δth elements 
express the time to get ready to start the next trip for the δth vehicle, and 
they are sorted in descending order. The (δ + 1)th element indicates the 
total operating cost Z1. The (δ + 2)th element indicates the total delivery 
time Z2. The (δ + 3)th element indicates the number of used vehicle Z3. 
The (δ + 4)th element is the loading of this trip, and the (δ + 5)th element 
is the predecessor node (i.e., DCs, satellites, customers) of the label. The 
pseudo-code of SA is shown in Algorithm 2.  

In Algorithm 2, when extending a label, (2*Z3 + 1) new labels are 
produced which include all possible trips for vehicles. For each used 
vehicle, namely, the time value of the vehicle is not zero, two situations 
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are considered to perform the next trip. One is to travel from the DC or 
satellite to perform the next trip, and the other is to travel from the 
previous node to continue the previous trip. In addition, an unused 
vehicle can be assigned to perform the next trip. An example is shown in 
Fig. 3. 

Fig. 3 shows three possible situations for adding a new customer to 
trips and the travel time of vehicles. In Fig. 3(a), Customer 3(C3) joins 
the trip, which includes Customer 1(C1) and Customer 2(C2) and is 
served by the used Vehicle 1 (V1). When V1 has finished the delivery 
service of C1 and C2 at time two, it travels from C2 directly and waits 
one unit time to serve C3 at time four. As indicated in Fig. 3(b), C3 starts 
a new trip and is served by V1. V1 finishes the last trip and returns to the 
DC (satellite) at time three. Then, V1 spends one unit time to prepare for 
the next trip and starts a new trip from the DC (satellite) at time five to 
serve C3. As shown in Fig. 3(c), C3 is served at time four by the new V2 

directly. Therefore, (2*Z3 + 1) labels with different trip assignments and 
objective values are generated. In addition, the non-dominated sorting 
strategy is adopted to evaluate the quality of labels for each node based 
on the objectives. Labels with high quality are retained to yield labels for 

the next node, and labels with low quality are eliminated. When 
obtaining the labels of the last nodes, the best labels that include trips 
and objectives are selected to perform the removal and insertion 
operations. 

5.2. Non-dominated sorting strategy 

The non-dominated sorting strategy was proposed by Deb et al. 
(2002) to retain the Pareto optimal solution in multi-objective optimi-
zation problems. In MOALNS-SA, non-dominated sorting strategy is 
utilized to select elite labels in SA (shown in Section 5.1) and measure 
the quality of the solution in the adaptive score adjustment procedure 
(shown in Section 5.6) (Rifai, Nguyen, & Dawal, 2016; Wang et al., 
2020b). The pseudo-code of the non-dominated sorting strategy used in 
SA is shown in Algorithm 3.   

In Algorithm 3, each label (solution) is compared with all the other 
labels (solutions) on the basis of objectives. The Pareto optimal labels 
(solutions) retained to perform the next operation. In the adaptive score 
adjustment procedure, only three solutions need to be compared 
through the non-dominated sorting strategy. For example, when 
generating a new solution Znew(Z1, Z2…Zm) with m objectives, it should 
be compared with Zbest (Z1, Z2…Zm) and Zcurrrent (Z1, Z2…Zm) based on m 
objectives to obtain a dominant relationship among them. 

5.3. Removal operators 

Six removal operators are presented in this algorithm. The first four 
and the fifth were originally proposed by Ropke and Pisinger (2006) and 
Wang, Lei, Zhang, and Lee (2020a), respectively. Each removal operator 
removes a series of customers from the current solution and adds them to 
a removal list. The pseudo-code of the generic removal operation is 
shown in Algorithm 4. 

Route 1 5 2 1 6 312 10 7 4 8 9

5 2 1 6 312 10 7 4 8 9Route 1

Position with 
minimum incremental cost 

Position with second
 minimum incremental cost 

11Route 1 5 2 1 6 312 10 7 4 8 9

11

11

Fig. 4. Example of SI.  
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In Algorithm 4, the selected removal operator removes customers 
from the current solution Zcurrent (Z1, Z2, Z3) and returns to the partiality- 
destroyed solution Zp. The removed customers are added in removal list 
L when the number of removed customers reaches Nremoved.  

1. Random removal 

This operator selects customers to remove from the current solution 
Zcurrent(Z1, Z2, Z3) randomly. Although the random removal operation 
has a low probability of leading the optimal solution, it can retain the 
diversity of the search space.  

2. Route removal 

This operator selects routes to remove from the current solution 
Zcurrent(Z1, Z2, Z3) randomly, namely, customers from these routes are 
removed. In addition, the number of removed routes is randomly 
generated between 1 to half of the total routes in this study.  

3. Worst cost removal 

This operator removes customers that generate the maximal mar-
ginal cost of the current solution. Worst cost removal in this study is 
operated in the following steps. First, the cost of the current solution 
Zcurrent(Z1, Z2, Z3) and the cost of the current solution Zcurrent\{i}(Z1, Z2, 
Z3) without customer i are computed. Second, the marginal cost of 
customer i is the gap between Zcurrent(Z1, Z2, Z3) and Zcurrent\{i}(Z1, Z2, Z3); 
Third, customers with the highest marginal cost are selected for removal 
from the current solution.  

4. Shawn removal 

This operator selects a customer i randomly, calculates its relatedness 
with other customers, and removes the most relevant customer in the 
current solution (Ghilas et al., 2016a). The relatedness of two customers 
is calculated with Eq. (34): 

Rij = ψ1 ×
Sij

max
i,j∈C

Sij
+ψ2 ×

⃒
⃒di − dj

⃒
⃒

max
i∈C

di − min
i∈C

di
+ψ3 ×

⃒
⃒ati − atj

⃒
⃒

max
i∈C

ati − min
i∈C

ati
+ψ4 × lij

(34) 

In Eq. (34), ψ1-ψ4 are normalized weights. In the first component, Sij 
represents the distance between customers i and j, max

i,j∈C
Sij denotes the 

Table 5 
Performance comparison of the CPLEX and MOALNS-SA algorithm for small-scale instances.  

Number of customers: 30 

No. Solution by CPLEX  Solution by proposed approach GAP_CL(%) 

UB ($) LB ($) GAP_UL(%) Time (s)  Cost ($) Time (s) 

1 882.1 882.1 0 782.1  882.1 31.9 0 
2 908.5 908.5 0 865.2  911.8 34.3 0.36 
3 927.6 927.6 0 883.9  929.5 27.6 0.20 
4 863.7 863.7 0 749.6  863.7 30.1 0 
5 934.2 934.2 0 916.4  934.2 39.8 0 
6 925.1 925.1 0 897.3  925.1 37.7 0 
7 920.2 920.2 0 961.2  923.3 41.5 0.34 
8 866.8 866.8 0 817.8  866.8 33.2 0 
9 973.3 973.3 0 998.5  973.3 40.8 0 
10 986.7 986.7 0 1016.7  989.9 43.4 0.32 
Average 918.8 918.8 0 936.2  920.0 36.0 0.13  

Number of customers: 60 
No. Solution by CPLEX  Solution by proposed approach GAP_CL(%) 

UB ($) LB ($) GAP_UL(%) Time (s)  Cost ($) Time (s) 
11 1565.1 1565.1 0 4875.2  1565.1 65.7 0 
12 1583.7 1583.7 0 4737.1  1587.3 67.2 0.23 
13 1573.8 1573.8 0 4908.5  1573.8 59.5 0 
14 1621.5 1621.5 0 5123.6  1621.5 63.4 0 
15 – 1759.3 – 6000  1767.4 68.6 0.46 
16 1627.6 1627.6 0 5207.5  1632.9 55.3 0.33 
17 1618.2 1618.2 0 5169.3  1618.2 47.1 0 
18 1695.3 1672.5 1.3 6000  1679.3 51.2 0.41 
19 1761.8 1724.4 2.1 6000  1724.4 68.7 0 
20 – 1756.3 – 6000  1765.2 62.5 0.51 
Average – 1650.2 – 5402.1  1653.5 60.9 0.19  
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maximum distance of customers. In the second component, di is the 
demand of customer i. In the third component, ati is the time when the 
vehicle arrives at customer i. In the fourth component, lij = − 1 if 
customers i and j are served by the same vehicle on the same route, and 1 
otherwise.  

5. Waiting time removal 

This operator removes customers with the highest waiting time in the 
current solution Zcurrent(Z1, Z2, Z3) to avoid wasting the delivery time of 
vehicles.  

6. Worst load route removal 

This operator removes routes with low load from the current solution 
Zcurrent(Z1, Z2, Z3). If the load of a vehicle for a route does not reach 1/3 of 
the maximum load of the vehicle, then customers on the route will be 
removed from the current solution Zcurrent(Z1, Z2, Z3). 

5.4. Insertion operators 

The insertion operators are implemented after the removal opera-
tion. The customers in removal list L are inserted in partiality removal 
solution Zp to obtain a new solution. In this algorithm, the first two 
operators are inspired by Ropke and Pisinger (2006) and the third 
operator is inspired by Ghilas et al. (2016b). The pseudo-code of the 
generic insertion operation is shown in Algorithm 5.  

Table 6 
Settings of instances.  

Instance No. NHA NMLA ND NC VC Instance No. NHA NMLA ND NC VC 

pr01 1 1 1 4 48 200 pr06 16 1 1 4 288 175 
2 2 2 4 48 200 17 2 2 4 288 175 
3 2 3 4 48 200 18 2 3 4 288 185 

pr02 4 1 1 4 96 195 pr07 19 1 1 6 72 200 
5 2 2 4 96 195 20 2 2 6 72 200 
6 2 3 4 96 195 21 2 3 6 72 200 

pr03 7 1 1 4 144 190 pr08 22 1 1 6 144 190 
8 2 2 4 144 190 23 2 2 6 144 190 
9 2 3 4 144 190 24 2 3 6 144 190 

pr04 10 1 1 4 192 185 pr09 25 1 1 6 216 180 
11 2 2 4 192 185 26 2 2 6 216 180 
12 2 3 4 192 185 27 2 3 6 216 180 

pr05 13 1 1 4 240 180 pr10 28 1 1 6 288 170 
14 2 2 4 240 180 29 2 2 6 288 170 
15 2 3 4 240 180 30 2 3 6 288 170  

Table 7 
Parameters used in SNSGA-II and MOACO.  

Algorithms Definitions Values 

SNSGA-II The population size 100 
The maximum iterations 300 
The initial crossover probability 0.9 
The initial mutation probability 0.1 
The forgetting probability 0.7  

MOACO The pheromone evaporation rate 0.01 
The amount of pheromone 3 
The maximum iterations 300  

MOPSO Inertia weight 0.9 
Personal confidence 2 
Social learning confidence 3 
The maximum iterations 300  

Y. Wang et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 214 (2023) 119145

16

1. Greedy insertion 

This operator inserts removal customers with minimum incremental 
cost in the partiality removal solution Zp (Jie et al., 2019). The incre-
mental cost is the difference between the cost of the current solution and 
the cost of the solution when customer i is inserted. The procedure of 
greedy insertion (GI) is shown in Algorithm 6.   

In Algorithm 6, the incremental costs of customers in all potential 
positions are calculated. The smallest one is selected in each iteration 
and the corresponding customer is inserted into the corresponding po-
sition to generate a new solution. This step is repeated until all cus-
tomers in removal list L are inserted into the new solution.  

2. K-regret insertion 

This operator is an improved version of GI (Fontaine, 2021). It inserts 

Table 8 
Results of the three algorithms.  

Inst. MOALNS-SA SNSGA-II MOACO MOPSO 

Z1 Z2(min) Z3 CT(s) Z1 Z2(min) Z3 CT(s) Z1 Z2(min) Z3 CT(s) Z1 Z2(min) Z3 CT 

1 1257 582 2 533 1350 625 2 602 1419 604 3 641 1304 594 2 598 
2 1302 562 3 542 1488 607 3 622 1552 598 4 686 1394 580 3 607 
3 1581 573 4 575 1900 594 5 615 1983 592 5 617 1630 584 4 641 
4 1977 902 4 992 2156 990 4 1205 2325 1058 4 1307 2207 998 4 1145 
5 1932 882 4 1005 2200 950 5 1226 2598 1130 5 1311 2467 941 5 1197 
6 2244 884 5 1018 2654 969 6 1224 2776 1058 6 1327 2640 1072 6 1248 
7 2615 1254 5 1422 3007 1287 6 1799 3794 1687 7 1884 2984 1297 6 1756 
8 2701 1198 6 1465 3076 1258 7 1809 3477 1604 7 1890 3107 1260 7 1846 
9 2997 1154 7 1491 3288 1289 8 1816 3575 1559 8 1908 3347 1209 8 1897 
10 3458 1587 7 1874 3958 1798 8 1985 4184 1987 8 2084 3841 1785 8 1948 
11 3648 1548 8 1898 4156 1763 9 1994 4476 1850 10 2135 4209 1847 9 2005 
12 3669 1490 8 1917 4213 1692 10 2088 4387 1807 10 2200 4313 1803 9 2068 
13 5367 2278 12 2154 5911 2489 13 2572 6073 2648 13 2684 5675 2364 13 2506 
14 5499 2299 12 2184 6134 2507 14 2697 6692 2774 15 2709 6291 2577 14 2689 
15 5572 2107 13 2249 6197 2498 14 2887 6379 2548 15 2781 6470 2647 15 2527 
16 6150 2680 13 2533 6750 2985 14 2962 6819 2994 15 3141 6698 3007 14 2987 
17 6102 2662 13 2542 6788 2977 14 2992 6802 2988 15 3186 6821 2942 15 3069 
18 6311 2663 14 2575 6805 2964 15 2995 6983 2962 16 3217 6847 3016 15 3147 
19 1657 780 3 733 1980 885 4 962 2219 904 4 1001 2046 942 4 947 
20 1592 762 3 742 1908 877 4 992 2152 898 4 1016 2247 937 5 991 
21 1741 736 4 775 2180 864 5 1005 2283 862 5 1017 2305 921 5 1025 
22 2657 1095 5 1433 3450 1585 6 1862 3619 1704 7 1941 3142 1498 6 1807 
23 2762 992 6 1427 3388 1507 6 1892 3592 1698 7 1986 3098 1450 6 1846 
24 2731 980 6 1475 3600 1484 8 1905 3783 1662 8 2017 3246 1403 7 1951 
25 4332 2106 8 1897 5056 2285 10 2162 5097 2304 10 2341 4973 2288 10 2243 
26 4418 1997 9 1895 4988 2207 10 2192 5228 2298 11 2386 5047 2256 11 2231 
27 4375 1963 9 1990 4995 2140 11 2205 5182 2274 11 2317 5136 2207 11 2204 
28 6109 2874 12 2208 6648 2948 14 2662 6861 3089 14 2341 6378 2978 13 2998 
29 6177 2892 12 2196 6870 2936 15 2692 6902 3048 15 2486 6809 3075 14 2954 
30 6289 2807 13 2214 6870 2936 15 2705 7027 2992 16 2517 6984 3004 14 3008 
Average 3641 1576 8 1598 4132 1736 9 1910 4341 1873 10 1969 4122 1783 9 1936  

t-test     − 14.25 − 7.20   − 16.53 − 9.13   − 12.22 − 8.02   
p-value     1.3E-14 6.2E-08   2.7E-16 5E-10   5.9E-13 7.7E-09    
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customers with maximum regret values into partiality removal solution 
Zp. The regret value is the gap between the costs of the best and second- 
best insertion positions. Let fi,n be the insertion cost of the nth potential 
insertion position for customer i. The minimum insertion cost fi,min and 
the second minimum insertion cost fi,second-min are determined. The 
regret value of customer i is Δfi = fi,second-min–fi,min. In each iteration, the 
customer with maximum regret values is selected and inserted in 
partiality removal solution Zp. This step is repeated until all customers in 
removal list L are inserted in partiality removal solution Zp and Znew(Z1, 
Z2, Z3) is obtained.  

3. Second-best insertion 

This operator is a variant of GI. Unlike in GI, the customer with the 
second minimum incremental cost is selected for insertion into the 
partiality removal solution Zp through second-best insertion (SI). In 
addition, SI helps diversify the search. An example is shown in Fig. 4. 

As indicated in Fig. 4, Route 1 (R1) has 11 customers, and Customer 
11(C11) is to be inserted into R1. The corresponding incremental cost of 
the 12 positions in R1 is calculated, and C11 is inserted into the position 
with the second minimum incremental cost. 

5.5. Acceptance criterion 

The simulated annealing criterion is used to decide whether to accept 

or reject a new solution (Li et al., 2020, 2021b; Ropke & Pisinger, 2006). 
Three acceptance criteria can be applied to different cases. If the new 
solution Znew (Z1, Z2…Zm) dominates the current solution and the best 
solution, the new solution will be accepted and updated as the best so-
lution. If the new solution and current solution do not dominate each 
other, the new solution will be accepted as a candidate solution for the 
next generations. If the current solution dominates over the new solu-
tion, the new solution will be accepted based on acceptance probability 
φ as calculated in Eqs. (35)–(37). 

Tn− start = −
0.05
ln0.5

*Zn,0 (35)  

Tn = Tn− start × citeration (36)  

φ =

∑m
n=1e

− (Zn,new − Zn,current )
Tn

m
(37) 

In Eq. (35), Zn,0 and Tn-start are the initial value and initial tempera-
ture of nth objectives, respectively. In Eq. (36), the temperature of nth 
objectives varies with the initial temperature Tn-start, cooling rate c, and 
number of iterations. In Eq. (37), m is the number of objectives, Zn,new 
and Zn,current represent the new and current values of nth objectives. 
Unlike in the single-objective optimization problem, which calculates 
the acceptance probability through one objective, the acceptance 
probability of a multi-objective optimization problem is the average 
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acceptance probability of each objective. 

5.6. Adaptive score adjustment procedure 

The roulette-wheel strategy is used to select removal and insertion 
operators on the basis of the selective probability in each iteration of 
MOALNS-SA (Rifai et al., 2016; Sun et al., 2020). Initially, each operator 
is assigned the same probability, namely, each operator has the same 
opportunity to be selected. With the increase in iterations, the selective 
probability sp of each operator is updated according to the quality of the 
new obtained solution. Solutions with different qualities acquire 
different scores to change the selective probability. Solutions are divided 
into three categories, and the scores for the corresponding categories are 
as follows: 

Category 1: If the m objectives of the new solution (Z1, new, Z2, new, …, 

Zm,new) are superior to the m objectives of the current best solution (Z1, 

best, Z2, best, …, Zm,best), that is, the new solution dominates over the 
current best solution, the score will be increased by μ1. 

Category 2: If the m objectives of the new solution (Z1,new, Z2,new,…, 
Zm,new) do not dominate over the m objectives of the current best solution 
(Z1, best, Z2, best, …, Zm,best) but dominate over those of the current solution 
(Z1,current, Z2,current, …, Zm,current), the score will be increased by μ2. 

Category 3: If the m objectives of the new solution (Z1, new, Z2, new, …, 
Zm,new) are inferior to those of the current solution (Z1, current, Z2, current, 
…, Zm,current), and the new solution is accepted through the acceptance 
criterion, the score will be increased by μ3. 

Given ϒ iterations, the scores of operators (i.e., removal and inser-
tion operators) are utilized to update the selective probability sp of each 
operator in the roulette-wheel strategy. The sp of each operator is 
calculated with Eqs. (38)-(39). 
⎧
⎪⎨

⎪⎩

wi,j+1 = wi,j,Oij = 0

wi,j+1 = (1 − ω)wi,j+1 +
ω*scorei,j

Oi,j
,Oij ∕= 0

(38)  

spi,j+1 =
wi,j+1

∑n
i=1wi,j+1

(39) 

In Eq. (38), the adaptive weight w of each operator is calculated. Oij is 
the number of times that operator i is selected, and Scorei,j is the total 
score of operator i during the jth ϒ iterations. ω controls the inertia in the 
weight-update quotation; when ω is close to 1, the new adaptive weight 
depends greatly on the recent scores; otherwise, it depends on the 
former adaptive weights (Azi et al., 2014). In this study, the value of ω is 
min{(0.002*j-0.001),0.999}. Then, the selective probability of each 
operator is computed by Eq. (39). 

5.7. Time window assignment strategy 

The TWA strategy assigns candidate time windows to customers to 
optimize logistics networks (Wang et al., 2021b). When customers have 
irrational service time windows and candidate time windows are suited 
to the customers, the TWA strategy is applied to assign candidate time 
windows to the customers. The pseudo-code of the TWA strategy is 
shown in Algorithm 7. 
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Fig. 6. Average delivery time of each instance in three situations.  

Table 9 
Distribution of persons injected with COVID-19.  

Area Number of persons infected with 
COVID-19 

Risk levels Area 
number 

Yuzhong 20 High A1 
Dadukou 7 Middle/ 

low 
A2 

Jiangbei 28 High A3 
Jiulongpo 21 High A4 
Nanan 15 Middle/ 

low 
A5 

Beibei 0 Middle 
/low 

A6 

Yubei 17 High A7 
Banan 6 Middle/ 

low 
A8 

Shapingba 9 Middle/ 
low 

A9 

Total 123    

Fig. 7. Risk levels of each area.  
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As indicated in Algorithm 7, customers served beyond time windows 
will adjust time windows to optimize the travel time in the logistics 
network. For each customer served beyond the current time window, if 
the arrival time is within the initial time window of the customer, then 

the time window of the customer will recover to the initial time window. 
If the arrival time at the customer is within the candidate time window, 
then the candidate time windows will be assigned to customers. In this 

Fig. 8. Spatial distribution of customers and DCs.  

Table 10 
Distribution and numbering of DCs and satellites.  

Facility Area Area number 

DC1 Yubei A7 
DC2 Dadukou A2 
DC3 Beibei A9 
DC4 Banan A8 
S1 Yuzhong A1 
S2 Jiangbei A3 
S3 Jiulongpo A4  

Table 11 
Number of customers in different areas.  

Area The number of customers 

Yuzhong 20 
Dadukou 23 
Jiangbei 22 
Jiulongpo 22 
Nanan 25 
Beibei 24 
Yubei 27 
Banan 28 
Shapingba 24 
Total 215  
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study, customers in middle-/low-risk areas accept the TWA strategy. 

6. Empirical analyses 

6.1. Small-scale instances 

In order to illustrate solution quality and the performance of the 
proposed MOALNS-SA algorithm, this study randomly selects 20 small- 
scale instances from datasets R101 and RC101 on the basis of Solomon’s 
benchmark (Solomon, 1987). There are 30 customers in each of the first 
10 instances, and the second 10 instances each include 60 customers. All 
customers in these 20 instances are assumed to be served by two depots, 
and the locations of two depots are randomly generated in where the 
delivery customers are located. The proposed problem can be seen as a 
variant of the MDVRPTW in this study. The CPLEX solver and the pro-
posed MOALNS-SA algorithm are used to solve the single-objective 
optimization model of minimum logistics operating cost. In addition, 
the execution time of the CPLEX solver is set to not exceed 3000 and 
6000 s for the first and second 10 instances, respectively. The proposed 
algorithm is terminated when the best solution cannot be found after 20 
consecutive iterations. Furthermore, the proposed algorithm is per-
formed 20 separate runs for each instance, and the optimal cost and 
corresponding computing time values can be obtained from these 20 
runs. These small-scale instances are implemented using ILOG CPLEX 
Optimization Studio 12.10 and the proposed algorithm. Furthermore, 
the upper bound (UB), lower bound (LB), computing time (Time), 
GAP_UL (i.e., the gap percentage between UB and LB with respect to 
UB), and GAP_CL (i.e., the gap percentage of the minimum objective 
function value from LB) are compared from the CPLEX and MOALNS-SA 
algorithm for all instances in Table 5. 

As shown in Table 5, the proposed MOALNS-SA algorithm can pro-
vide feasible optimal solutions in a reasonable computing time, while 
the CPLEX solver can obtain slightly better solutions than the proposed 
algorithm in a longer computing time. For example, CPLEX can obtain 
the optimal solution in about 782 s and 4875 s for instances 1 and 11, 
respectively, while the proposed algorithm only takes about 32 s and 66 
s. In addition, the GAP_UL value calculated by CPLEX is also further 
obtained through the time setting in advance. For example, the GAP_UL 
value is 53 % in 300 s, 33 % in 500 s, and 12 % in 700 s for instance 1, 
while the GAP_UL value is 61 % in 2000 s, 43 % in 3000 s, and 14 % in 
4000 s for instance 11. Meanwhile, for each of the first 10 instances, 
CPLEX can attain the optimal solutions within 1000 s, whereas the 
proposed MOALNS-SA algorithm can obtain the feasible solutions 
within a gap of 0.36 % and computing time of 44 s. Furthermore, for the 
second 10 instances, the proposed MOALNS-SA algorithm can quickly 
attain the optimal or feasible optimal solutions, whereas CPLEX can 
obtain the optimal solutions in more than 4700 s for instances 11, 12, 13, 
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Fig. 9. Comparison of three objectives in three scenarios.  

Table 12 
Relevant parameter values used in the model and algorithm.  

Notation Definition Value 

Qs Maximum capacity of a semitrailer truck 600 
Qv Maximum capacity of a vehicle 300 
Q1 Maximum capacity of DC1 1800 
Q2 Maximum capacity of DC2 1000 
Q3 Maximum capacity of DC3 1200 
Q4 Maximum capacity of DC4 1500 
QS1 Maximum capacity of S1 500 
QS2 Maximum capacity of S2 800 
QS3 Maximum capacity of S3 600 
Us Usage cost of a semitrailer truck (dollar/km) 0.75 
Uv Usage cost of a vehicle (dollar/km) 0.5 
MCs Maintenance cost for semitrailer truck s in one planning 

period 
300 

MCv Maintenance cost for vehicle v in one planning period 200 
α Penalty cost for early or late arrival (dollar/hour) 30 
β Assignment cost (dollar/hour) 15 
v Speed of the semitrailer truck and vehicle(km/hour) 30 
MaxT Maximal delivery time of the vehicle (hour) 12 
PT Prepare time of the vehicle for next route(hour) 0.2 
IT Each cross-regional quarantine inspection time (hour) 0.2 
= The working days in one planning period 5 
genmax Maximum number of iterations 1500 
runmax Maximum number of optimization runs 300 
Nremoved The number of customers need to removed 10 
ψ1 First Shaw parameters 0.5 
ψ2 Second Shaw parameters 0.2 
ψ3 Third Shaw parameters 0.1 
ψ4 Fourth Shaw parameters 0.2 
μ1 New best solution score 5 
μ2 Dominant current solution score 3 
μ3 Deterioration solution score 1 
c Cooling rate 0.99975 
ctw1 First candidate time window [120,200] 
ctw2 Second candidate time window [240,320] 
ctw3 Third candidate time window [480,560]  

Table 13 
Detailed results of three cases.  

Scenario DT 
(min) 

NV NS OC1 
($) 

OC2 
($) 

TC ($) 

Non-emergency initial 
logistics network 

16,870 20 – – 9755 9755 

Initial emergency logistics 
network 

18,430 20 – – 10,508 10,508 

Optimized emergency 
logistics network 

10,345 10 3 1039 5426 6465  
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14, 16, and 17. Moreover, CPLEX can obtain a lower bound but no 
feasible solutions for instances 15 and 20, and only obtain feasible so-
lutions with gaps of about 2 % for instances 18 and 19. These results 
show that the proposed MOALNS-SA algorithm achieves stability and 
robustness in addressing the MDVRPTW. Therefore, the proposed 
MOALNS-SA algorithm outperforms the CPLEX solver by obtaining good 
feasible solutions for small-scale instances using short computing times. 

6.2. Algorithm comparison and analysis 

To further test the performance of MOALNS-SA, the self-learning 
non-dominated genetic algorithm-II (SNSGA-II), multi-objective ant 
colony optimization algorithm (MOACO), and multi-objective particle 
swarm optimization algorithm (MOPSO) are compared with the 

proposed algorithm (Goh et al., 2010; Bezerra et al., 2013; Asghari and 
Al-e-hashem, 2020). Ten instances from the work of Vidal et al. (2012) 
are extended to 30 instances to verify the capability of the proposed 
algorithm. The settings of the instances are shown in Table 6. The 
number of high-risk areas (NHA), the number of middle-/low-risk areas 
(NMLA), the number of depots (ND), the number of customers (NC), and 
vehicle capacity (VC) are also given in Table 6. 

The related parameters of SNSGA-II, MOACO, and MOPSO are shown 
in Table 7. Each instance is run 10 times by each algorithm. The pa-
rameters of MOALNS-SA and the associated costs are similar to those the 
same as in Section 6.4. Table 8 compares the three algorithms’ results, 
including total operating cost Z1, total delivery time Z2, number of ve-
hicles Z3, and computation time (CT). 

Table 8 illustrates the results of the proposed algorithm when 
compared with those of SNSGA-II, MOACO, and MOPSO. According to 
the t-test value and p-value, significant differences exist in the results of 
the four algorithms. In all instances, MOALNS-SA achieves lower oper-
ating cost, shorter delivery time, smaller number of vehicles, and less 
computation time than the three other algorithms, demonstrating the 
good performance of the proposed MOALNS-SA. The gaps in total 
operating cost Z1 in the three types are shown in Fig. 5. In Fig. 5, Δa 
indicates the gap between the average Z1 value of the corresponding 
algorithm and Z1best, Δb indicates the gap between the best Z1 value of 
the corresponding algorithm and Z1best, and Δw indicates the gap be-
tween the worst Z1 value of the corresponding algorithm and Z1best. 

Fig. 5 shows that the difference among the three gaps of MOALNS-SA 
is small, that is, the stability of finding the Pareto optimal solution for 
addressing 2E-EVRPTWA is high. In most instances, the results of 
MOACO, MOPSO, and SNSGA-II are far from Z1best in three aspects. The 
average delivery time of each instance in three situations is shown in 
Fig. 6. 

Fig. 6 indicates that MOALNS-SA has the smallest average delivery 
time in each instance. The maximum average delivery time gap is 665 
min in pr08. In pr08, the average delivery time of MOACO and 
MOALNS-SA is 1688 and 1023 min, respectively. Hence, the proposed 
algorithm has clear advantages in solving the medium- or large-scale 
MDVRP. 

6.3. Data sources 

In this section, a real-world case in Chongqing City, China, is studied 
to verify the validity of the 2E-EVRPTWA model and the efficiency of 
MOALNS-SA. The distribution of persons infected with COVID-19 and 
the risk levels of central urban areas in Chongqing in February 2020 are 
shown in Table 9 and Fig. 7, respectively. Central urban areas in 
Chongqing are divided into nine areas. A total of 123 confirmed COVID- 
19 cases are distributed in different areas. When the number of persons 
infected with COVID-19 exceeds 15 in an area, the area is judged to be a 
high-risk area. Areas where the number of persons infected with COVID- 
19 is less than or equal to 15 are judged as a middle-/low-risk areas. In 
Fig. 7, four areas in red are high-risk areas and five areas in pale yellow 
are middle-/low-risk areas. 

The logistics network consists of four DCs (DC1, DC2, DC3, DC4) and 
215 delivery customers (A1-1, A1-2, A1-3…A9-24). Three satellites (S1, 
S2, S3) are set in three high-risk areas. The number of customers consists 
of the area number and customer number. For example, A1-1 represents 
the first customer in A1. The distribution and number of DCs, satellites, 
and customers in each area are shown in Fig. 8, Table 10, and Table 11, 
respectively. In addition, the geographical location of a satellite is set to 
be the same as that of the first customer in the high-risk area without DC. 

6.4. Relevant parameter settings 

The relevant parameters adopted in the computational experiment 
are from Li’s and Wang’s studies (Li, Wang, Chen, & Bai, 2020; Wang 
et al., 2021d; Y. Wang et al., 2021c) and are shown in Tables 12. The 

Table 14 
Optimized delivery routes in nine areas.  

Area Vehicle Routes 

A1 V1 S1 → A1-10 → A1-2 → A1-12 → A1-7 → A1-9 → A1-5 → 
A1-8 → A1-17 → A1-6 → A1-1 → S1 
S1 → A1-20 → A1-4 → A1-3 → A1-13 → A1-15 → A1-14 → 
A1-16 → A1-11 → A1-18 → A1-19 → S1 

A3 V2 S2 → A3-7 → A3-5 → A3-18 → A3-6 → A3-8 → A3-15 → 
A3-11 → A3-17 → A3-2 → A3-21 → A3-9 → S2 
S2 → A3-13 → A3-16 → A3-14 → A3-4 → A3-12 → A3-19 
→ A3-10 → A3-20 → A3-22 → A3-3 → A3-1 → S2 

A4 V3 S3 → A4-1 → A4-10 → A4-7 → A4-19 → A4-17 → A4-15 → 
A4-5 → A4-21 → A4-4 → A4-3 → A4-22 → A4-8 → S3 
S3 → A4-13 → A4-6 → A4-18 → A4-20 → A4-12 → A4-9 → 
A4-16 → A4-2 → A4-14 → A4-11 → S3 

A7 V4 DC1 → A7-11 → A7-15 → A7-8 → A7-6 → A7-1 → DC1 
DC1 → A7-19 → A7-27 → A7-12 → A7-16 → A7-10 → A7- 
25 → A7-24 → A7-13 → A7-17 → A7-3 → DC1 
DC1 → A7-5 → A7-7 → A7-20 → A7-18 → A7-14 → A7-23 
→ A7-4 → A7-21 → A7-22 → A7-26 → A7-9 → A7-2 → DC1 

A6&A9 V5 DC3 → A6-5 → A6-4 → A6-15 → A6-3 → A6-14 → A6-8 → 
A6-11 → A9-7 → A9-24 → A9-9 → A9-18*→DC3 
DC3 → A6-2*→A6-13 → A6-1 → A6-21 → A6-9 → A6-10 
→ A6-12 → A6-19 → A6-20*→A6-6*→A6-7 → A6-22 → 
A6-18 → DC3 

V6 DC3 → A9-6 → A9-13 → A9-14 → A9-8 → A9-10 → A9-1 
→ A9-21 → A6-17 → A6-23 → A6-16*→A6-24 → DC3 
DC3 → A9-17 → A9-5 → A9-2 → A9-12 → A9-20 → A9- 
23*→A9-15*→A9-16*→A9-4 → A9-22 → A9-11 → A9-3 
→ A9-19 
→DC3 

A2&A5&A8 V7 DC2 → A2-7 → A2-11 → A2-17 → A2-23 → A5-8 → A5-6 
→ A5-4*→A5-15 → A8-11 → A8-15 → A8-9 → A8-25* 
→DC2 
DC2 → A2-15 → A2-9 → A2-5 → A8-7 → A8-5 → A8-27 → 
A5-13 → A5-18 → A5-2*→A5-10*→A5-14 → A5-22 → 
A5-12 → A2-19 → A2-13 → DC2 

V8 DC4 → A8-3 → A5-21 → A2-3 → A2-1 → A2-21 → A8- 
17*→A8-13 → A8-23 → A8-19* →A8-21 → A8-1 → DC4 

V9 DC4 → A8-20 → A5-5 → A5-7 → A2-12 → A2-16*→A2- 
18*→A2-6 → A2-20 → A2-14 → A5-16*→A5-3 → A8- 
10*→DC4 
DC4 → A8-4 → A8-28 → A8-18 → A8-8 → A8-6 → A8-16 
→ A8-2 → A5-19*→A5-17* →A5-25 → A2-2 → A2-4 → 
A2-22→ 
A2-8 → A2-10 → DC4 

V10 DC4 → A5-24 → A5-23 → A5-11 → A5-1 → A5-9 → A5-20 
→ A8-26 → A8-14*→A8-22 → A8-12 → A8-24 → DC4 

A*: Customers with time window assignment. 

Table 15 
Number of customers with time window assignment.  

Candidate time windows The number of customers with time window assignment 

[120,200] 3 
[240,320] 7 
[480,560] 11  
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time windows of DCs and satellites for customers are distributed within 
[0,720]. The candidate time windows are selected based on the real 
situation. 

6.5. Effectiveness of the formulation and algorithm 

The real-world case with 215 customers is solved by MOALNS-SA. 
The results of three scenarios in one working period, namely, the non- 
emergency initial logistics network, initial emergency logistics 
network, and optimized emergency logistics network, are shown in 
Table 13 and Fig. 9. The non-emergency initial logistics network and 

initial emergency logistics network are non-optimal logistics networks, 
and the initial emergency logistics network is a network that adds travel 
restrictions on the basis of the non-emergency initial logistics network. 
In other words, vehicle sharing does not exist in the non-emergency 
initial logistics network and initial emergency logistics network. Six 
results are compared: total delivery time (DT), number of vehicles (NV), 
number of semitrailer trucks (NS), operating cost in the first echelon 
(OC1), operating cost in the second echelon (OC2), and total operating 
cost (TC). 

Table 13 indicates that the total operating cost of the optimized 
emergency logistics network is the smallest among the compared values. 
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When the travel restrictions are applied in the areas, the total delivery 
time of vehicles is increased from 16,870 min in the non-emergency 
initial logistics network to 18,430 min in the initial emergency 

logistics network. In the optimized emergency logistics network, a two- 
echelon collaborative logistics network is established, and TWA and vS 
strategies are applied. Customers are divided into different areas with 

Table 16 
Labels associated with customers in A1 during the split procedure.  

Number Customer Vehicle Time Z1($) Z2(min) Z3 Load Prepoint 

1 A1-10 (11.82,0,0,0,0)  202.955  11.82 1 40 S1 
2 A1-2 (12.5,0,0,0,0)  203.125  12.5 1 50 10 
3 A1-12 (16.64,0,0,0,0)  204.16  16.64 1 70 2 
4 A1-7 (18.6,0,0,0,0)  204.65  18.6 1 110 12 
5 A1-9 (19.93,0,0,0,0)  204.9825  19.93 1 120 7 
6 A1-5 (24.02,0,0,0,0)  206.005  24.02 1 160 9 
7 A1-8 (26.24,0,0,0,0)  206.56  26.24 1 190 5 
8 A1-17 (28.58,0,0,0,0)  207.145  28.58 1 220 8 
9 A1-6 (29.36,0,0,0,0)  207.34  29.36 1 250 17 
10 A1-1 (41.36,0,0,0,0)  207.34  29.36 1 280 6 
11 A1-20 (47.12,0,0,0,0)  208.78  35.12 1 20 S1 
12 A1-4 (52.49,0,0,0,0)  210.1225  40.49 1 40 20 
13 A1-3 (55.36,0,0,0,0)  210.84  43.36 1 70 4 
14 A1-13 (56.54,0,0,0,0)  211.135  44.54 1 100 3 
15 A1-15 (57.51,0,0,0,0)  211.3775  45.51 1 130 13 
16 A1-14 (62.58,0,0,0,0)  212.645  50.58 1 160 15 
17 A1-16 (63.76,0,0,0,0)  212.94  51.76 1 190 14 
18 A1-11 (64.5,0,0,0,0)  213.125  52.5 1 220 16 
19 A1-18 (66.33,0,0,0,0)  213.5825  54.33 1 230 11 
20 A1-19 (67.48,0,0,0,0)  213.87  55.48 1 270 18  

Fig. 11. Initial emergency delivery routes for A1.  

Fig. 12. Optimized emergency delivery routes for A1.  
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different risk levels and served by the corresponding DCs or satellites to 
minimize the impact of travel restrictions on delivery time. As shown in 
Fig. 9, the values of the three objective functions are obviously reduced 
by the proposed method. The number of vehicles is reduced from 20 to 
10 through the vS strategy. Therefore, the proposed method can improve 
the emergency response speed, the utilization of vehicles, and the 
operational efficiency of the emergency logistics network. The 

optimized delivery routes for this case and the number of customers with 
TWA are shown in Tables 14 and 15, respectively. The optimized de-
livery routes in A2, A5, and A8 are shown in Fig. 10. 

As indicated in Table 14, ten vehicles perform 19 delivery routes in 
the real-world case. Each high-risk area is closed and independent. Four 
vehicles performing nine trips depart from DC1, S1, S2, and S3 to serve 
customers in high-risk areas. Customers in the middle-/low-risk areas 
are assigned and served by the nearest DC. Vehicles 5 and 6 start from 
DC3 to serve customers in A6 and A9. Vehicle 7 starts from DC2, and 
Vehicles 8, 9, and 10 begin from DC4 to serve customers in A2, A5, and 
A8. As presented in Table 15, the TWA strategy assigns candidate time 
windows to 21 customers in middle-/low-risk areas. More than 50 % of 
the customers accept the candidate time window [480,560]. Three 
customers accept assigned time window [120,200], seven customers 
accept assigned time window [240,320], eleven customers accept 
assigned time window [480,560]. Fig. 10 shows six delivery routes in 
A2, A5, and A8. In addition, Vehicles 7 and 9 are shared in A2, A5, and 
A8 and perform four trips. The trips for A1 are explained in detail below 
to elaborate how SA assigns trips to vehicles to achieve the vS strategy. 

The best trips for A1 are split by SA in one working day, and the 
procedure is shown in Table 16. Each line expresses the label of the 
corresponding customer. Each element in “Vehicle Time” represents the 
time to get ready to start the next trip for the corresponding vehicle. 

A1 A2 A3

A4 A5 A6

A7 A8 A9

Case 1 Case 2 Case 3
Middle/low-risk area High-risk area 

A2, A5, A6,
 A8, A9

A1

A4

A3

A7

A2, A5, A6,
A8, A9

A1, A3, 
A4, A7

Middle/low-risk area High-risk area 

The area applied TWA and VS strategies The area applied VS strategy  

Case 4
Middle/low-risk area High-risk area 

A2, A5, A6,
A8, A9

A1, A3, 
A4, A7

Fig. 13. TWA and vS strategies in four cases.  

Table 17 
Results of five scenarios.  

Case TC ($) DT (min) NV NS AC ($) DTV (min) DTS (min) AT (min) 

Initial 10,508 18,430 20 – – 18,430 – – 
Case 1 10,058 13,150 12 7 375 10,840 2310 1500 
Case 2 6465 10,345 10 3 325 9575 770 1300 
Case 3 7714 13,535 14 – 470 13,535 – 1880 
Case 4 7619 12,865 14 – 605 12,865 – 2420  
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Fig. 14. Comparison of the total delivery time and assigned time among 
five cases. 

Table 18 
Comparison of the results of Initial case and Case 2.  

Case Facility TC 
($) 

DT (min) DTS 
(min) 

DTV 
(min) 

PC 
($) 

AT 
(min) 

AC 
($) 

NV NS NSC NTA 

Initial DC1 2196 3605 – 3605 560 – – 4(0*) – 49 8 
DC2 3768 7055 – 7055 695 – – 7(0*) – 68 12 
DC3 2365 3750 – 3750 637 – – 5(0*) – 48 4 
DC4 2179 4020 – 4020 505 – – 4(0*) – 50 2 
Total 10,508 18,430 – 18,430 2395 – – 20(0*) – 215 26  

Case 2 DC1 1012 1565 290 1275 93 – – 1(3*) 1 27 1 
DC2 1404 1560 480 1080 85 250 63 1(2*) 2 27 2 
DC3 1305 2355 – 2355 197 600 150 2(4*) – 48 – 
DC4 1679 3065 – 3065 232 450 112 3(4*) – 49 – 
S1 269 275 – 275 – – – 1(2*) – 20 – 
S2 390 735 – 735 13 – – 1(2*) – 22 – 
S3 406 790 – 790 17 – – 1(2*) – 22 – 
Total 6465 10,345 770 9575 637 1300 325 10(19*) 3 215 3 

*: Number of delivery routes of vehicles. 
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“Load” represents the loading of the vehicle when a customer is added to 
this trip. “Prepoint” indicates the predecessor node that helps output 
vehicle routes. 

Table 16 presents 20 optimal labels selected and retained by the non- 
dominated sorting strategy. In the last label, only one member in the 
vector of Vehicle Time is greater than zero (67.48 min), that is, one 
vehicle performs A1′s delivery service in 67.48 min. Z2 consists of the 
travel time and preparation time of the vehicle for the next route. The 
values $213.87 and 55.48 min in the last label refer to the total oper-
ating cost and total delivery time of the vehicle, respectively. The Pre-
point column in each label indicates the last service point of the vehicle. 
For example, the Prepoint of the label of customer A1-20 is S1, which 
means the vehicle finishes the last trip and starts a new trip from S1 to 
serve customer A1-20. The Load label of customers A1-1 and A1-19 are 
280 and 270, respectively, indicating the total load capacity of two trips. 
A1′s initial and optimized delivery routes in the emergency logistics 
network are shown in Figs. 11 and 12, respectively. 

Fig. 11 indicates that customers in A1 are served by three vehicles 
departing from different DCs. Each vehicle enters the high-risk area A1 
and crosses the travel restrictions twice, namely, they are required to 
undergo the cross-regional quarantine inspection twice. Each cross- 
regional quarantine inspection last for 12 min, and the total time of 
the cross-regional quarantine inspection in A1 is 72 min. Hence, effec-
tive measures are needed to optimize the delivery time of the vehicle and 
reduce the impact of cross-regional quarantine inspection on delivery 
time. A1′s optimized delivery routes in the emergency logistics network 
are shown in Fig. 12. 

As indicated in Fig. 12, a two-echelon distribution system is con-
structed to minimize the impact of travel restrictions. Satellite 1 (S1) is 
established based on the geographical location of the first customer A1- 
1. The demands of customers in A1 are transferred to S1 by centralized 
transportation. When TWA and vS strategies are adopted in the second 
echelon, 20 customers in A1 are served by Vehicle 1 (V1), which departs 
from and returns to S1. V1 performs the first trip (S1 → A1-10 → A1-2 → 

(b)  The optimized vehicle routes in DC1 and DC3
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Fig. 15. Initial and optimized vehicle routes in DC1 and DC3 in the emergency mode.  

Fig. 16. Seven scenarios in the emergency mode.  

Table 19 
Results of the seven scenarios.  

Scenario TC ($) DT (min) NV NS DTV (min) DTS (min) AC ($) 

Initial 10,508 18,430 20 – 18,430 – – 
Scenario 1 8525 15,340 16 – 15,430 – – 
Scenario 2 9793 15,940 19 – 15,940 – 380 
Scenario 3 9726 14,515 19 3 13,745 770 – 
Scenario 4 7737 12,745 13 3 11,975 770 – 
Scenario 5 9644 13,735 18 3 12,965 770 435 
Scenario 6 6465 10,345 10 3 9574 770 325  
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A1-12 → A1-7 → A1-9 → A1-5 → A1-8 → A1-17 → A1-6 → A1-1 → S1) 
and second trip (S1 → A1-20 → A1-4 → A1-3 → A1-13 → A1-15 → A1-14 
→ A1-16 → A1-11 → A1-18 → A1-19 → S1). V1 does not undergo cross- 
regional quarantine inspection because V1 does not leave A1. 

6.6. Analysis and discussion 

6.6.1. Comparison of the results of TWA and vS strategies adopted in 
different areas 

According to the optimized results in Section 6.5, TWA and vS 
strategies can considerably improve the operational efficiency and 
reduce the number of used vehicles in the second echelon. The results 
obtained by TWA and vS strategies vary with the scope where time 
windows are assigned and vehicles are shared (Wang et al., 2021a). To 
obtain the optimal application of TWA and vS in real-world cases, TWA 
and vS strategies are applied in different areas, and four cases are dis-
cussed in the emergency logistics network, as shown in Fig. 13. 

Case 1: In the nine areas, five satellites are established to serve 
customers in A1, A3, A4, A5, and A9, and the other areas are served by 
the DCs within them. Vehicles that start from each satellite or DC are 
shared in each area independently, and the TWA strategy is applied in 
the middle-/low-risk areas. 

Case 2: In the four high-risk areas, three satellites are established to 
serve customers in A1, A3, and A4. Customers in A7 are served by DC1, 
and vehicles are shared in each high-risk area independently. In the five 
middle-/low-risk areas, the TWA strategy is applied and vehicles are 
shared in each DC, namely, each DC can serve customers in several 
areas; then, vehicles can be shared by several areas. 

Case 3: In the four high-risk areas, vehicles are shared in each DC. In 
the five middle-/low-risk areas, the TWA strategy is applied, and vehi-
cles are shared in each DC. 

Case 4: On the basis of Case 3, the TWA strategy is applied in the 
high-risk areas. 

The results of five scenarios in terms of the total operating cost (TC), 
total delivery time (DT), number of vehicles (NV), number of semitrailer 
trucks (NS), time window assignment cost (AC), delivery time of vehi-
cles (DTV), delivery time of semitrailer trucks (DTS), and assigned time 
(AT) are shown in Table 17 and Fig. 14. 

As indicated in Table 17, TWA and vS strategies decrease the cost in 
the emergency logistics network. The number of used vehicles is reduced 
greatly through the vS strategy, thus decreasing the maintenance cost of 
vehicles. The lowest operating cost of $6465 is obtained in Case 2, 
indicating a reduction of $4043 compared with Initial case. In Fig. 14, 
the total delivery time consisting of the delivery time of vehicles and the 
delivery time of semitrailer trucks is plotted on the first bar chart. The 
difference between Initial case and Case 2 in terms of the total delivery 

time of vehicles is large. In Case 2, satellites are established and vehicles 
are shared in each area. Decreased cross-regional transportation results 
in a considerable reduction in cross-regional quarantine inspection time, 
thus reducing the total delivery time of vehicles. However, the central-
ized transportation among satellites increases, which means the delivery 
time of semitrailer trucks increases. In Case 3 and Case 4, vehicles are 
shared in high-risk and middle-/low-risk areas, respectively. The lack of 
satellites in Case 3 and Case 4 results in an increase in cross-regional 
quarantine inspection time, thus increasing the total delivery time. 
Hence, the establishment of satellites in high-risk areas is conducive to 
the reduction of the total delivery time. 

Given the infectivity of COVID-19, vehicles that are not shared be-
tween high-risk areas can effectively prevent cross-infection. Case 4 
consumes less total delivery time than Case 3, but the difference is not 
significant, which means the benefit of applying the TWA strategy to 
customers in the high-risk areas is not obvious. From a humanitarian 
point of view, vehicles serving customers in high-risk areas within the 
expected time windows contribute to the satisfaction of customers and 
sustainable development of the enterprise (Balcik et al., 2008). 
Compared with Case 3 and Case 4, Case 2 has a shorter delivery time of 
semitrailer trucks and an appropriate delivery time of vehicles in the 
emergency logistics network. These results show that applying TWA and 
vS strategies in Case 2 benefits the cost-saving and response speed of the 
emergency logistics network. The results of Initial case and Case 2 on 
the total operating cost (TC), total delivery time (DT), delivery time of 
vehicles (DTV), delivery time of semitrailer trucks (DTS), penalty cost 
(PC), time window assignment cost (AC), assigned time (AT), number of 
vehicles (NV), number of semitrailer trucks (NS), number of times across 
multiple areas (NTA), and number of served customers (NSC) are shown 
in Table 18. The initial and optimized vehicle routes of DC1 and DC3 are 
shown in Fig. 15. 

As indicated in Table 18, the total operating cost decreases from 
$10,508 in Initial case to $6465 in Case 2. In Case 2, satellites are 
established in the high-risk areas, and the number of times that multiple 
areas are crossed is reduced through centralized transportation, thereby 
reducing delivery time of vehicles. In addition, the number of used ve-
hicles decreases from 20 to 10 when the vS strategy is adopted, and the 
utilization of vehicles is greatly increased. Through the TWA strategy, 
the waiting and delayed times of vehicles are decreased, resulting in a 
low PC. Fig. 15(a) shows the initial vehicle routes performed by night 
vehicles. DC1 and DC3 serve customers in two middle-/low-risk areas 
and two high-risk areas. In the emergency situation, four vehicles cross 
the high-risk areas 12 times, and the delivery time of vehicles increases 
by 720 min in one working period. Fig. 15(b) presents the optimized 
delivery routes performed by four vehicles. Satellite 2 (S2) is established 
in A3, and the demands of the customers in A3 are transported from DC1 
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Fig. 17. Result comparison of the seven scenarios.  
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to S2 to reduce the delivery time of vehicles. 

6.6.2. Result comparison in different scenarios 
TWA and vS strategies are implemented in different scenarios with 

and without the two-echelon distribution system to demonstrate the 
efficiency of the proposed methods. Seven scenarios with travel re-
strictions in the emergency mode are shown in Fig. 16. 

In Fig. 16, seven scenarios are presented as follows. (1) In the 
emergency initial logistics network, each DC operates independently 
(Initial scenario). (2) On the basis of the Initial case, the vS strategy is 
adopted for each DC (Scenario 1). (3) On the basis of the Initial, the 
TWA strategy is applied to customers in middle-/low-risk areas (Sce-
nario 2). (4) On the basis of the Initial case, a two-echelon distribution 
network is constructed, and satellites are established in high-risk areas 
without DCs (Scenario 3). (5) Based on Scenario 3, the vS strategy is 
adopted in the second echelon to share vehicles in different DCs and 
satellites (Scenario 4). (6) On the basis of Scenario 3, the TWA strategy 
is applied to customers in middle-/low-risk areas (Scenario 5). (7) On 
the basis of Scenario 3, the vS strategy is adopted in the second echelon, 
and the TWA strategy is applied to customers in middle-/low-risk areas 
(Scenario 6). The results of the seven scenarios in terms of the total 
operating cost (TC), total delivery time (DT), number of vehicles (NV), 
number of semitrailer trucks (NS), delivery time of vehicles (DTV), de-
livery time of semitrailer trucks (DTS), and time window assignment 
cost (AC) are shown in Table 19 and Fig. 17. 

In Table 19, the total operating cost, total delivery time, and number 
of vehicles can be decreased by TWA and vS strategies in the two- 
echelon emergency logistics network. When the vS strategy is adop-
ted, the number of vehicles decreases from 20 in the Initial scenario to 
16 in Scenario 1. The time windows of several customers are adjusted 
by the TWA strategy, which results in changes in the logistics network, 
thus improving the operational efficiency and reducing the operating 
cost in Scenario 2. Although three semitrailer trucks are used in the two- 
echelon distribution system, the total delivery time is greatly reduced in 
Scenario 3. Fig. 17 shows that adopting the vS or TWA strategies on the 
basis of the two-echelon distribution system can considerably reduce the 
total operating cost, total delivery time, and number of vehicles in 
Scenarios 4 and 5. The minimum values of the three objectives (i.e., 
$6465, 10,345 min, and 10) are obtained when the proposed methods 
are adopted in Scenario 6. Therefore, the speed of the emergency 
response, the utilization of vehicles, and operational efficiency exhibit a 
remarkable improvement through the two-echelon distribution system 
with TWA and vS strategies. 

6.7. Management insights 

The outbreak of COVID-19 was unexpected, and governments and 
enterprises in the world were unprepared for it. Although containment 
and closure policies are effective in some regions, the transportation of 
daily life supplies for residents in closed areas has become a problem. 
Therefore, this study recommends several strategies that should be 
helpful in designing an emergency logistics network to ensure the 
transportation of essential supplies. The insights derived from the stra-
tegies are as follows:  

(1) The two-echelon collaborative distribution system that considers 
the risk of infection in each area can efficiently improve the speed 
of emergency response and ensure uninterrupted operation in 
emergency mode. In the presence of containment and closure 
policies, vehicles that perform delivery services among different 
areas are subject to travel restrictions, and they are required to 
undergo cross-regional quarantine inspections. On the basis of 
collaboration between DCs and satellites, centralized trans-
portation between DCs and satellites can reduce the impact of 
travel restrictions on the total delivery time and the risk of cross- 
regional COVID-19 transmission. The vehicles of each area 

deliver goods only within the area to avoid long-distance trans-
portation and ensure timely delivery. Thus, the two-echelon 
distribution system helps cope with emergencies and establish 
an efficient collaborative emergency logistics network.  

(2) TWA and vS strategies can reallocate transportation resources, 
and enhance the utilization of vehicles and the operational effi-
ciency of emergency logistics networks. Compared with normal 
logistics networks, emergency logistics networks have fewer 
available vehicles (e.g., the number of available drivers decreased 
during the outbreak of COVID-19). To avoid cross-regional 
transmission and increase the utilization of vehicles, vehicles 
are only shared in each DC or satellite in the two-echelon distri-
bution system. Unreasonable time windows from customers may 
result in low delivery efficiency and high penalty costs. The TWA 
strategy assigns appropriate time windows to customers with 
unreasonable time windows in middle-/low-risk areas in the two- 
echelon distribution system. TWA and vS strategies contribute to 
an efficient emergency logistics network and promote the sus-
tainable development of emergency logistics networks.  

(3) Emerging technologies facilitate the development of emergency 
logistics networks. When natural disasters or accidents occur, 
emerging technologies, such as big data, cloud computing, and 
the Internet of Things, can assist the government and logistics 
enterprises in building an emergency logistics network with fast 
response. In addition, innovative tools can be applied to reduce 
the risk of transmission by contact and enhance the efficiency of 
emergency logistics networks. For example, automatic inspection 
and quarantine equipment that can perform quarantine opera-
tions for vehicles traveling between different risk areas accelerate 
the process in two-echelon emergency logistics networks. 

7. Conclusions 

This study aims to design an efficient collaborative emergency lo-
gistics network during the outbreak of COVID-19. To tackle this prob-
lem, a tri-objective optimization model is formulated to minimize the 
total operating cost, total delivery time, and number of vehicles under 
different operating modes. On the basis of the number of confirmed 
COVID-19 cases, the service areas are divided into high-risk and mid-
dle-/low-risk areas, and a two-echelon emergency logistics network is 
established to reduce the cross-regional transportation. The MOALNS- 
SA algorithm is used to assign trips to vehicles and candidate time 
windows to customers to find the Pareto optimal solution. The perfor-
mance of MOALNS-SA is compared with the CPLEX solver through 20 
small-scale instances and those of the SNSGA-II, MOACO, and MOPSO 
through 30 benchmarks, and the results indicate that MOALNS-SA has 
advantages in solving 2E-EVRPTWA. 

A real-world case in Chongqing, China, is solved by MOALNS-SA, 
which results in a total operating cost of $6465, total delivery time of 
10,345 min, and 10 vehicles in a working period. In addition, four 
scenarios are proposed to optimize the application scheme of TWA and 
vS strategies. Other scenarios where TWA and vS strategies are operated 
in each high-risk area and between middle-/low-risk areas are consid-
ered. The results of the four scenarios indicate that TWA and vS stra-
tegies implemented differently in Case 2 can reduce the risk of 
transmission and maximize the utilization of vehicles. The importance of 
the two-echelon distribution system and TWA and vS strategies in 
addressing 2E-EVRPTWA is discussed in the Initial scenario and the 
following six scenarios. The result comparison among seven scenarios 
shows that the delivery time and number of vehicles are reduced, and 
the operational efficiency is improved when TWA and vS strategies are 
adopted in the two-echelon emergency logistics network. 

Analysis and discussion in Section 6.6 show that the proposed 
method is very effective in optimizing the emergency logistics networks. 
In a critical case like the COVID-19 lock-down, traditional distribution 
logistics network design methods cannot construct a less contagious and 
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flexible logistics network (Mondal and Roy, 2021; Govindan et al., 
2021). However, the proposed methods can establish a two-echelon 
emergency logistics service network quickly. Satellites are constructed 
in high-risk areas to reduce the impact of travel restrictions and main-
tain the uninterrupted operation of the logistics network. With limited 
transportation resources in the emergency mode, the implementation of 
vS strategy in different areas can improve the utilization of vehicles and 
reduce the risk of cross-regional COVID-19 transmission. Furthermore, 
the TWA strategy is used to assign appropriate time windows to cus-
tomers in the middle-/low-risk areas, which can effectively improve the 
response speed and operational efficiency of the two-echelon emergency 
logistics networks. Therefore, this study contributes to developing 
intelligent and efficient logistics systems and promoting the sustainable 
development of emergency logistics networks. 

Although this study has achieved the emergency logistics network 
optimization with TWA, the following extensions based on this study 
should be considered in the future. (1) Exact algorithms and meta-
heuristics for 2E-EVRPTWA can be pursued to improve the solution 
quality. (2) The delivery priority of customers can be adjusted based on 
the urgency of customer demands in emergency logistics networks. (3) 
The characteristics of other emergency scenarios, such as flood and 
earthquake disasters, can be considered in the proposed model to extend 
the adoption scenarios of the proposed model. (4) On the basis of this 
study, future work could consider dynamic customer demands in real- 
world emergency logistics networks. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

The authors would like to express our sincere appreciation for the 
valuable comments made by two anonymous reviewers, which helped us 
to improve the quality of this paper. This research is supported by Na-
tional Natural Science Foundation of China (Project No. 71871035, 
71971036, 71831008), Key Science and Technology Research Project of 
Chongqing Municipal Education Commission (KJZD-K202000702), 
Natural Science Foundation of Chongqing in 2022 (CSTB2022NSCQ- 
MSX0535, CSTB2022NSCQ-MSX0394), Chongqing Liuchuang Plan 
Innovation Project (cx2021038), Team Building Project for Graduate 
Tutors in Chongqing (JDDSTD2019008), Chongqing Bayu Scholar 
Youth Project (YS2021058). 

References 

Ahmadi, M., Seifi, A., & Tootooni, B. (2015). A humanitarian logistics model for disaster 
relief operation considering network failure and standard relief time: A case study on 
San Francisco district. Transportation Research Part E: Logistics and Transportation 
Review, 75, 145–163. 

Asghari, M., & Al-e-hashem, S. M. J. M. (2020). A green delivery-pickup problem for 
home hemodialysis machines; sharing economy in distributing scarce resources. 
Transportation Research Part E: Logistics and Transportation Review, 134, Article 
101815. 

Azi, N., Gendreau, M., & Potvin, J. Y. (2014). An adaptive large neighborhood search for 
a vehicle routing problem with multiple routes. Computers & Operations Research, 41, 
167–173. 

Balcik, B., Beamon, B. M., & Smilowitz, K. (2008). Last Mile Distribution in Humanitarian 
Relief. Journal of Intelligent Transportation Systems, 12, 51–63. 

Bevilaqua, A., Bevilaqua, D., & Yamanaka, K. (2019). Parallel island based memetic 
algorithm with Lin-Kernighan local search for a real-life two-echelon heterogeneous 
vehicle routing problem based on Brazilian wholesale companies. Applied Soft 
Computing, 76, 697–711. 

Bezerra, L. C. T., Goldbarg, E. F. G., Goldbarg, M. C., & Buriol, L. S. (2013). Analyzing the 
impact of MOACO components: An algorithmic study on the multi-objective shortest 
path problem. Expert Systems with Applications, 40, 345–355. 

Blavatnik School of Government at the University of Oxford (BSGUO). (2021). COVID-19 
Government Response Tracker. Retrieved from <https://www.bsg.ox.ac.uk/ 
research/research-projects/covid-19-government-response> on December 26, 2021. 

Breunig, U., Baldacci, R., Hartl, R. F., & Vidal, T. (2019). The electric two-echelon vehicle 
routing problem. Computers & Operations Research, 103, 198–210. 

Calvet, L., Ferrer, A., Gomes, M. I., Juan, A. A., & Masip, D. (2016). Combining statistical 
learning with metaheuristics for the Multi-Depot Vehicle Routing Problem with 
market segmentation. Computers & Industrial Engineering, 94, 93–104. 

Cattaruzza, D., Absi, N., Feillet, D., & Vidal, T. (2014). A memetic algorithm for the multi 
trip vehicle routing problem. European Journal of Operational Research, 236, 
833–848. 

Caunhye, A. M., Zhang, Y., Li, M., & Nie, X. (2016). A location-routing model for 
prepositioning and distributing emergency supplies. Transportation Research Part E: 
Logistics and Transportation Review, 90, 161–176. 

Chang, F. S., Wu, J. S., Lee, C. N., & Shen, H. C. (2014). Greedy-search-based multi- 
objective genetic algorithm for emergency logistics scheduling. Expert Systems with 
Applications, 41, 2947–2956. 

Chen, C., Demir, E., & Huang, Y. (2021). An adaptive large neighborhood search 
heuristic for the vehicle routing problem with time windows and delivery robots. 
European Journal of Operational Research, 294, 1164–1180. 

Cheramin, M., Saha, A. K., Cheng, J., Paul, S. K., & Jin, H. (2021). Resilient NdFeB 
magnet recycling under the impacts of COVID-19 pandemic: Stochastic 
programming and Benders decomposition. Transportation Research Part E: Logistics 
and Transportation Review, 155, Article 102505. 

Choi, T. M. (2021). Risk analysis in logistics systems: A research agenda during and after 
the COVID-19 pandemic. Transportation Research Part E: Logistics and Transportation 
Review, 145, Article 102190. 

Coelho, V. N., Grasas, A., Ramalhinho, H., Coelho, I. M., Souza, M. J. F., & Cruz, R. C. 
(2016). An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP 
with multi-trips and docking constraints. European Journal of Operational Research, 
250, 367–376. 

Dalmeijer, K., & Spliet, R. (2018). A branch-and-cut algorithm for the Time Window 
Assignment Vehicle Routing Problem. Computers & Operations Research, 89, 
140–152. 

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective 
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 
182–197. 

Fontaine, P. (2021). The vehicle routing problem with load-dependent travel times for 
cargo bicycles. European Journal of Operational Research, 300, 1005–1016. 

François, V., Arda, Y., Crama, Y., & Laporte, G. (2016). Large neighborhood search for 
multi-trip vehicle routing. European Journal of Operational Research, 255, 422–441. 

Gentili, M., Mirchandani, P. B., Agnetis, A., & Ghelichi, Z. (2022). Locating platforms and 
scheduling a fleet of drones for emergency delivery of perishable items. Computers & 
Industrial Engineering, 168, Article 108057. 

Ghilas, V., Demir, E., & Van Woensel, T. (2016a). An adaptive large neighborhood search 
heuristic for the pickup and delivery problem with time windows and scheduled 
lines. Computers & Operations Research, 72, 12–30. 

Ghilas, V., Demir, E., & Woensel, T. V. (2016b). A scenario-based planning for the pickup 
and delivery problem with time windows, scheduled lines and stochastic demands. 
Transportation Research Part B: Methodological, 91, 34–51. 

Goh, C. K., Tan, K. C., Liu, D. S., & Chiam, S. C. (2010). A competitive and cooperative co- 
evolutionary approach to multi-objective particle swarm optimization algorithm 
design. European Journal of Operational Research, 202, 42–54. 

Govindan, K., Nasr, A. K., Mostafazadeh, P., & Mina, H. (2021). Medical waste 
management during coronavirus disease 2019 (COVID-19) outbreak: A 
mathematical programming model. Computers & Industrial Engineering, 162, Article 
107668. 
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