
Fast, Free, and Flexible Peptide and Protein Quantification with 
FlashLFQ

Robert J. Millikin,

Michael R. Shortreed,

Mark Scalf,

Lloyd M. Smith

Department of Chemistry, University of Wisconsin, Madison.

Abstract

The rapid and accurate quantification of peptides is a critical element of modern proteomics that 

has become increasingly challenging as proteomic data sets grow in size and complexity. We 

present here FlashLFQ, a computer program for high-speed label-free quantification of peptides 

and proteins following a search of bottom-up mass spectrometry data. FlashLFQ is approximately 

an order of magnitude faster than established label-free quantification methods and can quantify 

data-dependent analysis (DDA) search results from any proteomics search program. It is available 

as a graphical user interface program, a command line tool, a Docker image, and integrated into 

the MetaMorpheus search software.

Keywords

Label-free quantification; post-translational modifications; quantitative proteomics; software

1 Introduction

Modern bottom-up proteomics workflows involve digesting a protein sample with a 

protease, followed by online separation of the resultant peptides and subsequent analysis 

by tandem mass spectrometry (MS/MS). In data-dependent acquisition (DDA), peptides 

are first observed in a survey (MS1) scan, then identified by their fragmentation (MS2) 

spectra. The MS1 scan contains isotopic envelopes of intact peptide ions, the signal intensity 

of which is a proxy for abundance of that ion in the mass spectrometer. This intensity 

can be used for quantification of the peptide species. There are many complex factors 

that determine how well a peptide ionizes. Accordingly, a relative quantification strategy 

is typically employed in which the signal intensity of a peptide is compared to the same 

peptide’s signal in another sample, rather than attempting absolute quantification. The trace 

of MS1 signal across time for a particular ion is called the extracted ion chromatogram 

(XIC). The absence of an added chemical label to assist in quantification gives this strategy 

its name: label-free quantification (LFQ).

rmillikin@wisc.edu . 

HHS Public Access
Author manuscript
Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

Published in final edited form as:
Methods Mol Biol. 2023 ; 2426: 303–313. doi:10.1007/978-1-0716-1967-4_13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Given the large amount of raw data afforded by these experiments (typically on the order 

of thousands of peptides in a single run), bioinformatics software is used for automatic 

data interpretation to ease the burden of manual annotation and quantification. FlashLFQ 

[1] is a software program that was created to quickly quantify peptides and proteins 

in LC-MS/MS data through XIC tracing. It was specifically designed to be a free, open-

source LFQ tool that is agnostic of upstream and downstream software. One important 

motivation for creating FlashLFQ was the desire to quantify post-translational modification 

(PTM)-containing peptides discovered by MetaMorpheus and its global PTM discovery [2] 

(G-PTM-D) engine.

At its core, FlashLFQ is an algorithm for rapid XIC extraction/peakfinding. Several features 

have been added since its initial debut as a peptide quantification program, including match-

between-runs, intensity normalization, and Bayesian protein quantification and hypothesis 

testing [3].

The Bayesian hypothesis testing option is intended to replace the typical workflow of 

importing peptide or protein intensities into a separate program to perform the Student’s 

t-test and multiple testing correction. While the t-test is a perfectly valid option for 

the interpretation of proteomics data, FlashLFQ’s Bayesian solution aggregates intensity-

dependent uncertainty for each peptide into a protein-level uncertainty, increasing the 

selectivity of the results (see Note 1).

FlashLFQ ( https://github.com/smith-chem-wisc/FlashLFQ ) is available as a command-line 

interface (CLI) and graphical user interface (GUI) program. It is also integrated into 

the MetaMorpheus search software program. The CLI version can be run in Microsoft 

Windows, Apple macOS, and Linux; a CLI FlashLFQ/Linux Docker image is also available 

on Docker Hub ( https://hub.docker.com/r/smithchemwisc/flashlfq ). The GUI version of 

FlashLFQ is currently only available on Microsoft Windows.

FlashLFQ requires spectral data in .mzML or .raw file format, along with a list of peptide 

identifications from a proteomics search program (e.g., MetaMorpheus [2], Morpheus [4], 

Andromeda [5], SearchGUI [6], etc.).

2 Material

2.1 Data Inputs

FlashLFQ requires a list of peptide identifications (peptide spectral matches, PSMs) as well 

as LC-MS/MS data. Each peptide identification is required to have a(n):

• spectra file name,

• amino acid sequence,

• string representation of the peptide containing any potential modifications (such 

as phosphorylation),

• monoisotopic mass,

• retention time,

Millikin et al. Page 2

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/smith-chem-wisc/FlashLFQ
https://hub.docker.com/r/smithchemwisc/flashlfq


• charge,

• protein identifier (e.g., protein accession).

The required data values are provided to FlashLFQ as a tab-delimited text file(s).

2.2 Accepted Data Formats

Several data formats from common search engines are recognized in their native format 

without modification:

• MetaMorpheus .psmtsv,

• Morpheus .tsv,

• MaxQuant msms.txt,

• PeptideShaker .tabular.

Output from other search engines can be modified to be compatible with FlashLFQ. The 

columns:

• “File Name”,

• “Base Sequence”,

• “Full Sequence”,

• “Peptide Monoisotopic Mass”,

• “Scan Retention Time”,

• “Precursor Charge”,

• “Protein Accession”

must be defined if this generic format is used, as described in the Data Inputs section 

above (see 2.1; see also https://github.com/smith-chem-wisc/FlashLFQ/wiki/Identification-

Input-Formats ). See Figure 1 for an example of the generic PSM input format.

The .mzML and Thermo .raw spectra file formats are valid inputs for the LC-MS/MS 

data. Other file formats can be converted to .mzML using ProteoWizard’s free MSConvert 

software [7] (see https://github.com/smith-chem-wisc/FlashLFQ/wiki/Converting-spectral-

data-files-with-MSConvert ).

2.3 Hardware Requirements

There are no formal requirements for CPU speed or number of cores, but faster processors 

with additional cores will result in a faster processing time. FlashLFQ is a multithreaded 

program and uses all but one core by default. We advise that the user have at least 4 GB of 

RAM, plus 500 MB for each spectra file if match-between-runs is enabled.

Millikin et al. Page 3

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/smith-chem-wisc/FlashLFQ/wiki/Identification-Input-Formats
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Identification-Input-Formats
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Converting-spectral-data-files-with-MSConvert
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Converting-spectral-data-files-with-MSConvert


2.4 Software Requirements

• The operating system (OS) must be Microsoft Windows, Apple macOS, or Linux 

for the command-line version. For the GUI version of FlashLFQ, the OS must be 

Microsoft Windows.

• .NET Core 3.1 must be installed (see Note 2).

• To use the Docker image (see Note 3) of FlashLFQ, the software requirements 

above can be ignored; only a Docker installation is required, as the Docker image 

includes Alpine Linux and .NET Core 3.1.

2.5 Installation

• GUI (Microsoft Windows only). The GUI (graphical user interface) version of 

FlashLFQ can be downloaded from GitHub by navigating to the “releases” page 

( https://github.com/smith-chem-wisc/FlashLFQ/releases/latest ) and clicking 

“FlashLFQ.zip”. After extracting the archive to a folder, open FlashLFQ.exe.

• Command-line.

– Microsoft Windows: Download FlashLFQ.zip and extract it to a folder 

following the same steps as the GUI version. Running CMD.exe in the 

terminal will start FlashLFQ and display valid parameters.

– Linux and Apple macOS: Download FlashLFQ_DotNetCore.zip and 

extract it to a folder following the same steps as the GUI version. 

Running the command dotnet CMD.dll in the terminal will start 

FlashLFQ and display valid parameters.

• Docker. A Docker image of FlashLFQ is hosted on DockerHub ( https://

github.com/smith-chem-wisc/FlashLFQ/wiki/Docker-Image ). It can be pulled 

with the docker pull command; for example,

docker pull smithchemwisc/flashlfq:1.1.1

will download the Docker image containing FlashLFQ version 1.1.1. The most 

recent version of FlashLFQ is always tagged with latest (i.e., smithchemwisc/

flashlfq:latest).

3 Methods

3.1 Adding identification files

Identification (PSM) files can be added to FlashLFQ’s GUI interface by drag-and-drop or 

by clicking the “Add Identifications” button in the “Identifications” tab. In the command-

line version, the “--idt” flag is used to specify an identification file. An example of a 

MetaMorpheus PSM file added in the GUI is shown in Figure 2.

Millikin et al. Page 4

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/smith-chem-wisc/FlashLFQ/releases/latest
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Docker-Image
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Docker-Image


3.2 Adding spectra files

Spectra files can be added by drag-and-drop or by clicking the “Add Spectra” button in the 

GUI in the “Spectra” tab. In the command-line version, the “--rep” flag is used to specify a 

folder containing the spectra files.

Each spectra file is associated with metadata containing:

• the run’s experimental condition (e.g., normal or treatment),

• sample number,

• fraction number,

• replicate number.

This collection of metadata is called the experimental design, which is saved to a file called 

ExperimentalDesign.tsv. This information is used to normalize intensities, perform statistical 

analysis, and improve match-between-runs. If you simply want to quantify peptides without 

performing these extra functions, the experimental design can be ignored. The Condition can 

be any text whereas the Sample, the Fraction and the Replicate must be an integer value. The 

Sample, Fraction and Replicate values must begin with 1 and there can be no missing values. 

An example from the GUI is shown in Figure 3, where the experimental design has been 

defined for an 8-file run.

Command-line users must build the ExperimentalDesign.tsv file manually. You can find 

a detailed description of the contents of the file at https://github.com/smith-chem-wisc/

FlashLFQ/wiki/Experimental-Design, along with an example file available for download.

3.3 Settings

Settings are specified in the “Settings” tab in the GUI. Most settings can be enabled or 

disabled via a checkbox. In the command-line version, each setting has its own flag. An 

example in the GUI is shown in Figure 4.

• PPM tolerance (see Note 4). Specifies the mass-error tolerance for the XIC 

peakfinding algorithm, in parts per million (ppm). The default is 10ppm.

• Intensity normalization (see Note 5). Specifies whether or not intensity 

normalization should be performed. FlashLFQ’s intensity normalization 

algorithm uses a median normalization, which means that the median peptide 

intensity difference between samples is assumed to be zero (i.e., not changing). 

This normalization process rests on the assumption that most proteins are not 

changing in abundance between samples.

• Match-between-runs (see Note 6). Specifies whether or not match-between-

runs (MBR) should be performed. MBR attempts to identify peptides that were 

not fragmented and identified in some runs, using retention-time alignment 

between runs.

• Using shared peptides for protein quantification (see Note 7). Specifies 

whether or not shared peptides should be used for protein quantification. If this 

Millikin et al. Page 5

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/smith-chem-wisc/FlashLFQ/wiki/Experimental-Design
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Experimental-Design


is disabled, only peptides unique to a protein will be used for quantification (see 
Note 8).

• Bayesian protein quantification (see Note 9). Specifies whether or not 

FlashLFQ’s Bayesian protein quantification system should be used. A control 

condition (see Note 10) must be specified, along with a fold-change cutoff (see 
Note 11).

3.4 Run

On the “Run” tab, you can specify an output directory. A default directory will already be 

populated for you; this default directory is where your spectra files are located. The field 

“$DATETIME” is included in this name, which will be automatically replaced with the 

date and time of the FlashLFQ run. After you are satisfied with your settings, click “Run 

FlashLFQ”. The command-line flag to (optionally) specify an output directory is “--out”. An 

example in the GUI is shown in Figure 5, with the output folder being left as default.

3.5 Output

FlashLFQ writes several files as output: QuantifiedPeaks.tsv, QuantifiedPeptides.tsv, 

QuantifiedProteins.tsv, FlashLfqSettings.toml, and (optionally) BayesianFoldChange-

Analysis.tsv.

• QuantifiedPeaks.tsv reports each chromatographic peak along with information 

about that peak, such as its begin and end time, apex intensity, etc. Some 

peaks list 0 for their intensity, which indicates an unquantifiable peak (i.e., 
an identification was passed in to FlashLFQ, but that identification could not 

be quantified). Some peaks list “∣” as part of their base sequence or full 

sequence fields, which indicates multiple identifications were associated with 

the same chromatographic peak (i.e., the identity of the chromatographic peak is 

ambiguous).

• QuantifiedPeptides.tsv reports all peptide sequences along with their intensity 

in all spectra files and their method of quantification (by MS/MS, by match-

between-runs, etc.) in all files. For fractionated data, each fraction’s intensity is 

reported separately; these fraction intensities can be summed to get a sample 

intensity.

• QuantifiedProteins.tsv reports protein intensities per spectra file, similar to 

QuantifiedPeptides.tsv. This file sums the 3 most intense peptides for that protein 

in each sample. It is a rough estimate of a protein’s intensity in a given file (see 
Note 12).

• FlashLfqSettings.toml reports the settings used for the FlashLFQ run, so that 

results can be reproduced easily.

• BayesianFoldChangeAnalysis.tsv reports output from the Bayesian protein 

quantification and hypothesis testing. It lists each protein, along with a fold-

change (relative to the control condition specified in the settings) and the 

Millikin et al. Page 6

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probability that the protein’s fold-change is less than the fold-change cutoff (the 

posterior error probability, or PEP).

3.6 Using the Docker image

Once a Docker image has been pulled (downloaded) from Docker Hub, you can run 

FlashLFQ within the Docker container with the docker run command. For example:

docker run [Docker args] smithchemwisc/flashlfq:latest [FlashLFQ args]

Typical usage will look something like this:

docker run --rm -v C:/MyDataFolder:/mnt/ smithchemwisc/flashlfq:latest

--idt ./mnt/AllPSMs.psmtsv --rep ./mnt/ --out ./mnt/FlashLFQ _Output

The --rm flag tells Docker to clean up/remove the image after FlashLFQ is done executing. 

The -v C:/MyDataFolder:/mnt/ part "mounts" the C:/MyDataFolder directory to the Docker 

container, i.e., lets the container access your hard drive and gives that directory an alias 

of /mnt/. The rest of the line runs FlashLFQ with the passed arguments.

To ease the use of the Docker image, we recommend the following (see Note 13):

• Sometimes Docker has trouble getting permission from your computer to access 

the hard disk; for Windows users, the C: drive is usually easiest to access and 

you might get a popup asking for permission.

• Try not to use spaces in your path names if you can help it (in the Dockerfile, 

terminal commands, input/output files, etc.). It usually makes things harder than 

they need to be.

Notes

1. There were a few motivations for creating this system. Most protein quantification 

algorithms report only one protein-level intensity per sample, which is then used in 

downstream statistics. However, this throws out quite a lot of information; each peptide 

is an independent measurement of a protein’s abundance in a sample, and we wanted 

to use this information. Additionally, uncertainty in peptide measurements increases with 

lower intensity, and these peptide-level uncertainty measurements can be aggregated 

into a protein-level uncertainty; again, this information would be lost in most statistical 

pipelines. FlashLFQ takes a peptide-centric approach to bottom-up protein quantification 

and measures peptide fold-changes across experimental conditions, as well as peptide and 

protein uncertainty within a condition to estimate quantitative false-discovery rates. See Ref 

[3] for details.)

2. To use the Windows GUI, the .NET Core Desktop Runtime must be installed. This 

framework allows both GUI and CLI .NET Core programs to be run. This is in contrast to 

the .NET Core Runtime, which only runs CLI .NET Core programs.

Millikin et al. Page 7

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Docker images are "containers" which encapsulate an operating system and pre-installed 

software. These containers can be run independent of one’s own operating system or other 

software requirements. The purpose of using a Docker container over a more "traditional" 

installation is usually to avoid installing software prerequisites, either out of convenience or 

inability, such as on a server in which the user does not have permission to install software.

4. CMD flag: “--ppm”.

5. CMD flag: “--nor”.

6. CMD flag: “--mbr”.

7. CMD flag: “--sha”.

8. Currently, if shared peptides are used for protein quantification, shared peptides are 

treated the same as unique peptides for protein quantification.

9. CMD flag: “--bay”.

10. Currently, one condition must be specified as the control to compare the other conditions 

to. For example, if you were to have 3 conditions of samples, “Normal”, “Tumor1”, and 

“Tumor2”, with “Normal” specified as the control, then the “Tumor1” and “Tumor2” 

conditions would be quantified relative to the “Normal” condition.

11. A change in a given protein’s relative abundance below which you are not interested.

12. Generally, the top-3 method is not as reliable as the Bayesian protein quantification, 

or importing FlashLFQ’s peptide intensities into other software for protein quantification. 

Future improvements are coming to the non-Bayesian method of protein quantification.

13. More documentation is given on the FlashLFQ wiki: https://github.com/smith-chem-

wisc/FlashLFQ/wiki/Docker-Image.

Acknowledgements

This work was supported by grant R35GM126914 from the National Institute of General Medical Sciences. R.J.M. 
was supported by an NHGRI training grant to the Genomic Sciences Training Program 5T32HG002760. We thank 
the software development team of the Smith lab (Stefan K. Solntsev, Anthony J. Cesnik, Khairina Ibrahim, Lei Lu, 
Rachel M. Miller, Zach Rolfs, and Leah V. Schaffer), who contributed daily input and guidance for FlashLFQ’s 
improvement.

References

[1]. Millikin RJ, Solntsev SK, Shortreed MR, Smith LM (2018) Ultrafast peptide label-free 
quantification with flashlfq. Journal of proteome research 17(1):386–391 [PubMed: 29083185] 

[2]. Li Q, Shortreed MR, Wenger CD, Frey BL, Schaffer LV, Scalf M, Smith LM (2017) Global post-
translational modification discovery. Journal of proteome research 16(4):1383–1390 [PubMed: 
28248113] 

[3]. Millikin RJ, Shortreed MR, Scalf M, Smith LM (2020) A bayesian null interval hypothesis 
test controls false discovery rates and improves sensitivity in label-free quantitative proteomics. 
Journal of Proteome Research 19(5):1975–1981 [PubMed: 32243168] 

Millikin et al. Page 8

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/smith-chem-wisc/FlashLFQ/wiki/Docker-Image
https://github.com/smith-chem-wisc/FlashLFQ/wiki/Docker-Image


[4]. Wenger CD, Coon JJ (2013) A proteomics search algorithm specifically designed for high-
resolution tandem mass spectra. Journal of proteome research 12(3):1377–1386 [PubMed: 
23323968] 

[5]. Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M (2011) Andromeda: a 
peptide search engine integrated into the maxquant environment. Journal of proteome research 
10(4):1794–1805 [PubMed: 21254760] 

[6]. Barsnes H, Vaudel M (2018) Searchgui: A highly adaptable common interface for proteomics 
search and de novo engines. Journal of proteome research 17(7):2552–2555 [PubMed: 
29774740] 

[7]. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) Proteowizard: open source software 
for rapid proteomics tools development. Bioinformatics 24(21):2534–2536 [PubMed: 18606607] 

Millikin et al. Page 9

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Example of a “generic” identification input file. The columns are tab-delimited. FlashLFQ 

automatically reads MetaMorpheus, Morpheus, MaxQuant, and PeptideShaker output, but 

output from other search programs can be adapted to this generic format for use by 

FlashLFQ.

Millikin et al. Page 10

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Example of the “Identifications” page in the FlashLFQ GUI. A MetaMorpheus .psmtsv 

output file has been added.

Millikin et al. Page 11

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Example of the “Spectra” page in the FlashLFQ GUI. Several Thermo .raw data files 

containing the Universal Proteomics Standard (UPS) proteins have been added, with UPS1 

and UPS2 files divided between two experimental conditions, 4 samples per condition. The 

samples are unfractionated.

Millikin et al. Page 12

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Example of the “Settings” page in the FlashLFQ GUI. Normalization, match-between-runs, 

and the Bayesian protein quantification have been enabled.

Millikin et al. Page 13

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Example of the “Run” page in the FlashLFQ GUI. The default output directory is shown.

Millikin et al. Page 14

Methods Mol Biol. Author manuscript; available in PMC 2024 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Material
	Data Inputs
	Accepted Data Formats
	Hardware Requirements
	Software Requirements
	Installation

	Methods
	Adding identification files
	Adding spectra files
	Settings
	Run
	Output
	Using the Docker image

	Notes
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5

