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Abstract

The rapid development of deep-learning methods in medical imaging has called for an analysis 

method suitable for non-linear and data-dependent algorithms. In this work, we investigate a local 

linearity analysis where a complex neural network can be represented as piecewise linear systems. 

We recognize that a large number of neural networks consists of alternating linear layers and 

rectified linear unit (ReLU) activations, and are therefore strictly piecewise linear. We investigated 

the extent of these locally linear regions by gradually adding perturbations to an operating point. 

For this work, we explored perturbations based on image features of interest, including lesion 

contrast, background, and additive noise. We then developed strategies to extend these strictly 

locally linear regions to include neighboring linear regions with similar gradients. Using these 

approximately linear regions, we applied singular value decomposition (SVD) analysis to each 

local linear system to investigate and explain the overall nonlinear and data-dependent behaviors 

of neural networks. The analysis was applied to an example CT denoising algorithm trained on 

thorax CT scans. We observed that the strictly local linear regions are highly sensitive to small 

signal perturbations. Over a range of lesion contrast from 0.007 to 0.04 mm−1, there is a total of 

33992 linear regions. The Jacobians are also shift-variant. However, the Jacobians of neighboring 

linear regions are very similar. By combining linear regions with similar Jacobians, we narrowed 

down the number of approximately linear regions to four over lesion contrast from 0.001 to 

0.08 mm−1. The SVD analysis to different linear regions revealed denoising behavior that is 

highly dependent on the background intensity. Analysis further identified greater amount of noise 

reduction in uniform regions compared to lesion edges. In summary, the local linearity analysis 

framework we proposed has the potential for us to better characterize and interpret the non-linear 

and data-dependent behaviors of neural networks.

1. INTRODUCTION

Recent years we have seen rapid development of deep learning algorithms in the field 

of medical imaging. For CT, a popular application of deep learning lies in “denoising” 

of CT reconstructions. Many network architectures have been proposed in literature and 

demonstrated potential for reducing image noise and improving signal to noise ratio. At 
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the same time, the nonlinear and data-dependent nature of such algorithms have raised 

questions over how to systematically characterize their performance. While positive results 

have been reported in many cases, we have also observed undesirable behavior where critical 

diagnostic features (e.g., lesion contrast, size, etc.) can be misrepresented.1 Therefore, 

an analysis framework that allows systematic examinations of network performance is 

essential in understanding the advantages and limitations of deep learning algorithms. An 

increasing number of investigations have been devoted to characterizing the performance 

of deep learning algorithms. So far, most studies have relied on evaluating traditional 

medical image quality measures (e.g, resolution, noise, and detectability index) using 

specific phantoms or clinical images2.3 While these studies elucidated many interesting 

and important dependencies in deep learning algorithms, it is difficult to generalize such 

retrospective analysis in a systematic manner. Local linear approximation is a common 

analysis method for nonlinear systems and has been applied to deep learning as well to 

investigate network stability,4 derive adversarial examples,5 etc. In this work, we seek to 

identify locally linear representations of a deep learning CT denoising network. Using such 

representations, we then apply linear system analysis tools to different local linear systems 

to explain the overall nonlinear and data-dependent behavior of the network.

2. METHODS

2.1 Piecewise Linear Neural Networks

In this work, we consider common deep learning networks consisting of alternating linear 

layers (e.g., fully connected layer, convolutional layer, residual blocks) and nonlinear 

activation functions. Furthermore, we focus on the popular Rectified Linear Unit (ReLU) 

activation function, which comprises two piece-wise linear functions.

We designate each linear function of the ReLU by its activation indicator, o. Denoting the 

input to each ReLU as z,

o = 1 if z ≥ 0; o = 0 if z ≤ 0 (1)

For a trained network with such structure, each input and output pair is governed by a 

particular linear system determined by the weights and biases in the linear layers and 

the activation indicator of each ReLU. Following,6 we define activation pattern, O, as the 

collective activation indicators of each ReLU in the network:

O = o1, o2, …oN on ∈ 0, 1 ∀ n ∈ N (2)

where N is the total number of ReLUs in the network. Inputs that trigger the same activation 

pattern are governed by the same linear system and belong to a locally linear region in the 

input space. Thus, we can express the network as the following piecewise linear system :

μout = H μin = ℎLo…o ℎ2o ℎ1 μin (3)
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where the function associated with layer l, hl, is:

ℎl μl − 1 = Ol Wlμl − 1 + bl (4)

Here, Wl and bl denote the weights and biases associated with the linear layers, and Ol is a 

diagonal matrix where its diagonal is the vector of activation indicators for the lth layer. The 

piecewise linear nature of these networks theoretically allows us to use linear analysis tools 

to completely characterize the system response for each locally linear system. One such 

measure that is convenient to compute is the Jacobian, i.e., for any given input or operating 

point, μo, we may write down the corresponding linear system as:

H μk = H μo + Jo μk − μo . (5)

The Jabocian, Jo, is defined as

Jo, ij =
dH μo i

dμo, j
. (6)

where i and j are indices of output and input voxels, respetively. This equation holds for all 

μk that belongs to the same linear region as μo.

2.2 Extent of strictly locally linear regions

While the piecewise linear interpretation of neural networks is convenient, the question 

remains whether it is practical to analyse each linear region separately. In particular, deep 

networks tend to partition the input space into a large number of linear regions.7 It is also 

possible for networks to have unstable gradient - i.e., small perturbations in the inputs 

resulting in large changes in gradient or Jacobians. To investigate these behaviors for inputs 

relevant to CT denoising, we use example CT images as operating points and gradually 

insert perturbations of interest. For high dimensional input spaces in neural networks, there 

are many potential types of perturbations that may be explored. Here, we choose clinically 

relevant perturbations like lesion features of interest (e.g., contrast, shape, texture), noise, or 

background the lesion is embedded in. We record the activation pattern associated with each 

perturbation and report the number of changes in activation indicators from the operating 

point and the total number of activation patterns through the range of perturbations. 

Furthermore, we compare the Jacobians in neighboring linear regions. In this work, the 

operating point was chosen as a region of interest (ROI) containing a spherical, uniform 

lesion with diameter 9.0 mm and contrast 0.007 mm−1 in the lung region of thorax CT scan 

as shown in Fig 1. Results shown below pertain to lesion contrast from 0.007 to 0.04 mm−1 

in small increments of 2 × 10−7 mm−1 .

2.3 Extent of approximately locally linear regions

Through initial experimentation, we observed that the Jacobians for neighbouring linear 

regions are similar. We therefore investigate whether we can extend the boundary of 

locally linear regions to include multiple strictly linear regions with approximately the 
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same Jacobian. Using the same operating point μo and perturbation scheme in the previous 

section, we compute the output of perturbed inputs μk using the Jacobians for μo (the right 

hand side of Eq. 5) and compare it with the true CNN output. For initial investigation in 

this work, we compare the maximum (over voxels) absolute percent error between the two 

and set a threshold below which the two outputs are considered similar enough and that 

the inputs fall within the same linear region. We developed strategies to choose different 

operating points so that the percentage error throughout the range of perturbations falls 

below the threshold. For results shown below, we present the linear regions and associated 

operating points for an input space encompassing two types of perturbations - lesion contrast 

ranging from 0.001 to 0.08 mm−1 and the intensity of a uniform background the lesion is 

embedded in from 0 to 0.04 mm−1.

2.4 Neural network analysis based on locally linear regions

Using the approximately linear regions identified above, we may apply linear system 

analysis tools to each linear region to understand and explain some of the overall nonlinear 

and data-dependent behaviors of neural network algorithms. To ensure generality without 

assumptions of shift-invariance, we performed SVD of the Jacobians for each approximately 

linear region. Then, by projecting inputs of interest μin onto the singular basis vectors, we 

can analyze which features of the inputs that are considered preserved, denoted as μin
p  (i.e., 

with singular values above a certain threshold) and which features are attenuated, denoted as 

μin
a  (i.e., with singular values below a certain threshold). Mathematically:

μin
p = ∑

i for si > ϵ
si viTμin vi; μin

a = ∑
i for si ≤ ϵ

si viTμin vi (7)

where si and vi are the ith singular value and basis vector, and ϵ is the threshold on singular 

values, chosen as 0.10 in this work. We applied the SVD analysis to noisy input images 

to visualize how the network “denoises”. In this case, the perturbation, μk – μo, is noise. 

We generated 100 different noise realizations at a noise level comparable to the training 

dataset, and decomposed each realization to the “preserved” and “attenuated” components 

according to Eq. 7. The mean and standard deviation over all noise realizations are presented 

to visualize how neural network reduces noise.

2.5 Experimental setup

In this work, we applied the above analysis to a network based on the REDCNN 

architecture.8 We identified 2900 slices from thorax CT scans in the LIDC database9 and use 

them as ground truth to generate the training data. The normal and low dose training pairs 

were generated from filtered-backprojection reconstruction using a barebeam fluence of I0 = 

105 and I0 = 1.25 × 104, respectively.

3. RESULTS

We first present results showing the extent of strictly linear regions as a function of lesion 

contrast from the operating point in Fig.1. Combining the number of cumulative activation 
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patterns in Fig.2a and the number of indicator change in Fig.2b, we may infer how many 

strictly linear regions there are within the range of perturbations investigated. Zooming 

in on two small range of contrast in Fig.2c, both the cumulative number of activation 

patterns and the number of indicator changes have the same trend. The perturbation 

increment was chosen small enough that the input either stays in the same linear region, 

or transition to a neighboring linear region with at most one ReLU change. Note that while 

the cumulative activation patterns either stays the same or increases (by definition) for 

each contrast increment, the number of indicator change may also decrease. Overall, the 

neural network has seen 33992 strictly locally linear regions for the range of lesion contrast 

investigated. We further present a profile through the Jacobian matrix that passes through 

each of the three locations identified in Fig.1. The Jacobians are different from lesion center, 

to edge, to background, indicating a linear but shift-variant system. Comparing amongst 

the different strictly linear regions in each portion of the plot, the Jacobians are very 

similar despite belonging to different linear systems. Investigations into strictly locally linear 

regions reveal that the transition between neighboring linear region is sensitive to small 

changes in perturbations but the Jacobians are similar. We therefore investigate whether 

the input space can be partitioned into fewer approximately linear regions using methods 

in Sec.2.3. We perturbed both the lesion contrast and the lesion background intensity and 

plotted the maximum absolute percent error between local linear approximation and CNN 

output. Four example inputs at different contrast and background (labeled μk) are presented 

showing comparisons between the empirical CNN output, a linear approximation using 

Jacobians at an operating point (labeled μo), and the percentage error map between the two. 

Fig.3a shows the approximation errors for just one operating point shown in Fig.1. The 

error is 0 at the operating point and increases as we move further away. Fig.3b and 3c 

shows the approximations error improving as we use more operating points. Compared to 

33992 strictly locally linear regions in just one dimension (Fig.2), the linear approximation 

method yields a much small number of linear systems that is practical to analyze. Using 

the approximate local regions identified in Fig.3c, we performed SVD analysis on two 

locally linear systems with operating points μo1 and μo3. We chose inputs belonging to 

each linear region and added noise as perturbations. The inputs contains lesions of the 

contrast, noise magnitude, and noise correlation; the only difference is the background 

intensity. Fig.4a shows the FBP input, empirical CNN output, and its linear approximation 

for both a sample noise realization and standard deviation maps over 100 noise realizations. 

Good agreement was observed between the CNN outputs and linear approximations for 

the μo3 case, indicating that noise perturbations can be approximated by the same linear 

system at the operating point. The noise magnitude was well-approximated for the μo1

case but the spatial distribution could be improved, which suggests that the criteria for 

linear approximation should be revisited for noise prediction. Comparing the two linear 

regions, the one based on μo3 imparts greater noise reduction seen from the lower standard 

deviation magnitude. Fig.4b shows the “preserved” and “attenuated” input features (Eq.7) 

for four sample noise realizations as well as the mean and standard deviation maps over 100 

noise realizations. The attenuated portion is high frequency and appears noise-like for both 

systems - consistent with the “denoising” purpose of the network. The preserved signal is 

smoother outside the lesion but contains more mid- to high-frequency variations inside the 
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lesion. Both the preserved and attenuated signals are space-variant, with more noise removal 

in uniform regions (outside and inside the lesion) compared to the edges. This behavior is 

more obvious in the mean and standard deviation images.

4. DISCUSSION AND CONCLUSION

In this work, we presented a method for analyzing piecewise linear neural networks. 

We observed rapid transitions between strict locally linear regions and introduced an 

approximation method to make the analysis more tractable. Linear system analysis tools 

such as the SVD were applied to explain some of the nonlinear and data-dependent 

behavior of an example denoising network, specifically, what input features can be 

preserved and which are not. The most significant challenge with this type of analysis 

is the high dimensional input space. We chose to use clinically relevant image features 

as “perturbations” or search directions to map out the locally linear regions. Future work 

will encompass a wider range of perturbations so that neural network performance can be 

analyzed in relation to whether image features important for diagnosis can be preserved. 

Furthermore, we will investigate strategies to identify maximally separated operating points 

in the input space such that the analysis remains tractable.
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Figure 1: 
The operating point μo was chosen as a uniform spherical lesion in the lung region of a 

thorax CT scan. We present the local Jacobian for three locations at the center, edge, and 

background of the lesion.
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Figure 2: 
a) Number of cumulative activation pattern over the range of lesion contrast 0.007 ~ 

0.04mm−1 b) Number of activation indicator change over the same range of lesion contrast 

c) Top row: Zoom-in view of the curve in b), which shows three strict linear regions and 

overlays their local Jacobians at three lesion locations. Bottom row: Similar contents for the 

other zoom-in region (lower lesion contrast)

Li et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2022 October 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
a) Top row: Map of maximum local linear approximation error with increasing lesion 

contrast and background intensity for system with operating point μo1; Bottom row: four 

lesion inputs of interest with increasing approximation error. b) Top row: Input space being 

partitioned by applying two operating points; Bottom row: lesion inputs of interest evaluated 

by two systems. c) Top row: Input space being partitioned by applying four operating points; 

Bottom row: lesion inputs of interest evaluated by each of the system
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Figure 4: 
a) Top row: Sample noisy realization and standard deviation map across 100 different 

realizations for noisy FBP input, CNN output and local linear approximation by using 

system with operating point μo1; Bottom row: Similar contents by using system with μo3. b) 

Top row: Preserved and attenuated features from SVD analysis for sample noise realizations, 

mean and standard deviation maps across 100 noise realizations by using system with 

operating point μo1; Bottom row: Similar contents for system with μo3
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