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Neurotransmitter release by Ca2+-triggered synaptic vesicle exocytosis is

essential for information transmission in the nervous system. The soluble

N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs)

syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to

bring synaptic vesicles and the plasma membranes together and to catalyze

membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle prim-

ing via orchestrating neuronal SNARE complex assembly. In this review,

we summarize recent advances toward the functions and molecular mecha-

nisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex

assembly, and discuss the functional similarities and differences between

Munc18-1 and Munc13-1 in neurons and their homologs in other intracel-

lular membrane trafficking systems.

Neurotransmitter release by Ca2+-triggered synaptic

vesicle exocytosis is an exquisitely regulated process

essential for information transmission in the nervous

system [1–3]. Under resting conditions, most newly

formed and recycled synaptic vesicles are stored in the

cytoplasm of the nerve terminal. A subset of synaptic

vesicles can be attached to specialized sites at the

presynaptic active zones, where a number of multido-

main proteins constitute a scaffold platform to mediate

vesicle tethering and docking [4,5]. To achieve fast

exocytosis, docked vesicles require maturation into a

‘priming’ state that involves a population of ‘ready-

for-fusion’ vesicles corresponding to the readily

releasable pool (RRP) [6–8]. When an action potential

arrives at the axon terminal, Ca2+ influx triggers

primed vesicles to fuse with the presynaptic membrane

in the millisecond timescale [9,10].

The core release machinery governing synaptic vesicle

exocytosis consists of components that belong to protein

families involved in most types of intracellular membrane

trafficking systems and with conserved roles in membrane

fusion, including the AAA+ ATPase N-ethylmaleimide

sensitive factor (NSF), soluble NSF adaptor proteins

(SNAPs), the SNAP receptors (SNAREs), Sec1/Munc18-

like (SM) protein Munc18-1, and complex associated with

tethering containing helical rods (CATCHR) family
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protein Munc13s [11–13]. In addition, the release machin-

ery contains specialized components such as synaptotag-

mins and complexins, whose functions and mechanisms in

regulating Ca2+-triggered synaptic vesicle fusion have been

reviewed previously [14–16]. The neuronal SNAREs serve

as the engine of the release machinery, as their assembly

into the SNARE complex provides energy for membrane

bridging and fusion [17,18]. Tight control and regulation of

SNARE complex assembly by regulatory components are

the prerequisites for synaptic vesicle fusion occurring at the

right place, at the right time, and with the right probability.

Priming of synaptic vesicles is believed to be a hall-

mark of synaptic vesicle exocytosis, which involves

activation and regulation of SNARE complex assem-

bly. Recent advances toward the structural insights,

intermolecular interactions, and functional properties

of the priming components shed new light on under-

standing the molecular mechanism of synaptic vesicle

exocytosis. In this review, we summarize recent pro-

gress on crucial priming apparatus that includes the

SNAREs, Munc18-1, and Munc13s—focusing on the

functional properties and molecular mechanisms of

Munc18-1 and Munc13-1 in organizing neuronal

SNARE complex assembly—and discuss the functional

similarities and differences between Munc18-1 and

Munc13s in neurons and their homologs in other

intracellular membrane trafficking systems.

The neuronal SNAREs

The neuronal SNAREs syntaxin-1, SNAP-25, and

synaptobrevin-2 contain ~ 65-residue sequences termed

SNARE motifs that are able to form coiled coils [17,19].

Syntaxin-1 and synaptobrevin-2 are anchored at the

presynaptic membrane and synaptic vesicles, respec-

tively, via the C-terminal transmembrane region (TMR)

which is connected to the SNARE motif by a short jux-

tamembrane linker region (JLR). SNAP-25 lacks a

TMR but is attached to the plasma membrane by palmi-

toyl chains bound to cysteine residues in an extended

linker joining its two SNARE motifs. The neuronal

SNAREs assemble into an intertwined and parallel

four-helical bundle called the SNARE complex via their

SNARE motifs [17]. Crystal structure of the neuronal

SNARE complex revealed that the core architecture

contains 16 consecutive layers [20,21], including layers

�7 to �1 in the N-terminal half, layers +1 to +8 in the

C-terminal half, and one central layer 0. These layers

contain predominantly hydrophobic residues, except for

the central layer 0, which comprises one arginine (R)

and three glutamines (Q). The SNARE motifs are

accordingly classified into Qa- (syntaxin-1), Qb- (the first

SNARE motif of SNAP-25), Qc- (the second SNARE

motif of SNAP-25), and R-SNARE (synaptobrevin-2)

[22,23] (Fig. 1A). Phylogenetic and structural analysis

of the SNARE motifs showed that the four SNARE

subfamilies are diverged early during eukaryotic evolu-

tion and revealed a ‘QabcR’ pattern for functional

SNARE complexes e[23–27].
Unlike SNAP-25 and synaptobrevin-2, syntaxin-1

possesses an N-terminal regulatory sequence that is con-

nected to the SNARE motif by a flexible linker region

[28]; this regulatory sequence consists of an N-terminal

short stretch called the N-peptide followed by an

Fig. 1. Structure illustration of the neuronal SNAREs, Munc18-1, and Munc13-1. (A) Crystal structure and domain illustration of the neuronal

SNARE complex. The structure models are fetched from the protein data bank (PDB) by entries of 3HD7 (helical extended neuronal SNARE

complex) and 1EZ3 (Habc domain of syntaxin-1). The SNARE motif of syntaxin-1 (Qa-SNARE, residues 191�253), SNAP-25 (Qb- and Qc-

SNARE, residues 19�81 and 140�202), and synaptobrevin-2 (R-SNARE, residues 29�87) are colored in red, green, and blue, respectively.

The N-peptide (residues 1�10) and Habc (residues 26�146) of syntaxin-1 are colored in bright orange. Transmembrane domains (TMRs) of

syntaxin-1 (residues 266�288) and synaptobrevin-2 (residues 95�114) are colored in orange. The juxtamembrane linker regions (JLRs) of

syntaxin-1 and synaptobrevin-2 are colored in light gray. The S-palmitoyl cysteines of SNAP-25 are indicated as C85, C88, C90, and C92,

respectively. Missing densities in the structural model are supplied by dashed lines. (B) Structural illustration of Rattus norvegicus Munc18-1

with two conformations. The subdomains of Munc18-1 are colored in blue (domain 1, residues 4�134), green (domain 2, residues 135�245

and 490�592), yellow (domain 3a, residues 246�360), and red (domain 3b, residues 361�479), respectively. Left panel displays the ‘bent’

conformation of Munc18-1 that binds to syntaxin-1 (PDB entry: 3C98), where the helix 11 and 12 of domain 3a are folded back. Inset shows

the binding between N-peptide (bright orange) of syntaxin-1 and domain 1 of Munc18-1. Right panel displays the ‘extended’ conformation of

Munc18-1 (PDB entry: 3PUJ), in which helix 11 and 12 are outstretched. (C) Structural illustration of Rattus norvegicus Munc13-1. The

domains and subdomains of Munc13-1 are colored in purple (C2A, residues 1�97), dark blue (calmodulin-binding domain, CaMb, residues

459�492), navy blue (C1, residues 566�616), purple blue (C2B, residues 683�820), blue (MUN-A, residues 859�1005), green (MUN-B, resi-

dues 1006�1167), yellow (MUN-C, residues 1168�1318), bright orange (MUN-D, residues 1319�1531), and red (C2C, residues

1558�1685), respectively. The structural models of C1-C2B-MUN fragment (PDB entry: 5UE8 and 6A30), C2A (dimer form, PDB entry:

2CJT), and CaMb (binding with calmodulin, PDB entry: 2KDU) are fetched from PDB. Two functional regions of the MUN domain, that is,

the hydrophobic pocket (binds to syntaxin-1) and the negative-charged patch (binds to synaptobrevin-2), are highlighted by purple and blue

shadows, respectively. Inset on the left shows the architecture of the intramolecule contacts of C1, C2B, and MUN domain. Inset on the

right shows the interaction between the MUN-D and synaptobrevin-2 (Syb2) JLR.
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antiparallel three-helix bundle called the Habc domain.

As with the SNARE motif, both the N-peptide and the

Habc domain of syntaxin-1 play indispensable roles in

synaptic vesicle exocytosis [29,30]. Although the N-

peptide and the Habc domain are widely found in most

of the Qa-SNAREs [31–34], their regulatory roles and

mechanisms differ among different membrane traffick-

ing systems [32,35–38].

Neuronal SNARE complex assembly

The neuronal SNAREs undergo assembly–disassembly

cycles to fulfill constant exocytosis of synaptic vesicles

[14,39,40]. SNARE complex assembly is assumed to

initiate with a contact of the N-terminal ends of the

SNARE motifs and proceeded with the association of

the four SNARE motifs into the four-helical bundle in

a trans-conformation that includes loose and tight

intermediates underlying different priming states [41–
46] (Fig. 2A). The N- to C-zippering of the trans-

SNARE complex can generate energy to overcome the

repulsion of the opposite membranes thereby bringing

the membranes into close proximity [47–49]. Subse-

quent assembly proceeding over the JLR and TMR of

synaptobrevin-2 and syntaxin-1 is believed to transmit

the energy into the membrane interface, leading to

Fig. 2. Models of SNARE-mediated membrane fusion and synaptic exocytosis. (A) The zippering model with merely the three neuronal

SNAREs. (i) At rest state, syntaxin-1 adopts self-inhibitory conformation; (ii) syntaxin-1 fluctuates between closed and open conformations

and is prone to form a 2 : 1 complex with SNAP-25; (iii) synaptobrevin-2 displaces one copy of syntaxin-1 of the 2 : 1 complex; the N-

termini of the SNARE motifs nucleate together to promote complex assembly; (iv) zippering of the SNARE motifs transfers sufficient energy

into the membrane thus catalyzing membrane fusion. (B) Munc18-1 and Munc13-1 synergistically organize neuronal SNARE complex

assembly and synaptic exocytosis. (i) Munc18-1 captures syntaxin-1 into closed conformation; Munc13-1 bridges the presynaptic membrane

and synaptic vesicle to facilitate synaptic vesicle docking; (ii) Munc13-1 interacts with Munc18-1�syntaxin-1 complex to induce

conformational changes of the syntaxin-1 linker region and Munc18-1 domain 3a, leading to uncaging of the N-terminus of the syntaxin-1

SNARE motif and extension of Munc18-1 domain 3a; in the meantime, Munc18-1 interacts with the C-terminal half of synaptobrevin-2 with

the assistance of the binding between Munc13-1 and synaptobrevin-2 JLR. This intermediate underlies a potential conformational state,

namely the prefusion priming complex; (iii) the N-termini of the SNARE motifs start to nucleate to produce a half-zippered SNARE complex,

which is organized by Munc18-1 and Munc13-1; (iv) full zippering of the SNARE motifs in response to calcium signal is accompanied by the

interplay of complexins/synaptotagmin-1 with the half-zippered SNARE complex (not shown). The color schemes of the neuronal SNAREs

are the same as in Fig. 1. Munc18-1 and Munc13-1 are colored in purple and navy blue, respectively.
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membrane fusion with the conversion of the SNARE

complex from the trans- into a cis-conformation in

which the two TMRs are aligned in parallel in the

plasma membrane [21,50–54] (Fig. 2A). After mem-

brane fusion, the cis-SNARE complex is disassembled

in an ATP-driven manner by NSF and a-SNAP

[55,56]. Once disassembled, free SNAREs are recycled

for another round of synaptic vesicle fusion [57–59].
The SNARE zippering model embodies elegant sim-

plicity and comprehensive unity suitable for most

intracellular membrane trafficking systems. However,

distinguished from most other membrane trafficking

processes, synaptic vesicle exocytosis is extremely fast.

Accompanied by large conformational change and

high energy release [47–49], neuronal SNARE complex

assembly go through multiple and complicated reac-

tions [60], in which the detailed assembly kinetics

and thermodynamics remain elusive. These, therefore,

have raised many intriguing conundrums. First, more

than 40 SNARE homologs have been identified in

mammals, many of which are distributed in different

cellular compartments and specific for different intra-

cellular trafficking pathways [17,27]. This raises an

obvious question as to how the cognate SNAREs rec-

ognize each other to form a functional SNARE com-

plex. Second, in the zippering model, syntaxin-1 and

SNAP-25 are able to form heterodimeric complexes in

the plasma membrane, which bind vesicle-bound

synaptobrevin-2 to initiate trans-SNARE complex for-

mation (Fig. 2A). However, this assembly model faces

several challenges: (a) syntaxin-1 and SNAP-25 are

prone to form a 2:1 ‘dead-end’ complex in vitro, in

which a second copy of syntaxin-1 occupies the posi-

tion of synaptobrevin-2 thus hindering the assembly

kinetics of the SNARE complex [61,62]; (b) isolated

syntaxin-1 prefers to assume a closed conformation in

which the Habc domain folds back to the SNARE

motif to inhibit SNARE complex assembly [63]; and

(b) in vitro lipid mixing driven by the neuronal

SNAREs alone is strongly inhibited by NSF and a-
SNAP[64], owing to the disassociation of trans-

SNARE complexes and/or syntaxin-1�SNAP-25 het-

erodimeric complexes. These findings led to crucial

questions about how nonproductive side reactions and

kinetically trapped intermediates along the assembly

pathway are prevented, and how the assembly is pro-

tected against disassembly factors. Third, the fusion

kinetics obtained from in vitro reconstitution assay

using the SNAREs alone is not comparable to that

observed in vivo. In addition, previous studies reported

that two complementary paired nucleic acid strands

linked by the TMRs of syntaxin-1 and synaptobrevin-

2 could mediate in vitro liposome fusion as well

[65,66]. Another study revealed that artificial coiled-

coil peptides linked by the JLRs and TMRs of the

SNAREs could induce liposome fusion[67]. Therefore,

it is apparent that liposome fusion catalyzed by the

SNAREs alone could not factually reproduce mem-

brane fusion in vivo.

The above considerations indicate a need for crucial

factors to prime the SNAREs and organize SNARE

complex assembly. A wealth of evidence has revealed

that Munc18-1 and Munc13s play a central function in

synaptic vesicle priming via orchestrating SNARE

complex assembly.

Munc18-1

Munc18-1 is a member of the SM family proteins

that have fundamental roles in most types of mem-

brane trafficking processes from fungi to mammals

[68,69]. Loss of Munc18-1 causes severe defects

in neurotransmitter release of Caenorhabditis elegans

motor neurons [70–73] and of mice neocortex and

neuromuscular synapse [74–76], revealing its critical

role in synaptic vesicle exocytosis. Munc18-1 knock-

out mice die immediately after birth. Analysis of the

embryo brain lacking Munc18-1 displayed massive

neurodegeneration after assembly of the neuronal net-

works [74], indicating that Munc18-1 is fundamental

for the development of the nervous system. Munc18-1

has been implicated to participate in synaptic vesicle

docking, priming, and fusion. The diverse functions

of Munc18-1 depend, at least in part, on its capacity

to bind the neuronal SNAREs with multiple confor-

mations [13,68,69].

Crystal structures of Munc18-1 bound to syntaxin-1

revealed that Munc18-1 forms an arch-shaped archi-

tecture with three domains. Domain 3 is divided into

two subdomains, that is, domain 3a and 3b. Domain 1

and domain 3a jointly create a central cavity to

accommodate the Habc domain and the SNARE motif

of syntaxin-1 in a closed conformation, which pro-

duces a high binding affinity between the two mole-

cules (Kd ~ 1.4 nanomolar) [77,78] (Fig. 1B). The

closed conformation prevents syntaxin-1 from being

prematurely trapped by its cognate or noncognate Qbc-

and R-SNAREs during its translocation to the

plasma membrane and renders vesicles suspended at

the docking stage [76,79]. Munc18-1-clamped syntaxin-

1 requires a transition from the closed to an open con-

formation to initiate SNARE complex assembly. This

‘closed-to-open’ transition appears to be a specialized

feature of synaptic vesicle exocytosis, and the underly-

ing mechanism will be discussed in more detail in the

following sections.
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The N-peptide of syntaxin-1 binds to domain 1 on

the opposite side of the Munc18-1 cavity (Fig. 1B),

which is crucial for synaptic vesicle exocytosis

[29,30,80]. This interaction not only assists Munc18-1

to clamp the closed conformation of syntaxin-1 [78]

but also enhances binding of Munc18-1 with the

SNARE four-helical bundle [81–83]. These data sug-

gest that the N-peptide binding is important for

Munc18-1 to assume diverse conformations available

for syntaxin-1 or the SNARE complex binding.

Moreover, domain 3a of Munc18-1 can assume both

‘bent’ and ‘extended’ conformations. The bent confor-

mation seen in Munc18-1 bound to closed syntaxin-1

is characterized as an inhibitory state of Munc18-1,

whereas the extended conformation represents an

active state of Munc18-1 which is accessible to

synaptobrevin-2 interaction [84–90] (Fig. 1B). This

binding mode is conserved among various SM family

proteins (e.g., Vps33 and Vps45) [36,91]. Later studies

showed that the majority of the SNARE binding lay-

ers of synaptobrevin-2 (layer �4 to +6) were captured

by the extended domain 3a of Munc18-1, which is cru-

cial to initiate SNARE complex assembly [92]. Fur-

thermore, emerging evidence has indicated that

Munc18-1 is capable of binding to the SNARE four-

helical bundle. However, there is no consensus on

the binding sites between Munc18-1 and the SNARE

four-helical bundle, as evidence showed that the bind-

ing can be mediated by the cavity of Munc18-1

[82,84,93,94] or by domain 3a at the other side of the

cavity [85,87]. Despite lacking structural evidence, this

binding mode is found in a variety of Munc18-1

homologs and their cognate SNAREs [34,95–98], indi-
cating a conserved function of Munc18-1 in the final

step of membrane fusion.

Munc13-1

As a member of the CATCHR family proteins,

Munc13-1 is a large multidomain protein highly

enriched in the presynaptic active zones and conserved

from invertebrates to mammals. Deletion of Munc13-1

causes severe defects in neurotransmitter release, indi-

cating its fundamental role in synaptic transmission

[99–102]. In addition, Munc13-1 is important for

dense-core vesicle exocytosis in chromaffin cells, pan-

creatic beta cells, and neurons, demonstrating its

essential function in the release of hormones and neu-

ropeptides [103–106]. Deletion of Munc13-1 has no

significant influence on the ultrastructure of synapse

[101]. Loss of a mass of docked vesicles around the

presynaptic active zones in Munc13-1/2 knockout mice

indicates that Munc13s are associated with the scaffold

matrix formation of the active zones [107]. Similar

phenotypes were observed in mice deficient in Rab3-

interacting molecules (RIMs) and RIM-binding pro-

teins (RIMBPs) [107–110], and in Ca2+-dependent acti-

vator protein for secretion (CAPS) [107] which belongs

to the CATCHR family proteins as well [111].

The molecular architecture of Munc13-1 contains

multiple individual domains, including three C2

domains (C2A, C2B and C2C, respectively), a PKC-

like phorbol ester/diacylglycerol (DAG) binding C1

domain, a calmodulin-binding motif (CaMb), and a

central MUN domain (Fig. 1C). C2A resides in the N-

terminal part of Munc13-1, which is a noncanonical

C2 domain insensitive to Ca2+ [112]. C2A can form a

homodimer and is able to bind the zinc-finger (ZF) of

RIMs to form a heterodimer [113,114]. Munc13-1,

RIM, and Rab3 could form a ternary complex crucial

for synaptic vesicle docking and priming [115]. Adja-

cent to C1, C2B binds Ca2+ and is competent for phos-

phatidylinositol (mainly phosphatidylinositol-4,5-

diphosphate, PtdIns-4,5-P2) binding [116]. C1 and C2B

serve as membrane anchors to ensure the binding

between Munc13-1 and the presynaptic membrane.

Recent structural evidence and functional data have

shown that C1 and C2B are tightly contacted and func-

tion in synaptic short-term plasticity [117–120]. CaMb

is located between C2A and C1, which might modulate

synaptic plasticity via calmodulin [121]. C2C is also

Ca2+-insensitive and found as a membrane-binding

module that preferentially interacts with synaptic vesi-

cles. The function of C2C is indispensable, since dele-

tion of C2C causes strong defects in synaptic vesicle

exocytosis [122]. The MUN domain between C2B and

C2C contains four subdomains (i.e., A, B, C, and D)

that mainly consist of stacked a-helices [123]. Sequence
and structural analysis have indicated a remote but

significant homology between the MUN domain and

the subunits of various tethering complexes, such as

the Exocyst complex, Dsl1 complex, COG complex,

and GARP complex [123–125]. Hence, Munc13-1 and

the tethering factors may play a universal role in vesi-

cle tethering and docking. Moreover, recent studies

found that Munc13-1 could form oligomers around

the fusion pore in vivo and in vitro [126–128], indicat-
ing that Munc13-1 serves as a scaffold and tethering

factor in exocytosis.

Early studies demonstrated that the MUN domain

could partially rescue neurotransmitter release in

Munc13-1 knockout mice, indicating that the MUN

domain is the minimal module responsible for

Munc13-1 activity [129,130]. The finding that syntaxin-

1 bearing the LE mutation that prefers an open con-

formation [63] can partially rescue release in
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Caenorhabditis elegans unc13 nulls indicated that

Munc13-1 plays a role in opening syntaxin-1 [131].

Moreover, the MUN domain has been found to medi-

ate the transition from the closed Munc18-1�syntaxin-

1 complex to the SNARE complex in vitro [132]. In

addition, the crystal structure of a Munc13-1 C1-C2B-

MUN fragment indicated an intramolecular synergistic

effect in which C1 and C2B may play roles in modulat-

ing the activity of the MUN domain [117]. Further-

more, a C1-C2B-MUN-C2C fragment could bridge

synaptic vesicles and the presynaptic membrane with

at least two different orientations dependent on Ca2+

and presynaptic PtdIns-4,5-P2 and DAG levels, which

is considered to be relevant to short-term plasticity

[117,119,120,122].

In the past decade, important advances have been

made in understanding the structural insights, inter-

molecular interactions, and functional mechanisms of

Munc13-1 and Munc18-1 in synaptic vesicle exocyto-

sis. In the next section, we will discuss the synergistic

roles of Munc18-1 and Munc13-1 in organizing neu-

ronal SNARE complex assembly.

Organizing the SNAREs—synergistic
roles of Munc18-1 and Munc13-1

Recent reconstitution experiments have illustrated a

model in which Munc18-1 and Munc13-1 play vital

functions in regulating SNARE complex assembly.

This model suggests that the starting point of the

assembly pathway is the closed Munc18-1�syntaxin-1

complex and its transition to the SNARE complex is

highly regulated by Munc13-1 (Fig. 2B) [64,132]. It

was previously observed that syntaxin-1 together with

SNAP-25 is capable of aggregating in clusters with

PtdIns-4,5-P2 in the presynaptic membrane under

physiological condition [133–135]. The clusters are

expected to involve a large number of syntaxin-

1�SNAP-25 2:1 complexes unfavorable for

synaptobrevin-2 binding [61]. One of the exciting mer-

its of this model is that the nonproductive intermediate

—syntaxin-1�SNAP-25 2 : 1 complexes—could be pre-

vented, as Munc18-1 together with NSF and a-SNAP

effectively displaces SNAP-25 from its complex with

syntaxin-1 in the membranes [64]. Actually, a 1 : 1 stoi-

chiometry of the syntaxin-1�SNAP-25 complex is

immensely beneficial for the efficient assembly of the

SNARE complex. For instance, it was found that the

ΔN-SNARE complex (i.e., the 1 : 1 syntaxin-1�SNAP-

25 complex bound to an N-terminal truncated

synaptobrevin-2) facilitates synaptobrevin-2 binding thus

driving fast SNARE complex assembly and liposome

fusion [44,136].

Another virtue of this model is that Munc18-1 and

Munc13-1 offer an effective protection mechanism for

SNARE complex assembly. NSF and a-SNAP could

abolish fusion between syntaxin-1�SNAP-25 lipo-

somes and synaptobrevin-2 liposomes probably by

destructing immature trans-SNARE complexes and/or

syntaxin-1�SNAP-25 complexes into individual

SNAREs [64]. Intriguingly, fusion between Munc18-

1�syntaxin-1 liposomes and synaptobrevin-2 lipo-

somes can robustly proceed in the presence of

Munc13-1, SNAP-25, NSF, and a-SNAP [64,137,138],

suggesting that Munc18-1 and Munc13-1 protect

SNARE complex assembly against disassembly by

NSF and a-SNAP. In addition, a syntaxin-binding

molecule tomosyn, which possesses an R-SNARE-like

motif [139–141], was reported to arrest syntaxin-1 and

SNAP-25 into a nonfusogenic product that precludes

synaptobrevin-2 entry [142,143]. Interestingly, in the

context of NSF and a-SNAP, syntaxin-1 is able to

escape from tomosyn arrest and assemble into the

Munc18-1�syntaxin-1 complex. Remarkably, Munc13-

1 can catalyze the transition from the Munc18-

1�syntaxin-1 complex to the SNARE complex in a

manner specific to synaptobrevin-2 but resistant to

tomosyn [144]. In this process, NSF and a-SNAP

assist Munc13-1 to promote the conversion from

tomosyn-arrested syntaxin-1�SNAP-25 complex to the

Munc18-1�syntaxin-1 complex, and finally to the

functional SNARE complex. These findings illustrate a

protection function of Munc18-1 and Munc13-1 in

SNARE complex assembly and synaptic vesicle prim-

ing, consistent with the role of the HOPS tethering

complex in protecting SNARE complex assembly and

yeast vacuolar fusion against Sec18 and Sec17, the

homologs of NSF and a-SNAP in yeast [145].

As illustrated in the model, the transition from the

Munc18-1�syntaxin-1 complex to the SNARE com-

plex is catalyzed by Munc13-1. Initiation of the transi-

tion requires activation of the closed Munc18-

1�syntaxin-1 complex, which involves the opening of

syntaxin-1 and the extension of domain 3a of Munc18-

1. The catalytic site of Munc13-1 responsible for open-

ing of syntaxin-1 positions at a hydrophobic pocket

located in the middle portion of the Munc13-1 MUN

domain [123] (Fig. 1C). Disruption of the hydrophobic

pocket (i.e., NFAA mutation) caused abrogation of

MUN-mediated transition from the closed Munc18-

1�syntaxin-1 complex to the SNARE complex and led

to strong defects in neurotransmitter release of

Caenorhabditis elegans neuromuscular junction (NMJ)

and mice cortical neurons, indicating that the NF

pocket is central for Munc13-1 catalytic activity

[123,146,147]. The syntaxin-1 linker region (bearing
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the LE sequence) between the Habc domain and the

SNARE motif was identified as the binding target for

the Munc13-1 NF pocket [146]. Biochemical and

single-molecule FRET data demonstrated that the

Munc13-1 NF pocket interacts with R151 and I155 in

the linker region of syntaxin-1, and this interaction

specifically induces a conformational change of the

syntaxin-1 linker region [146,148] (Fig. 2B). These data

argue against the conventional assumption that

syntaxin-1 needs to be totally escaped from Munc18-1

clamping to initiate SNARE complex assembly, sug-

gesting that a local conformational change in the

syntaxin-1 linker region is sufficient to initiate SNARE

complex assembly. On the other hand, domain 3a of

Munc18-1 is able to undergo ‘bent-to-extended’ con-

formational change during SNARE complex assembly

[85–89]. Recent advances showed that binding of the

Munc13-1 MUN domain to domain 3a is required for

MUN activity in opening of syntaxin-1 [84] (Fig. 1B).

Upon the opening of the syntaxin-1 linker region by

the MUN domain, domain 3a of Munc18-1 is inclined

to assume the extended conformation, which allows

the N-terminal end of syntaxin-1 SNARE motif more

accessible to nucleate with SNAP-25 and

synaptobrevin-2 [84] (Fig. 2B). This cascaded reaction

supports the N- to C-zippering model of SNARE com-

plex assembly [44,45].

Efficient SNARE complex assembly requires N-

terminal nucleation of the SNARE motifs of SNAP-

25, synaptobrevin-2 and syntaxin-1 together. An

attractive R-SNARE�SM binding mode has been pre-

sented and attracted intense attention [91]. Based on

this mode, later studies showed that the majority of

the SNARE binding layers of synaptobrevin-2 (layer

�4 to +6) were captured by the extended domain 3a

of Munc18-1, with the N-terminal layers of the

SNARE motif being available for nucleation [92]. It is

of note that the interaction between Munc18-1 and

synaptobrevin-2 is quite weak, compared to their

homologs Vps33 and Nyv1 in yeast, respectively [91].

A recent structural study reported a direct binding

between the Munc13-1 MUN domain and the

synaptobrevin-2 JMR [149] (Fig. 1C). This interaction

enhances binding of synaptobrevin-2 to the Munc18-

1�syntaxin-1 complex [149]. Disruption of the interac-

tion caused abrogation of MUN-mediated transition

from the closed Munc18-1�syntaxin-1 complex to

the SNARE complex and led to strong defects in neu-

rotransmitter release [149]. In addition, a more recent

study identified an interaction between the bottom of

domain 3a of Munc18-1 and the SNARE motif of

syntaxin-1 [84]. It is likely that this binding enables

Munc18-1 to persistently associate with the SNARE

motif of syntaxin-1 during the transit of syntaxin-1

from the Munc18-1�syntaxin-1 complex to the

SNARE complex. Hence, Munc18-1 and Munc13-1

play crucial roles in SNARE assembly via priming

syntaxin-1 and synaptobrevin-2.

The above interactions indicate the formation of a

quaternary complex comprising Munc13-1, Munc18-1,

syntaxin-1, and synaptobrevin-2 [147,149] (Fig. 2B),

which is available for efficient SNAP-25 binding.

SNAP-25 is anchored on the presynaptic membrane

via palmitoylation, which is naturally advantageous

for SNARE nucleation. Notably, this proposed quater-

nary intermediate fully supports the half-zippered

mechanism of neuronal SNARE complex formation

[45,47], as truncation of the C-half region of the sec-

ond SNARE motif of SNAP-25 (layer +1 to +8, resi-
dues 178�206) still supports Munc13-1-mediated

transition from the closed Munc18-1�syntaxin-1 com-

plex to the SNARE complex [149]. These data indicate

that the C-half region of the SNARE complex may be

loosely packed along the assembly pathway guided by

Munc18-1 and Munc13-1 (Fig. 2B), which is available

for subsequent binding and regulation by complexins

and synaptotagmins that are functionally related to

Ca2+-triggered fast fusion [150–152].
Moreover, Munc18-1 and Munc13-1 are implicated

to protect SNARE complex assembly via preventing

antiparallel binding of the SNAREs [153], and to pro-

mote artificial liposome fusion within 500 milliseconds

under single-vesicle level in vitro [154]. These data rein-

force the physiological relevance of Munc18-1 and

Munc13-1 in synaptic vesicle exocytosis. Altogether,

the present data convey a fundamental model whereby

Munc18-1 and Munc13-1 synergistically organize neu-

ronal SNARE complex assembly and synaptic vesicle

exocytosis.

Homologs of Munc18-1 and Munc13s
in different membrane trafficking
systems—universality and specificity

SNARE complex assembly is regulated by SM pro-

teins and multisubunit tethering complexes (MTCs) to

ensure cargo delivery to proper target organelles or the

plasma membrane [124,155,156]. Despite being dis-

tributed in different subcellular locations across diverse

eukaryotic cells, all known SNAREs have their cog-

nate SM proteins (Table 1); and different MTCs also

display functional cooperations with specific SM pro-

teins and related SNAREs (Table 1).

In eukaryotic cells, seven MTCs have been identi-

fied, namely the Dsl1 complex [190], the TRAPP com-

plex [191], the COG complex [192], the GARP
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complex [193], the CORVET complex [194], the HOPS

complex [195], and the Exocyst complex [196], respec-

tively, all of which participate in a variety of intracel-

lular membrane trafficking pathways [156]. Despite

differences in overall architecture and subunit compo-

sition, a subset of MTCs (the Dsl1, COG, GARP, and

Exocyst complex) was characterized as the members of

the CATCHR family proteins, in which the subunits

of these complexes are composed of stacked long heli-

cal rods [124]. By contrast, the TRAPP, CORVET,

and HOPS complex have different assembly and archi-

tecture [197,198]. Different from other MTCs, the

CORVET and HOPS complex involve the SM protein

Vps33 as a subunit [194,195]. The architecture of the

Munc13-1 MUN domain is similar to a variety of the

CATCHR subunits such as Sec6 (Exocyst), Tip20

(Dsl1), COG5 (COG), and Vps54 (GARP) [124,125].

Besides, CAPS contains a SNARE binding domain

(DAMH), which is structurally similar to the

CATCHR subunits and exhibits specific interaction

with the Munc13-1 MUN domain [186]. Therefore, it

is expected that Munc13s and CAPSs might constitute

a novel MTC—the neuronal CATCHR—to mediate

synaptic vesicle exocytosis. It is believed that MTCs

are involved in specific recognition of intracellular

organelles and membranes by interacting with Rab

GTPase [156]. Plenty of literature has reported that

MTCs could interact with cognate SNAREs and SM

proteins as well (summarized in Table 1). These inter-

actions are crucial for recruiting the fusion

Table 1. Summary of the interactions of MTCs, SNAREs, and related SM proteins.

MTCsa SNARE interactionsb
Related SM

protein

SM-related

Qa-SNARE

SM:Qa-SNARE binding mode

N-peptide

Habc

domain

SNARE

motif

Four-helical

bundle

Dsl1 (3) Syx18 (Ufe1p)
[157,158]

Sec20 (Sec20p)[157]

Use1 (Use1p)[157]
Ykt6 (Ykt6p)/ 
Sec22b (sec22p)

[159]

Sly1 (Sly1p) Syx18

(Ufe1p)

•[33] ? -[33] •[95]

TRAPPI (7) Syx5 (Sed5p)[160] Sly1 (Sly1p) Syx5 (Sed5p) •[161] ? -[33] •[34]

TRAPPII (10) Syx5 (Sed5p)[160] Sly1 (Sly1p)? ?

TRAPPIII (8) ? ? ?

COG (8) Syx5 (Sed5p)[162–165]
GOSR1 (Gos1p)[166–168]
GOSR2 (Bos1p)[163,165]
Bet1L (Sft1p)[169]
Sec22b (Sec22p)[170]

Sly1 (Sly1p) Syx5 (Sed5p) •[161] ? -[33] •[34]

GARP (4) Syx16 (Tlg2p)[171–173]
Syx10[174] /Syx6 (Tlg1p) 
[175,176]

VAMP4 (Snc1/2p)[171,172]

Vps45

(Vps45p)

Syx16 (Tlg2p) •[36] •[36] •[36] •[96]

CORVET (6) (Pep12p)[177,178]
(Vti1p)[179]
(Nyv1p)[91]

Vps33

(Vps33p)

? (Pep12p)

HOPS (6) Syx7 (Vam3p)[37,91,180]
Vti1b (Vti1p)[179]
Syx8 (Vam7p)[180]
VAMP7/8 (Nyv1p)[91]

Vps33

(Vps33p)

Syx7 (Vam3p) lacking[31] •[181] •[91] •[97]

Exocyst (8) (Sso1/2p)[182,183]
(Sec9p)[184,185]
(Snc1/2p)[183]

(Sec1p) (Sso1/2p) (lacking)

[31]

(-)[98] (-)[98] (•) [98]

nCATCHR

(2?)

Syx1a/b[132,146,186–188]
SNAP-25[189]
Syb2[149]

Munc18-1 Syx1a/b •[77] •[77] •[77] •[94]

‘•’ Indicates direct binding between the motif/domain of Qa-SNARE and SM protein; ‘-’ indicates no binding between the motif/domain of

Qa-SNARE and SM protein. Syx, syntaxin; Syb, synaptobrevin.
aValues in the parentheses indicate the subunits of MTCs in Homo sapiens and Saccharomyces cerevisiae.; bQa, Qb, Qc, and R-SNAREs are

indicated by red, green, light green, and blue, respectively. Values out of parentheses and in the parentheses indicate mammalian and Sac-

charomyces cerevisiae homologs, respectively.
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components to the fusion sites [124,156]. In addition,

the HOPS complex was found to compete with the dis-

assembly machinery (Sec17 and Sec18) and protect the

prefusion SNARE complex from premature disassem-

bly [145]; consistently, Munc13-1 and Munc18-1 were

found to protect trans-SNARE complex assembly in

the context of Sec17�Sec18 homologs NSF�a-SNAP

[64,137,138]. Nevertheless, there still lack clear evi-

dence whether other MTCs retain this function or not.

Hence, the convergence of the function of MTCs is

still limited among diverse membrane trafficking path-

ways.

Deletion of SM proteins invariably causes severe de-

fects in membrane fusion (reviewed in [124,155,156]). As

discussed above, a common characteristic of all

SM proteins in membrane fusion is related to their func-

tion in templating SNARE complex assembly

[34,36,84,91,92,199,200]. In spite of that, it is of note

that there is substantial divergence in the binding

between SM proteins and the SNAREs. SM proteins

directly control the activity of Qa-SNAREs with diverse

binding modes (Table 1). For instance, Sly1p interacts

with the N-peptide to loosen the closed conformation of

Sed5p and accelerate SNARE complex formation [201];

Vps45p rescues oligomeric Tlg2p into monomeric open

conformation via interaction with the N-peptide [36];

Vps33p interacts with both the Habc domain and the

SNARE motif of Vam3p to template SNARE complex

formation [97,181]; Sec1p binds to the assembled

SNARE four-helical bundle (Sso1p-Sec9p-Snc2p) with

an unrevealed mechanism that likely involves opening

of Sso1p [98]; Munc18-1 captures syntaxin-1 into the

closed conformation and the opening of syntaxin-1

requires catalysis by Munc13-1 [132]. These diverse

binding and activation modes indicate multiple mecha-

nisms of SM proteins in regulating Qa-SNAREs. Essen-

tially, all SM proteins are implicated to interact with the

assembled SNARE four-helical bundle (summarized in

Table 1), which not only facilitates SNARE complex

assembly but potentially protects partially assembled

SNARE complex from disassembly.

The neuronal MTC�SM shares a variety of com-

mon features with other ancient MTC�SMs, including

the interplay between SM proteins and the N-peptide

of Qa-SNAREs; the function to template and secure

SNARE complex assembly via binding to Qa- and R-

SNARE simultaneously. Interestingly, the mode that

Munc18-1 traps syntaxin-1 into the inactivated confor-

mation has not been found in other membrane traf-

ficking systems. It is conceivable that the neuronal

system specifically evolves complementary mechanisms

that involve the activation of the closed Munc18-

1�syntaxin-1 complex by Munc13-1. Altogether, it is

likely that Munc13-1 and Munc18-1 inherit some fun-

damental roles of the ancient MTC�SMs and evolve

specialized features that are highly adapted to synaptic

vesicle exocytosis.

Future perspective

In this review, we have summarized a variety of impor-

tant advances toward understanding how Munc18-1

and Munc13-1 regulate SNARE complex assembly.

However, fundamental questions still remain. First,

there still lacks high-resolution structural models of

the whole release machinery that includes Munc18-1

and Munc13-1. This is a rather tough task since many

interactions among these components are transient and

weak, hindering the researchers from obtaining accu-

rate structural models with atomic resolution. Single

particle cryo-electron microscopy (cryo-EM) [202,203]

and in-situ cryo-electron tomography (cryo-ET) [204]

might be powerful tools to solve this issue. In addition,

most present reconstitution studies still could not fac-

tually reproduce the fast kinetics of Ca2+-triggered

synaptic exocytosis. This may arise because additional

components including many tethering and docking fac-

tors need to be included in these assays. Moreover, the

presynaptic active zone is composed of a large number

of macromolecules which create a crowded environ-

ment [4,6]. Macromolecular crowding and liquid-liquid

phase separation (LLPS) might affect multiple reac-

tions such as SNARE complex assembly and Ca2+-

triggered fusion [205–208]. Hence, improvement of

reconstitution methods that can reproduce the fusion

events in vitro is necessary to better elucidate the

molecular mechanism of synaptic vesicle fusion.

Finally, there still exists unrevealed mechanisms of

Munc13-1 and Munc18-1 in protecting trans-SNARE

complex assembly, in the terminal stage of membrane

fusion, and in short-/long-term plasticity. Future stud-

ies remain challenging in fully resolving the fundamen-

tal molecular mechanism of synaptic vesicle exocytosis

and the working principle of human brain.
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