Skip to main content
. 2022 Nov;12(11):4990–5003. doi: 10.21037/qims-22-265

Table 5. AUC (mean) for clinical scores and trained radiomics models.

PSA density Mean ADC PI-RADS Regression SMOTE mRMR(25) cw | mRMR(25) cw | no FS no cw | mRMR(25) cw | mRMR(50) cw | mRMR(100)
AUC (mean) 0.63 0.71 0.78 0.80 0.78 0.80 0.82 0.80 0.81 0.83
AUC [1] 0.73 0.77 0.85 0.91 0.88 0.92 0.88 0.91 0.91 0.92
AUC [2] 0.63 0.77 0.74 0.76 0.64 0.68 0.67 0.71 0.70 0.71
AUC [3] 0.63 0.65 0.87 0.71 0.84 0.84 0.89 0.83 0.85 0.87
AUC [4] 0.53 0.59 0.68 0.77 0.64 0.65 0.83 0.69 0.74 0.82
AUC [5] 0.64 0.78 0.75 0.86 0.88 0.89 0.84 0.87 0.84 0.81
P values <0.001 0.003 0.185 0.478 0.186 0.436 0.953 0.496 0.610 1

For each score or configuration, the mean AUC and the result for each CV fold is shown. The bottom row shows the P values yielded by the mixed-model analysis, showing how significantly different the classification performance of each of the model configurations in comparison to the best-performing “cw | mRMR(100)” was. Model configuration shorthands according to Table 1. AUC, area under the curve; PSA, prostate specific antigen; ADC, apparent diffusion coefficient; PI-RADS, Prostate Imaging Reporting and Data System; SMOTE, synthetic minority oversampling technique; mRMR, minimal redundancy maximal relevance; cw, class weights.