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In brief

Sex differences across many levels of

SARS-CoV-2 infection response have

been observed globally. In a longitudinal

study of young adults, we identify

significant clinical and immune

differences between males and females.

We further show that differences in

antiviral response immune pathways

mediate sex-specific responses to SARS-

CoV-2 infection in young adults.
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SUMMARY
Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex differ-
ence, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among
2,641male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infec-
tions occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood
transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of anti-
viral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in
number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infec-
tion. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in
response to SARS-CoV-2 infection. A record of this paper’s transparent peer reviewprocess is included in the
supplemental information.
INTRODUCTION

COVID-19,which has led to 4.25million deaths as of August 2021,

has a worse outcome in males (Takahashi et al., 2020; Ren et al.,

2021; Scully et al., 2020). Innate and adaptive immune responses

are different in males and females during infection by SARS-CoV-

2, the virus that causes COVID-19 (Takahashi et al., 2020). These

differences in response and outcome could be influenced by pre-

existing factors that either worsen the disease in males, such as

androgen effects or the prevalence of comorbidities, or that

improve the outcome in females, such as immune system effec-

tiveness (Klein and Flanagan, 2016; Bienvenu et al., 2020; Schul-

tze and Aschenbrenner, 2021; Brodin, 2021; Meng et al., 2020).

Because the basis for sex differences in clinical outcomes of
924 Cell Systems 13, 924–931, November 16, 2022 ª 2022 The Auth
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SARS-CoV-2 has therapeutic implications, it is important to study

whether aspects of the intrinsic immune state in females

compared with males alter the response to SARS-CoV-2. How-

ever, without well-controlled studies, including pre-infection

data and minimizing the confounding effect of comorbidities, it

is impossible to tease apart which of these hypotheses contribute

to the clinical differences observed during infection.

The prospective COVID-19 Health Action Response for Ma-

rines (CHARM) study enrolled 3,326 new Marine recruits begin-

ning military training. A total of 2,641 males and 244 females

were initially SARS-CoV-2 seronegative andwere followed longi-

tudinally with symptom screening, serial nares swab PCR for

SARS-CoV-2, and blood sampling for molecular analyses (see

STAR Methods). The cohort was physically fit, predominantly
or(s). Published by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Caucasian, and had an average age of 19.1 ± 1.9 years

(Table S1). During the 12 weeks after study entry, which included

2weeks of supervised quarantine and 10weeks of basic training,

a total of 1,033 males and 137 females tested positive for SARS-

CoV-2 by PCR (Figure S1). The study was conducted prior to

FDA-approved vaccines and treatments specifically directed at

SARS-CoV-2, and none of these participants were involved in

any clinical trials at the time. All symptomatic participants were

treated as outpatients, and none received any type ofmedication

beyond symptomatic treatment such as non-steroidal anti-in-

flammatory drugs or acetaminophen. This longitudinal study of

a unique cohort permitted a causal analysis of pre-existing im-

mune system differences and their significance in molecular

and clinical sex differences observed during SARS-CoV-2

infection.

RESULTS

All SARS-CoV-2 infected participants were asymptomatic or had

mild infection, with none requiring hospitalization or resulting in

death. Infected females weremore often symptomatic thanmales

(OR: 1.68, 95% CI: 1.17–2.41, p = 0.004, Wald test). In addition,

infected females were more likely to have a fever, defined as a re-

corded temperature greater than 100.4. Females reported a

higher rate of each of 13 symptoms surveyed, including shortness

of breath and decreased smell/taste, and had a higher total num-

ber of unique symptoms (3.3 ± 4.3 in females, 1.6 ± 2.8 in males,

p = 1.72e�5, Mann-Whitney U test; Figure 1A). The differences in

fever rate suggest that the relationship of sex toSARS-CoV-2 clin-

ical outcomes are not due to reporting bias. We previously per-

formed a phylogenetic analysis of SARS-CoV-2 sequences

recovered from more than 600 infected participants and found

thatmost recruits were infected by one of 5monophyletic clusters

(Letizia et al., 2020; Lizewski et al., 2022). Higher symptomatic

rates in females were consistent across these virus clusters, sug-

gesting that the symptom-sex association did not result from viral

genetic variability (Figure S2).

Viral load when subjects were first identified as SARS-CoV-2

PCR positive by quantitative RT-PCR as previously described

(Letizia et al., 2021) was estimated by probe cycle threshold

(CT) levels. Females showed an average 2.6-fold lower viral

load than males, having an average CT value of 26.3 ± 6.343

compared with 24.9 ± 5.633 in males (p = 0.007, Mann-

WhitneyU test; p = 0.015 ANOVA after controlling for appropriate

covariates; see method details and Figure 1B). Beyond the initial

PCR-positive sample, viral load measurements were too sparse

and too heterogeneous in time for reasonable comparison.

To explore the relationship of host states and sex differences

in the effects of SARS-CoV-2, we analyzed 839 whole-blood

samples from 310 participants (255 male and 55 female) by

RNA-sequencing for gene expression and alternative splicing,

and 397 serum samples from 106 participants (93 male, 13 fe-

male) by a proteomics inflammation panel of 92 analytes (Olink

assay). Assays were performed at time points both before (base-

line) and during (first/mid) SARS-CoV-2 infection, providing the

opportunity to investigate sex differences in immune states

both preceding and during acute infection (STAR Methods; see

Figure 1C). We determined the significant multi-omic changes

observed during infection, grouping them according to whether
they were observed in both sexes (sex-independent), signifi-

cantly greater in one sex (M/F-biased), or observed only in one

sex (M/F-specific).

We identified sex-specific molecular signatures for gene

expression, alternative splicing, and immunoproteomics (Fig-

ure 2A). In particular, differential expression of 525 genes and dif-

ferential splicing of 594 sites was found during infection only in

males, whereas 346 genes and 270 sites were modulated only

in females. Among 92 immune mediators assayed by proteomic

analysis, 3 were regulated only in males and 6 only in females

(see Figure S3 and Table S2). Both the gene expression and

the alternative splicing sex-specific signatures were strongly en-

riched in an immune response pathway module when analyzed

in the context of the HumanBase functional network (Wong

et al., 2018; Greene et al., 2015) (Figure 2B; see method details).

Many of these immune response genes are sex-biased or sex-

specific, and there are more genes in the enriched immune

response set in females than males across both the differential

expression (females n = 360; males n = 98) and alternative

splicing (females n = 391; males n = 325) analyses, with an espe-

cially marked difference in the differential expression networks.

This suggests a broadly stronger transcriptional and post-tran-

scriptional immune response to acute SARS-CoV-2 infection in

females.

Sex-based divergence in the immune responses to SARS-

CoV-2 infection was seen in the alternative splicing of the protein

tyrosine phosphatase receptor Type C (PTPRC) gene, a key

immune cell signaling gatekeeper (Courtney et al., 2019). The

isoform variations of CD45 (the protein product of PTPRC) are

specific markers for immune cell groups (Charbonneau et al.,

1988). Compared with pre-infection, females had a significantly

higher induced percent spliced in (PSI) of PTPRC exon 6 during

infection (baseline PSI = 0.335 ± 0.130, mid PSI = 0.385 ± 0.078,

FDR = 3.765e�5), a regulatory event that was not observed in

males (Figure 2C). Exon 6 inclusion is necessary for two CD45

isoforms, CD45RABC and CD45RBC, which identify functionally

distinct subsets of B cells and T cells, respectively (Rodig et al.,

2005; Fukuhara et al., 2002; McNeill et al., 2004). Thus, this mo-

lecular splicing regulation of PTPRC, consistent with alterations

in the immune cell repertoire in response to SARS-CoV-2 infec-

tion, is restricted to females.

Transcriptional differences between the sexeswere also wide-

spread, and given that the strength of the interferon response

correlates inversely with the severity of SARS-CoV-2 infections

(Del Valle et al., 2020; Hadjadj et al., 2020; Gadotti et al., 2020),

we analyzed the differential expression of interferon-stimulated

genes (ISGs) as a potential source of sex divergence in SARS-

CoV-2 infection responses. Using a published list of ISGs

(Schoggins et al., 2011), we found higher ISG expression in

females versus males during SARS-CoV-2 infection (first

p = 6.88e�09,mid p = 1.87e�14,Mann-Whitney U test). Further-

more, although ISGs were significantly induced in both

sexes during infection (GSEA normalized enrichment scores

[NESs] > 2.2 and p values < 1e�4 for all analyses), the extent

of induction was significantly higher for females compared with

males (first p = 0.0207, mid p = 3.49e�13, Mann-Whitney U

test; Figure 2D). No pathway from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database had higher enrichment

scores than ISGs in any of the comparisons, indicating ISGs
Cell Systems 13, 924–931, November 16, 2022 925



Figure 1. Analysis of sex divergence in clinical measurements

(A) The fraction of each reported symptom for infected females (n = 137) and males (n = 1,033). Statistical significance was tested using the chi2 independence

test. Statistical significance: ***p < 0.001, **p <0.01, *p < 0.05.

(B) Initial viral load, measured by probe CT and averaged across the S, N, and ORF1ab genes, between females and males. Statistical significance was tested by

the Kolmogorov-Smirnov test.

(C) Clinical data and biospecimens were collected longitudinally for each subject. Samples were labeled ‘‘baseline’’ if they tested negative for SARS-CoV-2, the

first PCR-positive sample from each infected individual was labeled ‘‘first,’’ and any subsequent PCR-positive sample was labeled ‘‘mid.’’ Subjects were followed

throughout infection, and any PCR-negative samples taken after infection were labeled ‘‘post.’’
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play a key role in the transcriptional response to SARS-CoV-2

infection (see Table S3 for details).We also investigated inter-

feron response levels before infection. Although serum levels

of interferons were undetectable before infection by Luminex as-

says in most participants, we observed baseline ISG expression

differences between uninfected males and females. Of the 172

differentially expressed ISGs, over 75% (n = 131) are overex-

pressed in females (FDR = 0.05 Mann-Whitney test with

Benjamini-Hochberg multiple hypothesis correction). Even after

correcting for cell type proportion differences between the

sexes, a robust signal of increased ISG expression in females re-

mained (examples in Figure 3A; full table in Table S4). Overall

baseline ISG expression was also significantly higher in females

(rank-based enrichment p value p = 9.203e�30; Figure 3B). We

replicated this observation in two independent studies of cohorts

including a broad range of ages, comprising blood RNA-seq da-

tasets from 922 (Battle et al., 2014) and 1,848 individuals (Wright

et al., 2014) (Figures 3C and 3D). Both cohorts also showed sig-

nificant enrichment of ISGs among genes with higher expression

in females (p = 4.802e�25 and p = 3.780e�8, respectively), con-

firming higher baseline ISG expression levels in females across

cohorts.
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To functionally characterize these baseline sex-based differ-

ences in ISGs, we performed factor analysis identifying repro-

ducible latent variables (LVs), four of which showed high correla-

tion (Pearson’s R > 0.7) across all three cohorts. These LVs

correspond to the Type I interferon response (top enriched

pathway: Hallmark interferon alpha response), Type II (top en-

riched pathway: Hallmark interferon gamma response), neutro-

phil-associated (highly correlated with PLIER [Mao et al., 2019]

estimated neutrophil proportion), and other (no clear association

with known interferon groups) (details in Figure S4 and method

details). Three of these LVs, representing Type I, Type II, and

neutrophil-associated ISGs, were significantly more expressed

in females (p < 5e–4 for all; Figure 3A) prior to SARS-CoV-2 infec-

tion. Thus, in addition to a stronger transcriptional and post-

transcriptional immune response during SARS-CoV-2 infection,

females show higher baseline levels of ISG expression, specif-

ically Type I, Type II, and neutrophil-associated ISGs.

To identify whichmolecular mediators before and during infec-

tion underlie sex differences in the responses to SARS-CoV-2

infection, we performed mediation analyses (Imai et al., 2010)

(Figure 4). Mediation analysis is a causal inference framework

to test whether variables, such as pre-infection antiviral ISG



Figure 2. Multi-omic integrative analysis of the sex-dependent molecular responses to SARS-CoV-2 infection

(A) The number of sex-dependent molecular variations upon SARS-CoV-2 infections discovered using gene expression, alternative splicing, and proteomics.

(B) Sex divergence of gene expression and alternative splicing visualized in the virus response module of a tissue-specific functional network. Each node

represents a gene, with its size proportional to its connectedness in the network. Clusters shown here represent the immune response genes from males

(left) and females (right) with differential expression (top) and differential alternative splicing events (bottom) during SARS-CoV-2 infection. This network is

constructed by probabilistically integrating a compendium of thousands of public omics datasets to provide functional maps of biological processes and

pathways. Projecting each sex-specific signature onto this network reveals significant enrichment of the immune response module in both gene expression and

alternative splicing.

(C) Box-and-whisker plot of exon inclusion changes of PTPRC exon 6 upon SARS-CoV-2 infection in females (n = 55) andmales (n = 255) throughout the infection

course. The white circles represent the mean, the center line shows the median, and the upper and lower edges of the boxes represent the upper and lower

quartiles, respectively. The differential splicing of PTPRC will alter the protein product of PTPRC, known as CD45, in females.

(D) ISGs are significantly enriched in both males and females during COVID-19 infection but significantly more so in females as shown by the higher normalized

enrichment score (NES) from gene set enrichment analysis. Colored bars below the x axis represent ISG locations within the list of all differentially expressed

genes, ordered by fold change from baseline samples. p value calculated using the Mann-Whitney U test.
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signatures, contribute significantly to sex-specific differences in

infection response, such as number of symptoms (see STAR

Methods for details; mediation diagram in Figure S5, full list of

tested mediators in Table S5). Under this framework, the inde-

pendent variable is male or female sex, and we test the media-

tion of the four ISG LVs on several different molecular and clinical

outcomes, including CD45 splicing, viral load, and number of

symptoms, while controlling for race and ethnicity as potential

confounders (multiple-mediator analysis results in Figure S6).

This analysis found that higher pre-infection levels of the LV-rep-

resenting neutrophil-associated ISGs in females mediated the

higher levels of these immune response genes seen in females

during infection. The pre-infection neutrophil-associated LV

also mediated a suppression of the sex bias in the number of

symptoms reported at the time of the first positive PCR test, indi-

cating the presence of additional baselinemediating factors. Sex

bias in symptoms was significantly mediated by the levels of

Type I and Type II ISGs during infection, consistent with inflam-
matory responses triggered by interferons (McNab et al., 2015;

Goel et al., 2021). The relationship of ISGs during infection and

viral load is unclear because of feedback loops that violate the

assumptions of mediation analysis (Sa Ribero et al., 2020). How-

ever, we did detect a trend of baseline Type II ISGsmediating sex

differences in viral loads (p = 0.040, FDR 0.128). Finally, the

higher induced CD45 isoform splicing in response to infection

in females was mediated by pre-infection neutrophil and Type

II ISGs and was suppressed by the ‘‘other’’ ISG LVs. Overall,

the mediation analysis demonstrates for the first time that sex

differences in molecular and clinical responses to acute SARS-

CoV-2 infection can be causally attributed to pre-infection immu-

nological sex differences. This suggests that exterior factors

such as comorbidity levels and social behaviors are not enough

to explain the persistent, significant differences between the

response to SARS-CoV-2 infection between males and females,

but inherent immune system differences that are evident in

healthy adults are a significant contributing factor.
Cell Systems 13, 924–931, November 16, 2022 927



Figure 3. Higher baseline ISG expression observed in females in CHARM and in reference datasets

(A) Themajority of ISGs are significantly different between sexes in baseline samples. A subset of ISGs that remain statistically significant after cell type correction

is shown (see Table S3 for full list), colored by the sex with higher expression. An orange marker represents genes with higher expression in females and blue

represents genes with higher expression among males. Point size is proportional to the log fold change of expression between sexes.

(B–D) (B) ISGs are more highly expressed in females in CHARM baseline samples and two independent studies, (C) Depression Genes and Networks (DGN) (n =

922), and (D) Netherlands Study of Depression and Anxiety (NESDA) (n = 1,848). Vertical bars represent ISG locations among gene lists sorted by log fold change

between females and males. Fold enrichment is a measure of the observed versus expected number of ISGs present at each gene rank. p values are computed

from rank-based enrichment.
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DISCUSSION

Although females show a better overall outcome after SARS-

CoV-2 infection, we find higher symptom rates in females which

echoes the higher female rate of side effects to SARS-CoV-2

vaccination (Gee et al., 2021). Females having a lower viral load

suggests that their immune response to SARS-CoV-2 infection

is more effective, consistent with the widely observed better

COVID-19 outcomes among females (Scully et al., 2020). The

increased symptoms seen in females in this young, healthy cohort

may reflect a more proactive innate response that lessens the

spread of infection. These observations parallel those in other

viral infections, with lower viral load observed in females infected

with human immunodeficiency virus (HIV) (Meier et al., 2009) and

hepatitis B virus (Klein and Flanagan, 2016) and better female

outcomes observed for SARS-CoV and Middle East respiratory

syndrome-related coronavirus (MERS-CoV) (Matsuyama et al.,

2016; Karlberg et al., 2004).

Previous studies of sex differences in immunology and SARS-

CoV-2 have focused on changes observed after infection. Sex dif-

ferences in both innate and adaptive immune responses during
928 Cell Systems 13, 924–931, November 16, 2022
infection have been reported (Takahashi et al., 2020; Ren et al.,

2021). Taking advantage of longitudinal sampling commencing

before infection on a large number of participants, we are able

to detect baseline immune sex differences that contribute to the

sex bias in SARS-CoV-2 infection responses. The differences in

pre-infection interferon signaling state implicated in the response

sex bias are consistent with the relationship previously observed

between disease severity and innate immune system variability

(Schultze and Aschenbrenner, 2021), although they have never

been causally linked before. In order to draw strong causal con-

clusions from our analysis, they assumption of sequential ignora-

bility is required (Imai et al., 2010). Sequential ignorability has two

components: first, we assume that the exposure assignment is

statistically independent from the outcomes, given the mediators

and confounders, and second, we assume that the mediator is

conditionally independent of the outcome, given the exposure

and confounders, i.e., there are no unmeasured mediator-

outcome confounders (VanderWeele, 2016). The first piece,

essentially randomization of exposure assignments, is easily

satisfied in our analysis because sex has not been assigned

based on any measured factor. The next piece of sequential



Figure 4. Mediation analysis of the relationship between sex, ISGs, symptoms, and CD45 splice variant pre- and post-infection

(A) Causal mediation analysis was performed to test the mediation effects between pre-infection ISGs to post-infection molecular and clinical responses, as well

as post-infection molecular responses to clinical responses. A stacked bar chart summarizes the full mediation results, with stars marking statistically significant

mediation results (average causal mediation effect [ACME] p < 0.05).

(B) Pre-infectionmolecular and clinical measurements were separated from post-infection measurements. Selected significant results of mediation analysis were

presented as a directed graph. Edges represent mediation or suppression effects.
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ignorability is a much stronger assumption, and in general, it is

difficult to know for certainwhether the ignorability of themediator

holds even after researchers collect as many pretreatment con-

founders as possible. Such an assumption is often referred to

as nonrefutable because it cannot be directly tested from the

observed data (Manski, 2007).

Study of sex differences in COVID-19 is challenging because

of variations in age, basal health and physical fitness, disease

progression, and heterogeneity of diagnosis timing and treat-

ment. Although around 90% of the participants in our study

were male, the total number of females still allowed for meaning-

ful comparisons and sufficient statistical power. Our study is

limited to young healthy adults and did not include severe

COVID-19, allowing us to tightly control for baseline health levels

but limiting our ability to draw conclusions about severe disease.

This large relatively homogeneous cohort of young Marine re-

cruits exposed to the virus under similar basic training conditions

minimizes the influence of age, comorbidities, race, ethnicity,

and environmental confounders which allowed identification of

the causal contribution of baseline immunological sex differ-

ences to the molecular responses and symptoms caused by

SARS-CoV-2 infection.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

RNA sequencing Illumina N/A

Proximity Extension Assay Olink Target 96 Inflammation panel

PCR testing for SARS-CoV-2 Thermo-Fisher TaqPath COVID-19 Combo Kit

Deposited data

RNA-sequencing This paper GEO: GSE198449

Software and algorithms

Mediation package Tingley et al., 2014 https://cran.r-project.org/web/packages/mediation/

Other

Proximity Extension Assay Soares-Schanoski et al., 2022 Table S5

DGN RNA-sequencing dataset Battle et al., 2014 Available by application through NIMH Center

for Collaborative Genomic Studies on Mental Disorders

NESDA RNA-sequencing dataset Wright et al., 2014 Available by application through dbGaP
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Olga G.

Troyanskaya (ogt@genomics.princeton.edu).

Materials availability
This study did not generate new materials.

Data and code availability
d Source data statement: RNA sequencing data have been deposited at theGene Expression Omnibus and are publicly available

as of the date of publication. Accession numbers are listed in the key resources table. Additional Supplemental Items are avail-

able from Mendeley Data: https://doi.org/10.17632/7xmbpz6p2f.1

d Code statement: This paper does not report original code.s

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Details of the human subjects who participated in this study can be found in this paper’s study design section of the method details,

and in supplemental information (Figure S1). This study was approved by the Naval Medical Research Center (NMRC) institutional

review board (IRB), protocol number NMRC.2020.0006, in compliance with all applicable U.S. federal regulations governing the pro-

tection of human subjects.

METHOD DETAILS

Study design
The COVID-19 Health Action Response forMarines (CHARM) prospective study enrolled 3,326Marine recruits entering basic training

at Parris Island, South Carolina fromMay to November, 2020. All study participants were tested for SARS-CoV-2 by PCR, had serum

drawn to assess antibody status, andwere administered a symptom questionnaire as well as demographic information at enrollment,

and approximately 7, 14, 28, 42, and 56 days afterward. The majority of this cohort has been described in previous studies (Letizia

et al., 2020, 2021).
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Individuals who were seropositive or missing serology data upon enrollment were removed from this analysis. Among the remain-

ing 2,885 consented participants, 2,641weremales and 297were females (details in Figure S1). Intersex, transgender, and nonbinary

individuals are not represented in this study. Biospecimenswere sequenced by Illumina short read sequencing at an average depth of

25 million paired-end reads of 101 bp in length. In total, an average of n=3.17 RNA-seq samples per person were sequenced.

SARS-CoV-2 quantitative PCR testing was performed in mid-turbinate nares swabs and were performed within 48 h of sample

collection at high complexity Clinical Laboratory Improvement Amendments-certified laboratories using the US Food and Drug

Administration-authorized Thermo Fisher TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, MA, USA). Lab24Inc

(Boca Raton, FL, USA) performed PCR testing from study initiation (May 11, 2020) until Aug 24, 2020, and the Naval Medical

Research Center (Silver Spring, MD, USA) from Aug 24, 2020, until the conclusion of the study (Nov 2, 2020).

Depending on the infection status determined by PCR testing, RNA-seq samples were annotated to four distinct stages. RNA-seq

samples from initial enrollment with negative PCR tests (PCR-) were annotated as Baselines. The RNA-seq samples at the first time a

participant turned PCR+ were annotated as first-time infection, or first. Following the initial PCR+, all subsequent RNA-seq samples

while the participant remained PCR+ were annotated Mid. Finally, the RNA-seq samples from the participants that turned PCR- after

infection were annotated as Post.

Clinical feature analysis
Study participants self-reported symptoms and had temperatures checked at each study time point, regardless of PCR test result as

part of the longitudinal testing. Participants were asked to report any symptoms experienced since the previous visit or during the

previous two weeks. Symptom reporting fell into 14 total categories: abdominal pain, chills, cough, decreased taste or smell, diar-

rhea, fatigue, feeling feverish, headache, muscle ache, nausea/vomiting, runny nose, shortness of breath, sore throat, and other. A

participant was considered ‘‘Symptomatic’’ if fever over 100.4 wasmeasured or at least one symptomwas reportedwithin 2weeks of

the first positive PCR test. Statistical significance in the different proportions of symptom incidence between males and females was

computed with a Chi-square test of independence.

Viral load measured by probe cycle threshold (CT) when each participant first turned PCR+ was analyzed by ANOVA for sex diver-

gence. The statistical significance for biological sex was determined by Mann-Whitney U test, as well as by ANOVA when controlling

for results obtained from two different CLIP/CLIA certified laboratories running the ThermoFisher Emergency Use Authorization

SARS-CoV-2 assay and different months the participants were infected.

RNA-seq preprocessing
A uniform pipeline was used to process all RNA-seq fastq files. STAR (v2.7.4) (Dobin et al., 2013) was used to align the reads to hg38

genome build with Gencode v34 index. To quantify gene expression levels, kallisto (v0.46.0) (Bray et al., 2016) was used to pseudo-

align RNA-seq reads to Gencode v34 transcripts (Harrow et al., 2012). Throughout this study, Gencode v34 genome annotation was

used as the reference gene annotations wherever applicable.

Differential gene expression analysis
Due to the large difference in sample sizes of males and females in this study, differential gene expression analysis was performed

within each sex separately. Transcript expression quantifications from kallisto were aggregated to gene level with the tximport

(v1.14.2) (Charlotte Soneson et al., 2015) package, and differential gene expression analysis was carried out with DESeq2 (v1.26)

(Love et al., 2014), comparing samples of each sex in the First category to Baseline and Mid to Baseline. All participants with sero-

positive results or missing serology data at baseline were removed prior to analysis. The study design controlled for plate number to

minimize batch effects from the RNA-seq processing.

Gene set enrichment analysis was performed with a published list of interferon stimulated genes (ISGs) (Schoggins et al., 2011)

through GSEApy (v0.10.4) (Fang). For each sex and time annotation, the prerank module was used to compute the ISG enrichment

within the background of all differentially expressed genes (DEGs) for the given sex and time comparison (e.g. First vs. Baseline in

Female samples). DEGswere defined by an adjusted p-value (according to the Benjamini-Hochbergmethod) below 0.05 and ordered

by their log fold change. The p-values comparing enrichment scores between males and females were computed by randomly

selecting n=10,000 sets of genes of the same length as the ISG list, computing their enrichment scores in males and females,

and counting the number of times there was an equal or greater enrichment score difference as seen in the ISG comparisons.

Differential alternative splicing analysis
Two complementary approaches leveraging different aspects of RNA-seq reads to quantify percent spliced in (PSI) were employed

to reduce potential counting bias. Using genome read alignment generated by STAR as input, the junction read counts for alternative

splicing events were counted by DARTS/rMATS-turbo (Zhang et al., 2019; Shen et al., 2014). Using the transcript quantifications

generated by kallisto as input, the ratio between long and short isoforms were computed by SUPPA2 (Trincado et al., 2018). We

analyzed four basic types of alternative splicing events, i.e., skipped exons, alternative 5’ splice sites, alternative 3’ splice sites,

and retained introns.

To identify the alternative spliced exons upon SARS-CoV-2 infection, we employed a linear mixed model (LMM) regression model

implemented in Python library statsmodels (v0.11.1) (Seabold and Josef Perktold, 2010). Similar to DEG analysis, splicing analysis

was performed within each sex separately. The LMM regressed the logit-transformed exon usage measured by PSI to disease stage
Cell Systems 13, 924–931.e1–e4, November 16, 2022 e2
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and potential confounding factors. To control for potential batch effects, the RNA-seq plate numbers were included in the regres-

sion model.

Fixed-effect regression coefficients and random-effect variance components were estimated by statsmodels. Statistical signifi-

cance was determined by Wald tests and p-values were multiple testing corrected by Benjamini-Hochberg False Discovery Rate

(FDR). Alternative splicing events with FDR<0.05 were called as statistically significant.

O-link processing and analysis
For proteomic analysis we used the OLINK commercially available assay, as described previously (Lundberg et al., 2011). We heat-

inactivated serum samples and the OLINK analysis were performed at the Human Immuno Monitoring Core at the Icahn School of

Medicine, Mount Sinai, New York. For the assay, paired cDNA-tagged antibodies against different analytes were used to target the

proteins in the sera. The protein level was quantified by real-time PCR, after DNA oligonucleotides hybridization and extension.

Finally, the results were submitted to rigorous quality control.

Sex divergence was computed for each protein by comparing the NPX values in males and females in the Baseline, First, and Mid

categories via a Mann-Whitney test. Any protein with a significant difference between sexes after multiple hypothesis testing at

FDR=0.05 with the Benjamini-Hochberg method was considered sex-specific. Among these sex-specific proteins, each was as-

signed to male-specific or female-specific groups based on which sex had a higher median NPX value in the significant comparison.

A list of all 9 sex-specific proteins is provided in Table S1.

Cell type proportion correction
Cell type proportions were estimated from the bulk RNA-seq data using CIBERSORTx (Newman et al., 2019), with the built-in LM22

reference covering 22 immune cell types. Baseline ISG expression differences between the sexes were determined by linear regres-

sion analysis with each of the 22 cell types as covariates to control for their confounding effects. FDRwas controlled at a level of 0.05

with the Benjamini-Hochberg procedure.

Sex-biased and sex-specific labeling
For the creation of tisue- and sex-specific networks from the DEG analysis, genes were first filtered down to only those with an

adjusted p-value below 0.05 and log2 fold change greater than 0.5 in at least one of the four DEG analyses (Male/Female, First/

Mid vs Baseline). For each gene in this group, normalized TPM values were compared between males and females for each of Base-

line, First, and Mid categories with a Mann-Whitney test, and then multiple hypothesis testing was performed with the Benjamini-

Hochberg procedure at an FDR=0.05. Genes that did not pass this statistical testing for any of the three time categories (Control,

First, and Mid) were considered sex-independent. Those that showed significant differences in expression between the sexes

were further categorized into sex-biased and sex-specific groups. The sex-specific groups include genes that are only significantly

differentially expressed (adjusted p-value < 0.05) in one of the two sexes. Genes that were significant in both groupswere categorized

as sex-biased based on which sex had higher log fold change (First/Mid) or TPM (Baseline) values in the category with significant sex

differences. This resulted in many more genes in the female-biased group than the male-biased group, a pattern which persisted

even with down-sampling the male samples to the same number as the females.

We adopted a similar approach to partition sex-dependent differentially spliced exons. The exons were filtered down to adjusted

p-values below 0.05 and absolute delta PSI values larger than 1% in at least one of the four DAS analyses (Male/Female, First/Mid

vsBaseline).Mann-Whitney testwasused tocompare thePSIvalues for each testedexonbetweenmalesand females for eachofBase-

line, First andMidcategoriesandp-valueswerecorrectedbyFDR.Exonsweredivided intosex-independent, sex-biased, andsex-spe-

cific similarly to DEGs, with the followingmodification: exons were assigned to sex-biased group based on which group had the larger

absolute delta PSI (First/Mid) instead of log fold change. To determine the sex dependency on the gene level withmultiple differentially

splicedexons, the hierarchywas followedas sex-specificexons>sex-biasedexons>sex-independent exons. That is, a genewassex-

specific as long as at least one of its exons was sex-specific, regardless of the definition of other exons. Thus, it is possible that a gene

was defined as both female- and male-specific differentially spliced due to the existence of female- and male-specific exons.

Functional network analysis
Functional networks in HumanBase (Wong et al., 2018; Greene et al., 2015) were used to analyze the tissue-specific networkmodules

and functional annotation enrichment for male- and female- differentially expression and spliced genes, i.e., the union of sex-biased,

sex-specific, and sex-independent spliced gene lists. Detected modules for male and female expression and splicing signatures

were analyzed for the enriched Gene Ontology (GO) terms. In each of the four analyses corresponding to each sex with DEGs

and DAS events, there was a functional module related to virus response and immune activation, with representative GO terms

such as ‘‘response to virus’’, ‘‘innate immune response’’, and ‘‘leukocyte activation’’. We focused on this module from each network,

comparing the numbers of sex-independent and sex-dependent genes.

Independent cohorts: DGN and NESDA
TheDGNcohort includesa transcriptomic studyofwholebloodsamples from922 individuals (Battle et al., 2014). Thecohort consists of

274male and648 femaleEuropean individualswithanaverageageof 44.70, ranging from21 to60.Wedirectly used the ‘‘trans’’ normal-

ized data as described in Battle et al. (2014) which were normalized for known technical factors and genotype principal components.
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The NESDA (Netherlands Study of Depression and Anxiety) cohort (Wright et al., 2014) was available from dbGAP (phs000486.v1)

including 1,848 transcriptomic samples. This cohort includes 1241 female and 607male adults from18 to 65 years old,with an average

age of 41.78. The NESDARNA-seq data was normalized for available technical factors and first three genotype principal components.

Interferon-stimulated gene (ISG) analysis
A list of 362 ISGs was acquired from a previous study characterizing interferon response (Schoggins et al., 2011). One gene

(FLJ23556) was unable to be mapped to our data, therefore all ISG analysis is performed with the 361 remaining genes. Baseline

expression differences between males and females were computed using TPM values normalized by the counts function of DESeq2

(Love et al., 2014). For each participant with multiple samples, normalized TPM values were averaged to give only one baseline value

per gene per study participant. Statistical testing was performed with the Mann-Whitney test, and multiple hypothesis tests were

performed with an FDR of 0.05 and the Benjamini-Hochberg procedure.

Gene set enrichment analysis was performed with the prerank function of the gseapy package (Fang). The 2021 KEGG pathway list

was used for comparison with ISGs. The KEGG pathway analysis showed that female comparisons tended to result in higher normal-

ized enrichment scores (NES), so to control for this bias we performed a permutation test for the NES difference observed with ISGs.

For both First and Mid, we randomly selected n=10,000 sets of 361 genes and computed NES values for males and females with

these random gene sets. The NES difference p-value is therefore computed as the fraction of times we observed a F-M difference

greater than or equal to that of the ISG difference for the given annotation (First p = 0.2235; Mid p = 0.0328).

In order to determine the relative enrichment of ISGs in genes with significant sex differences at baseline, we computed the log fold

change of all genes between females andmales. Genes were then ranked by log fold change, and we compared the rankings of ISGs

to the background of all genes with significant differences between the sexes, excluding ISGs. ISGs were significantly enriched for

increased expression in females across all three cohorts (CHARM p=9.203e-30; DGN p=4.802e-25; NESDA p=3.780e-8).

We performed matrix factorization using the ‘simpleDecomp’ function from the PLIER package (Mao et al., 2019) on the ISGs from

three blood datasets (CHARM, DGN, and NESDA) to identify 10 ISG latent variables (LVs). In order to find ISG patterns that were

robust across datasets we computed the Pearson correlation of the loadings for each CHARM LV with the loadings of the other

two datasets, retaining the maximum value. LVs that had a mean inter-dataset correlation above 0.7 were considered highly repro-

ducible across datasets (Figure S4).

The four highly reproducible LVs were annotated based on pathway enrichment and the top-ranked genes with respect to the cor-

responding loading values. LV6 is highly enriched with the ‘‘Hallmark interferon gamma response’’ pathway (p=3.816e-16), and inter-

feron gamma associated genes, e.g, GBP1, GBP4 and GBP5, so it was annotated as the Type II interferon cluster. LV10

shows a similar expression pattern as LV6 with a distinct list of genes including IFI6, MX1, IFIT1, ISG15, and was most enriched

for the ‘‘Hallmark interferon alpha response’’ pathway (p = 2.217e-19). LV10 was therefore annotated as the Type I interferon cluster.

Top-ranked genes of LV3 include known neutrophil genes, such as IL1RN, IL1R1, and MAP3K5, and it is highly correlated with

neutrophil proportion estimated from bulk RNA-seq using PLIER (Mao et al., 2019). We called LV3 the Neutrophil-associated cluster.

LV5 has no clear association with known interferon groups, and we annotated it as Other.

Mediation analysis

The relationships between biological sex, symptoms, and molecular variations were tested by a causal mediation statistical frame-

work implemented in the R package ‘mediation’ (33). Briefly, the mediation analysis leveraged a potential outcome framework to

partition the total effect from exposure variable (in this case, sex) to outcome variables as the sum of causal mediation effect and

direct effect. When the mediation effects had opposite signs as the total effect, the tested mediation variable was deemed as having

suppression effect to the outcome. Average causal mediation effects (ACME) were estimated by a model-based approach that

sampled counterfactual outcomes; statistical inference was drawn against the null hypothesis where the average causal mediation

effect was zero. In this study, mediators with ACME p-value < 0.05 were considered as statistically significant.

We performed this statistical analysis for the following combinations of outcomes and mediators: 1) outcome is number of symp-

toms at the time of first PCR positive and mediator is each of the pre-infection ISG latent variables (LVs); 2) outcome is the initial viral

load and mediator is each of the pre-infection ISG latent variables (LVs); 3) outcome is the induced CD45 splice level and mediator is

each of the pre-infection ISG LVs; 4) outcome is each of the post-infection ISG LVs andmediator is each of the pre-infection ISG LVs;

5) outcome is the number of symptoms throughout infection and mediator is each of the post-infection ISG LVs.

If the dependent variable (i.e., outcome and mediator) was continuous, a linear regression was used to model the relationships; if

the dependent variable was discrete counts, a Poisson regression was used. For test conditions 4 and 5 described above, we

included the number of days since each participant initial infection as a covariate to adjust for the time of sample collections after

infection. Furthermore, to model multiple samples from the same participant, random effects for each participant were introduced

to both the linear regression of post-infection ISG LVs and the Poisson regression of symptoms.

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical tests used for computational tests are explained in each subsection of the STARMethods. Inclusion and exclusion criteria

are described in the study design section of the method details.
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