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Abstract
Small extracellular vesicles (sEVs) play a crucial role in local and distant cell com-
munication. The intrinsic properties of sEVs make them compatible biomaterials
for drug delivery, vaccines, and theranostic nanoparticles. Although sEV proteomics
have been robustly studied, a direct instantaneous assessment of sEV structure
dynamics remains difficult. Here, we use the high-speed atomic force microscopy
(HS-AFM) to evaluate nanotopological changes of sEVs with respect to differ-
ent physicochemical stresses including thermal stress, pH, and osmotic stress. The
sEV structure is severely altered at high-temperature, high-pH, or hypertonic con-
ditions. Surprisingly, the spherical shape of the sEVs is maintained in acidic or
hypotonic environments. Real-time observation by HS-AFM imaging reveals an
irreversible structural change in the sEVs during transition of pH or osmolarity. HS-
AFM imaging provides both qualitative and quantitative data at high spatiotemporal
resolution (nanoscopic and millisecond levels). In summary, our study demon-
strates the feasibility of HS-AFM for structural characterization and assessment of
nanoparticles.

 INTRODUCTION

An extracellular vesicle (EV) is a collective term that includes apoptotic bodies, plasma membrane-origin EVs (ectosomes), and
endosome-origin EVs (exosomes) (Théry et al., 2018). Exosomes are known as small EVs (sEVs) because they are generally
smaller than 200 nm. sEVs are biologically versatile, where they can be nanocarriers, ligand/receptor-presenting nanoparticles,
antigen-presenting nanoparticles, and more. Currently, rather than synthetic nanoparticles, the intrinsic properties of sEVs have
made them suitable biomaterials for nanomedicines and vaccines. In addition, sEVs in biological samples contain diagnostic
values for various diseases. Therefore, as well as the biochemical contents, the physical characterization of sEVs is indeed impor-
tant. Conventional atomic forcemicroscopy (AFM) has been used to directly visualize the nanotopology of sEVs, and tomeasure
their membrane stiffness (Hardij et al., 2013; Szatanek et al., 2017; Whitehead et al., 2015; Yurtsever et al., 2021). Nonetheless, the
images are rather static snapshots, and the stiffness is measured at a relatively low temporal resolution. The limitation in con-
ventional AFM impedes the real-time observation and measurement of millisecond dynamic changes in the sEV nanotopology.
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High-speed atomic force microscopy (HS-AFM) is a powerful nano-imaging tool with high spatiotemporal resolution. A gentle
cantilever tapping force allows HS-AFM to performmillisecond imaging without sample damage (Ando, 2019). To date, we have
directly visualized conformational dynamics of viral proteins (Lim et al., 2021, 2020a, b), DNA wrapping on a histone (Nishide
et al., 2021), and eukaryotic organelles (nuclear pores (Mohamed et al., 2020; Mohamed et al., 2017) and sEVs (Lim et al., 2021,
2020a)) by using HS-AFM. In this study, we report the dynamic change of the sEV nanotopology in response to various physico-
chemical stresses including temperature, pH, and osmotic pressure. The findings may provide valuable insights for sEV biology
and applications of sEVs in the near future.

 MATERIALS ANDMETHODS

. Cell line

HEK293T cells were cultured inDulbecco’sModified Eagle’sMedium (DMEM,Nacalai Tesque, Kyoto, Japan) supplementedwith
10% foetal bovine serum (FBS; Life Technologies, CA, USA) and 1% Penicillin-Streptomycin (Nacalai Tesque, Kyoto, Japan). Cells
were kept at 37◦C in a humidified CO2 incubator.

. Preparation, purification, and characterization of sEVs

sEVs of the HEK293T cell were isolated according to the protocol that was reported previously (Lim et al., 2021, 2020a). After
4 days of culturing, cell-conditioned medium was collected and subjected to differential centrifugation to remove cells, debris,
and large EVs. Then, the supernatant was filtered through a 0.22-μmMillex-GV filter (Merck Millipore, MA, USA) to generate
a final pre-cleared cell conditioned medium, known as the 10K sup. After that, a MagCapture Exosome Isolation Kit PS (Wako,
Osaka, Japan) was used following to the manufacturer’s manual to purify the sEVs from the 10K sup. The purified sEVs were
kept in a dialysis membrane (3500 MWCO) for overnight dialysis in PBS. NanoSIGHT LM10 (Malvern Panalytical, Malvern,
UK) was used to perform nanoparticle tracking analysis (NTA) to measure the sEV concentration. The sEV purification process
follows the Minimal Information for Studies of Extracellular Vesicle 2018 (MISEV2018) guidelines (Théry et al., 2018) because
we uploaded the protocol to the EV-TRACK knowledgebase in our earlier study (Lim et al., 2021) (EV-TRACK ID: EV210256).

. Nanofabrication of cantilever tip by using electron beam deposition (EBD)

A BL-AC10DS-A2 cantilever (Olympus, Tokyo, Japan) was used as a scanning probe to scan the sEVs. The spring constant (k)
and resonance frequency (f) of the cantilever were 0.1 N/m and 0.6 MHz in water (1.5 MHz in air), respectively. The dimension
of the cantilever was 9 μm (length), 2 μm (width), and 0.13 μm (thickness). Short cantilever tip length can affect the sensitivity
of tip-sample interaction. This issue can be solved by depositing amorphous carbon on top of the cantilever tip using EBD to
increase cantilever tip length. First, the cantilever was cleaned by UV/O3, and then the cantilever was soaked in piranha solution
(containing sulfuric acid and hydrogen peroxide). After that, EBD was conducted on the cantilever at 30-kV accelerating voltage
and 2 min of irradiation using a field emission scanning electron microscope, ELS-7500 (Tokyo, Japan). The typical tip radius
range of an EBD-ed cantilever tip is 6–8 nm.

. HS-AFM imaging

HS-AFM images were acquired by using our laboratory-built HS-AFM microscope, as previously mentioned (Lim et al., 2021,
2020a). Briefly, a laser beam (λ = 670 nm) was irradiated through a 20× objective lens (CFI S Plan Fluor ELWD, Nikon, Tokyo,
Japan) and focused on an electron beam deposited cantilever tip. A position-sensing two-segmented photodiode was used to
detect the dynamic cantilever deflection. Free oscillation amplitude of the cantilever (A0) at 1.5–2.5 nm and the set point at 80%–
90% of the free amplitude were required to generate a gentle tapping force to protect sample integrity. A muscovite mica layer
(∼0.1-mm thickness) was affixed on a glass stage, and the glass stage was then mounted on a HS-AFM scanner. The mica layer
was then coated with 0.1% w/v poly-L-lysine (PLL) to serve as a substrate to immobilize the sEVs.
To visualize the nanotopology of the sEVs, the sEVs were scanned under a physiological buffer (50 mM Tris-HCl, 150 mM

NaCl, pH 7.50). To study the effect of temperature on sEV nanotopology, the sEVs were incubated in a scanning buffer at 4◦C,
37◦C, 60◦C, or 100◦C for 4 h prior to HS-AFM scanning. To determine the effect of pH on sEV nanotopology, sEVs were incu-
bated in a scanning buffer at pH 4.00, pH 7.50, or pH 10.00 for 3 h followed by HS-AFM imaging. For real-time observation
of sEV nanotopology in response to pH change, an sEV was initially scanned at pH 7.50, then the neutral scanning buffer was
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changed to an acidic scanning buffer (pH 4.00), and eventually to a basic scanning buffer (pH 10.00). To elucidate the effect of
osmolarity on sEV topology, sEVs were incubated in a physiological buffer (50 mM Tris-HCl, pH 7.50) containing 0 M, 0.15
M, or 1.8 M salt (NaCl) for 3 h before HS-AFM imaging. For real-time visualization of the sEV nanotopology in response to an
osmolarity change, an sEV was first scanned in a buffer with 0.15 M NaCl, then the salt concentration was increased to 1.8 M,
and finally to 0 M. All HS-AFM scans of the sEV nanotopology in response to temperature, pH, or osmolarity were repeated at
least three times.

. Analysis of HS-AFM images

ImageJ software (https://imagej.nih.gov/ij/) was used to process and analyse all HS-AFM images. First, the HS-AFM images were
filtered by a fit polynomial filter (order for both x- and y-directions: 1), follow by a low-pass filter (Gaussian blur) to suppress
noise and enhance the image clarity. Three-dimensional (3D) images of theHS-AFM imageswere computed by using the freeware
Gwyddion (http://www.gwyddion.net). The parameters of spatial dimension analysis including cross-sectional height, area, and
circularity were also measured by using ImageJ. A circularity value of 1.0 indicates a perfect circle whereas a value close to zero
indicates an increasingly elongated polygon. The sEV circularity is given by 4πSL−2, where L and S are the perimeter and the area
surrounded by the object, respectively. The volume of sEVwas calculated bymultiplying area and height of the sEV as previously
mentioned (Lim et al., 2020b). The aspect ratio (AR) was calculated using this formula, AR = h/davg (h is height of sEV; davg is
the average of major (d) and minor (d) diameters), to measure sEV stretchability as previously reported (Yokota et al., 2019).
The processed images were converted to videos in AVI format, and further edited and compiled using the Adobe Creative Cloud
suite (https://www.adobe.com/creativecloud.html).

. Statistical analysis

Graphs for descriptive statistics were drawn using the GraphPad Prism version 7 (GraphPad, CA, USA). Comparative statis-
tical analysis was performed using SPSS version 22 (IBM Group, NY, USA). Mann-Whitney U test and Kruskal-Wallis H test
were conducted to compare means between independent groups. The statistically significant level was fixed at p < 0.05 with a
confidence interval of 95%.

 RESULTS

. Nanoscopic conformational dynamics of native and formalin-fixed sEVs

Differential ultracentrifugation and ultrafiltration of EVs are insufficient to separate exosomes from other EVs with similar size
(<200 nm). We believe that the Tim-4 isolation protocol (Figure 1a) is suitable for exosome purification because Tim-4 has a
high affinity for phosphatidylserine (PS), which is enriched in exosomes (Nakai et al., 2016). Furthermore, the distribution of
PS is exclusively located at the cytoplasmic site of the plasma membrane (Tsuji et al., 2019). As a result, Tim-4 isolation could
spare EVs originating from the plasma membrane (ectosomes) from the cell conditioned media. In addition, we have previously
detected exosomemarkers, particularly the endosome-originmarker TSG101, by using this protocol (Lim et al., 2021). By abiding
to theMISEV guideline, we continue tomention exosomes as sEVs. The setup of HS-AFM is illustrated in Figure 1b, and we have
elaborated the technical details in the Materials and Method section. The optimal tapping force and high scanning speed allow
HS-AFM to scan an sEV at high spatiotemporal resolution without deteriorating the sEV. Therefore, we can manipulate several
physicochemical stresses including temperature, pH, and osmolarity, to study the dynamic response of sEVs either in a real-
time manner or in a premix setting. Given that Tim-4-isolated sEVs are PS-enriched sEVs, the sEV surface should be negatively
charged. Therefore, we coated mica with PLL to provide a positively charged substrate to adsorb sEVs. This adsorption strategy
has proven effective to adsorb the nuclear envelope (NE) (Mohamed et al., 2020; Mohamed et al., 2017) for HS-AFM imaging
because the NE layer also contains PS (Tsuji et al., 2019). Nanotopological features of sEV were evaluated either in native or
in formalin-fixed form (Figure 1c–d, Figure S1, and Movie S1). Native sEVs appeared to be ellipsoidal rather than spherical,
probably due to the adsorption effect that pulled the lipid layer wider. In contrast, formalin-fixed sEV presented as a sphere.
We found that the height fluctuation of a formalin-fixed sEV was less compared with a native sEV (Figure 1e). These findings
suggest that formalin fixation could increase the sEVmembrane rigidity. Real-time imaging of an sEV revealed its smooth fluid-
filled lipid vesicle nanotopology, and the sharp cantilever did not damage the sEV structure (Figure 1f, and Movie S1). Results of
spatial dimension analysis (Figure 1g) demonstrated the size heterogeneity of the sEVs. Altogether, these data indicate that use
of HS-AFM is feasible for recording the native spatiotemporal dynamics of HEK293T-derived sEVs.

https://imagej.nih.gov/ij/
http://www.gwyddion.net
https://www.adobe.com/creativecloud.html
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F IGURE  Real-time visualization of native conformation of sEV in a physiological buffer. (a) A flow chart shows the TIM-4 affinity purification of
HEK293T-derived sEVs. (b) A schematic diagram illustrates the setup of HS-AFM for sEVs imaging under different conditions. (c) HS-AFM images
demonstrate the nanotopology of native (NEV) and formalin-fixed (FEV) sEVs under physiological environment (scale bar, NEV: 18 nm; FEV: 10 nm). (d) 3D
structure of NEV and FEV. (e) Line graphs delineate real-time height of NEV and FEV. Results indicate that formalin fixation could increase the rigidity of
sEVs as the height fluctuation is less for FEV compared with NEV. (f) Real-time image sequence of an NEV. Fluidity of NEV layer is visible during HS-AFM
imaging (scale bar: 18 nm). (g) Spatial dimension analysis of NEV. Results are presented in histograms with normal distribution curves (n = 30; F, frequency)

. Evaluation of thermal stress on sEV nanotopology by using HS-AFM

Thermal stress exerts a major impact on sEV stability, and subsequently alters its structure and function. To study the outcome
at the nanoscopic level, we performed HS-AFM imaging to visualize sEVs which had been incubated at different temperatures.
We noticed that high temperature (60◦C and 100◦C) destabilized the sEV structure (Figure 2 a–c, Figure S2, and Movie S2).
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F IGURE  Temperature-induced nanotopological change in sEV. (a) Direct visualization of sEV after exposure to 4◦C, 37◦C, 60◦C, or 100◦C for 4 h
(scale bar, sEV4◦C: 17 nm; sEV37◦C: 11 nm; sEV60◦C: 20 nm; sEV100◦C: 20 nm). (b) 3D topology of respective sEVs in panel (a). (c) Bar graph demonstrating the
percentage of normal and deformed sEVs in four sEV groups (black bar, normal; white bar, deformed). (d) Bar graphs illustrating the real-time height change
(Δh) of four sEV groups (n of each group: 1). The magnitudes of height change for sEV4◦C and sEV37◦C are greater than those for sEV60◦C and sEV100◦C. (e)
Temperature significantly altering the spatial dimension and circularity of sEV. Comparison is performed using Kruskal-Wallis H Test, and data are presented
as mean ± SEM (****p < 0.0001). p-values of detailed pairwise comparison are reported in Table S1. (f) Aspect ratio (AR) computed to determine the
stretchability of an sEV on PLL-coated mica substrate. Data are depicted as mean ± SEM (****p < 0.0001). (g) A schematic diagram showing the nanotopology
of an sEV after exposure to low or high temperatures (d, major diameter; d, minor diameter). Sample sizes for (c), (e), and (f): sEV4◦C, 80; sEV37◦C, 82;
sEV60◦C, 92; sEV100◦C, 104
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Intriguingly, the proportion of deformed sEVs was similar at both 60◦C and 100◦C (Figure 2c), suggesting that the sEV pool
could contain a proportion of heat-resistant sEVs. This prediction is sensible given that an sEV is heterogeneous in nature.
High temperature also reduced the sEV membrane elasticity (Figure 2d) as the height change was less dynamic in sEV60◦C
and sEV100◦C compared with sEV4◦C and sEV37◦C. Although the height of sEV37◦C was significantly lower than that of sEV4◦C
(Figure 2e), both diameter and area of sEV37◦C were comparable with sEV4◦C (Table S1). In addition, a spherical nanotopology
was preserved in most of sEV37◦C. These findings indicated that 37◦C could promote the leakage of the sEV contents without
eminently disrupting its membrane, as shown in sEV60◦C and sEV100◦C. Yokota et al. used the aspect ratio (AR) as an indicator to
indicate the deformability of sEVs due to adsorption on a silicon dioxide (SiO2) substrate (Yokota et al., 2019). We also included
this indicator in our study (Figure 2f-g), but we rather called it as an indicator for stretchability to avoid confusion with sEV
deformation by high temperature. AR was lowest in both sEV37◦C and sEV60◦C, suggesting that these two groups were strongly
stretched on the PLL-coated mica substrate. A negative surface charge (-ζ potential) of sEV was previously found to increase as
a function of temperature (Maroto et al., 2017), which subsequently increased the adsorption of sEVs (low AR) on the substrate.
In accordance with this finding, our result depicted both sEV37◦C and sEV60◦C had lower AR (higher stretchability) compared
with sEV4◦C. At an extreme temperature (100◦C), disruption of the sEV layer could eliminate the sEV100◦C stretchability on the
PLL-coated mica substrate. Content loss (low height) and failed to expand after adsorption (small diameter) made sEV100◦C had
higher AR than sEV37◦C and sEV60◦C. The sEV4◦C was also maintained at high AR suggesting that the increment of diameter
(denominator of AR) after adsorption did not drastically reduce the AR because sEV height (numerator of AR) was maintained
as lesser content loss at 4◦C.

. Evaluation of acid-base effect on sEV nanotopology by using HS-AFM

A previous study reported that sEVs stored at pH 4.00 or pH 10.00 experienced protein loss without affecting their sizes (Cheng
et al., 2019). By using HS-AFM, we intended to observe the structural changes of sEVs in response to an acidic or basic environ-
ment. Results showed that the sEV shape wasmaintained at pH 4.00, but it became deformed (flattened or shrunken) at pH 10.00
(Figure 3a–c, Figure S3a, andMovie S3). Spatial dimension analysis revealed that height, diameter, area, and volume were signifi-
cantly reduced in sEVpH 4.00 compared with sEVpH 7.50 (Figure 3d). These findings could imply that low pH only induced content
loss in sEVpH 4.00 but spared its spherical shape. In contrast, sEVpH 10.00 lost its round shape, and spatial dimension parameters
were greatly reduced when compared with sEVpH 7.50 (Figure 3d). Basic buffer (pH 10.00) could disrupt the sEV membrane sta-
bility and subsequently themembrane elasticity diminished, which were indicated by the low real-time height change (Figure 3e)
and low height fluctuation (Figure S3b) in sEVpH 10.00. The sEV structure deteriorated at pH 10.00 and stretched irreversibly on
PLL-coated substrate, depicted by the lowest AR value (Figure 3f). In a real-time observation, we noticed that the sEV shrunk
but remained round when the pH had changed from 7.50 to 4.00 (Figure 3g, and Movie S4), which was indicated by a rapid
drop followed by subtle changes in area, diameter, and height (Figure 3h and Figure S3c). Moreover, the AR result illustrated
a constant trend at pH 4.00 (Figure 3i). However, at pH 10.00, the sEV became unstable (Figure 3g-i and Movie S4), and the
diameter and area of the sEV were increased together with persistent drops in height and circularity, which suggested that the
sEV could start to deform and widely spread on substrate. Interestingly, during the transition from pH 4.00 to pH 10.00, we did
not find a reversion trend in the real-time height (Figure S3d), which suggested that the rapid drop of height induced by pH 4.00
was irreversible (Figure 3j).

. Evaluation of osmotic stress on sEV nanotopology by using HS-AFM

Osmotic pressure is regulated to maintain the viable cell structure and cell physiology. For example, haemolysis occurs when
red blood cells are exposed to a hypotonic environment. Therefore, we postulated that osmotic stress could exert a similar effect
on the sEV structure. First, we scanned sEVs after 3-h incubation in Tris-HCl buffer containing 0 M NaCl, 0.15 M NaCl, or
1.8 M NaCl. HS-AFM images depicted that sEV1.8 M was contorted whereas the spherical shape remained intact in sEV0M but
with less bulging than sEV0.15 M (Figure 4a–b, Figure S4a, and Movie S5). The deformation rate was comparable for sEV0M and
sEV1.8 M (Figure 4c). Parameters of spatial dimension and circularity of sEV1.8 M were significantly lower than those of sEV0.15 M
and sEV0M (Figure 4d). Both diameter and area of sEV0M were comparable with those of sEV0.15 M, but sEV0M hadmuch lower
height, volume, and circularity than sEV0.15 M (Figure 4d). The sEV membrane became less elastic in buffer with zero or high
salt (Figure 4e, and Figure S4b) and failed to resist stretching after the sEV was adsorbed on a PLL-coated substrate (Figure 4f).
Collectively, after 3-h incubation, Tris-HCl with 1.8 M NaCl was hypertonic to the sEV as shrinkage, membrane disruption, and
content loss occurred in many sEVs. However, Tris-HCl with zero salt was hypotonic to the sEV, and this condition led to an
osmotic burst in many sEV without exaggeratedly disrupting the sEV nanotopology. Tris HCl with 0.15 M NaCl was isotonic to
the sEV and hence the sEV nanotopology was well preserved even after 3-h incubation in this condition.We further investigated
the real-time response of the sEV to osmotic stress (Figure 4g–i, and Movie S6). An sEV was initially scanned in an isotonic
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F IGURE  Nanotopological changes of sEVs in response to pH manipulation. (a) sEVs incubated in acidic (pH 4.00), neutral (pH 7.50), or basic (pH
10.00) buffers for 3 h before HS-AFM imaging. sEV spherical shape is retained at pH 4.00 but deformed at pH 10.00 (scale bar, sEVpH 4.00: 8 nm; sEVpH 7.50: 17
nm; sEVpH 10.00: 23 nm). (b) 3D structure of sEVpH 4.00, sEVpH 7.50, and sEVpH 10.00. (c) Bar graph showing the proportion of deformed sEV after exposure to
three different pH levels (black bar, normal; white bar, deformed). (d) pH level significantly alters spatial dimension parameters and circularity of sEV. Data are
presented as mean ± SEM (***p < 0.001, ****p < 0.0001, n.s: not significant). (e) Bar graphs presenting the real-time height changes (Δh) of an sEV pretreated
at pH 4.00, pH 7.50, or pH 10.00. (f) sEVpH 10.00 is greatly stretched on PLL-coated substrate compared with sEVpH 4.00 and sEVpH 7.50. Values are shown as
mean ± SEM (****p < 0.0001). (g) Real-time imaging of sEV nanotopology during pH transition (neutral-acidic-basic). sEV shrinks at pH 4.00 and later
deforms at pH 10.00 (scale bar: 30 nm). (h) Line graphs demonstrating the real-time measurement of height, diameter, area, and circularity in response to pH
change. The values are illustrated as ratio relative to the initial state (t = 0) (red: height; blue: diameter; green: area; yellow dotted: circularity; green area: pH
7.50; red area: pH 4.00; purple: pH 10.00). (i) Real-time change in aspect ratio of sEV at different pH levels. The aspect ratio drops in the basic environment,
which is consistent to the result in a premix setting (green area: pH 7.50; red area: pH 4.00; purple area: pH 10.00). (j) A schematic diagram delineating the sEV
nanotopology at different pH levels. Sample size for (c), (d), and (f): sEVpH 4.00, 52; sEVpH 7.50, 51; sEVpH 10.00, 52
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F IGURE  Osmotic stress on nanotopology of sEV. (a) sEVs incubated in a scanning buffer (50 mM Tris-HCl pH 7.50) with different sodium chloride
(NaCl) concentrations (0 M, 0.15 M, and 1.8 M) for 3 h before HS-AFM observation. sEV structure is clearly deteriorated in hypertonic buffer (1.8 M NaCl) but
its spherical shape remains intact in a hypotonic buffer (0 M NaCl) (scale bar, sEV1.8 M: 8 nm; sEV0.15 M: 16 nm; sEV0M: 22 nm). (b) 3D structures of sEV1.8 M,
sEV0.15 M, and sEV0M. (c) Bar graph showing the percentage of deformed sEVs after exposure to different levels of osmotic stress (black bar, normal; white bar,
deformed). (d) Osmotic stress significantly changes the spatial dimension and circularity of sEV. Mann-Whitney U test is performed, and data are presented as
mean ± SEM (**p < 0.01, ***p < 0.001, ****p < 0.0001, n.s: not significant). (e) Bar graphs illustrating the real-time height change (Δh) in sEVs after treated
with hypo-, iso-, or hypertonic buffer. Results show that both hypertonic and hypotonic buffers reduce the height change of an sEV. (f) Bar graph
demonstrating the aspect ratio is significantly reduced in sEV1.8 M and sEV0M. Data are depicted as mean ± SEM. (g) Real-time tracing of nanotopological
change in an sEV in response to different levels of osmotic stress (scale bar: 40 nm). (h-i) Hypertonic condition induces an irreversible change in the sEV
structure, and hence the sEV fails to revert to its initial bulging shape in hypotonic condition. The values are illustrated as ratio relative to the initial state (t= 0)
(red: height; blue: diameter; green: area; yellow dotted: circularity; medium grey area: 0.15 M; dark grey: 1.8 M; white area: 0 M). (j) A schematic diagram
showing nanotopology of an sEV at isotonic or hypotonic conditions. Sample size of (c), (d), and (f): sEV1.8 M, 51; sEV0.15 M, 40; sEV0M, 44
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buffer, and then the osmotic pressure was manipulated by adjusting the NaCl concentration (Figure 4g). The sEV shrunk in
hypertonic buffer, which was demonstrated by the rugged appearance and declination in height, diameter, area, and circularity
(Figure 4h). The shrinkage was irreversible because the sEV did not expand in hypotonic buffer (Figure 4h–j), which implied that
the hypertonic environment had irreversibly damaged the sEVmembrane and themembrane failed to retain hydrostatic pressure
for expansion in the hypotonic environment. Surprisingly, prolonged incubation of the sEV in hypotonic buffer promoted sEV
fusion and formed large sEV aggregates (Figure S5, and Movie S7).

 DISCUSSION

Here, we have introduced a new paradigm for nanoscopic assessment of sEVs in response to various types of physicochemical
stress, in both a premix setting and a real-time manner (Figure 5). The advent of HS-AFM has brought a revolutionary improve-
ment to nanoimaging of biomolecules and organelles (Ando et al., 2001; Kodera et al., 2010). It supersedes other imaging tools
in two respects: sample preparation and method of data acquisition. Additional sample preparation, fixation, and permeabiliza-
tion, for example, are not necessary prerequisites for HS-AFM imaging. Furthermore, the imaging environment of HS-AFM is
relatively physiological compared with the vacuum environment used in electron microscopy (EM). Therefore, we are able to
observe and study the native conformation of sEV and life processes using HS-AFM. Data acquisition is important for obtaining
valuable information about sEV structure and function. EM methods, especially cryo-EM, could potentially provide a compre-
hensive set of sEV structural data but only within the confines of static snapshots. Computational simulations to evaluate sEV
dynamic properties are therefore needed. Alternatively, fluorescent markers can be used to tag sEVs, but the acquired data only
reflect dynamic behaviour of the tag and not the sEVs themselves. Various AFM imaging modes have been established, such as
Bio-AFM,DM-AFM, andOpto-AFM (reviewed in (Dufrêne et al., 2017)), and AFM is frequently used tomeasure themembrane
stiffness of sEVs (Ye et al., 2021; Yurtsever et al., 2021). Recently, 3D images of sEVs were generated using 3D-AFM (Fukuma &
Garcia, 2018; Yurtsever et al., 2021). In contrast to HS-AFM, other AFM methods have lower temporal resolution, and it is not
feasible to measure rapid changes in sEV nanotopology in response to stresses, such as those that occur during transition in pH
or osmolarity. Although the spatiotemporal resolution of HS-AFM is advantageous for capturing sEV conformational dynam-
ics, it must be complemented with biochemical analysis to determine protein compositions in sEVs. Without a functionalized
cantilever tip coated with antibodies, HS-AFM is unable to detect exosomal markers such as CD9 and CD81 in sEVs. Unless
sEVs are ruptured or deformed, HS-AFM is only able to scan sEV surfaces. Indeed, we have identified exosomal contents from
ruptured sEVs such as DNA strands and peptide filaments (Figure S6 and Movie S8), yet we still need additional tools to inves-
tigate exosomal content. Moreover, HS-AFM is an in vitro approach, despite the scanning buffer providing near-physiological
conditions.
Our study provides insights into a wide range of sEV topics. First, our findings suggest thatHS-AFM is suitable for studying the

relationship between storage conditions and sEV nanotopology, with temperature and pH being common storage parameters.
The intrinsic properties of sEVs make them suitable for use as nanocarriers, vaccines, and theranostic nanoparticles. Robust
HS-AFM scanning of sEV nanotopology in response to pH and temperature manipulations allows the resilience of sEVs against
unfavourable storage conditions to be evaluated. For example, sEV-based COVID-19 vaccines with high thermal stability allow
people living in poor rural areas to receive protection (Figure 5b). Material selection of sEVs is not limited to biomaterial storage.
For example, assessment of conformational dynamics of sEVs in response to different physicochemical parameters allows the
drug release patterns of sEV-based nanocarriers to be studied, which subsequently improves understanding of pharmacokinetic
profile of drugs (Figure 5a).
Quality control of isolated sEVs is a routine procedure to ensure they are fit for downstreamprocesses, such as nanoformulation

of sEV-based drugs and bioengineering of sEVs for vaccines (Figure 5c). Certain isolation techniques could affect the structural
integrity of sEVs. For instance, EVs are exposed to a high salt concentration (e.g., 1 M NaCl) during their rapid isolation and
enrichment using anion exchange chromatography (Heath et al., 2018). Our results illustrated that the nanotopology of sEVs was
rapidly affected during an increase in salt concentration from 0.15 to 1.8 M. Images obtained using cryo-EM may not represent
the native conformation of EVs isolated using anion exchange chromatography. As a result, confirmation of the isolated sEV
structure using HS-AFM is beneficial.
The pHchange during endocytosis, fromearly endosome to late endosome, can be readily established by changing the scanning

buffer pH from 7 to 4. Interestingly, the nanotopology of sEVs was resistant to acidic conditions, presumably because both sEVs
and endosomes originate from multivesicular bodies. This condition is crucial to several viral fusion proteins for which low pH
triggers their fusogenic transition to orchestrate viral entry (Figure 5d). We have previously characterized the influenza A virus
hemagglutinin fusion protein (Lim et al., 2020a) or the SARS-CoV-2 spike protein (Lim et al., 2021) docking on an sEV layer
using HS-AFM. We can also use HS-AFM to study the nanotopology and structural dynamics of EVs released by Helicobacter
pylori (Figure 5e), the pathogen that is able to survive in extremely acidic environments, and usually secretes urease to increase
stomach acidity (Rektorschek et al., 1998). H. pylori EVs contain oncoproteins CagA and VacA, which induce chronic gastritis
and gastric cancer (Choi et al., 2017). Choi et al. reported thatH. pylori EVs accumulate in the stomach of gastric cancer patients
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F IGURE  New paradigm of nanoparticle assessment using HS-AFM. HS-AFM imaging represents the continuity of nanotopological dynamics of sEV in
response to different physicochemical parameters. The information gained is essential for sEV study in various aspects: (a) Structural dynamics of sEV-based
nanocarrier in drug release. (b) Material selection to produce sEV-based products with high thermal stability (ex: sEV-based COVID-19 vaccine) for people in
rural area with limited freezers and/or delivery service. (c) Quality control of sEV after isolation before downstream processes. (d) Real-time observation of
interaction between viral fusion protein and sEV layer during viral entry. sEV can be used to mimic endosome to provide a docking platform for viral fusion
proteins during fusogenic transition triggered by low pH. (e) Nanoscopic assessment of pathogenic EVs.Helicobacter pylori EVs contain oncoproteins CagA
and VacA, which are the etiological factors of chronic gastritis and gastric cancer. (f) Discovery of new nuclear transport mechanism. Non-canonical nuclear
transport of sEV contents (Corbeil et al., 2020) could be investigated using HS-AFM in the near future. (AEC: anion exchange chromatography; INM: inner
nuclear membrane; ONM: outer nuclear membrane; NPC: nuclear pore complex; NEI: nuclear envelope invagination; MT: microtubule; VAP-A:
(VAMP)-associated protein A; ORP3: oxysterol-binding protein (OSBP)-related protein-3; Rab7: late endosome-associated small GTPase Rab7)
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(Choi et al., 2017). Using our methodology, we can investigate the pH-dependent nanotopology of these EVs using HS-AFM and
relate the findings to the pathogenesis of chronic gastritis or gastric cancer. In the near future, wemay also be able to performHS-
AFM imaging to trace the non-canonical nuclear transport of sEV contents (Corbeil et al., 2020; Santos et al., 2021), during which
low pH induces membrane fusion of an endosome and sEV to release sEV contents near the nucleus before nuclear translocation
(Corbeil et al., 2020) (Figure 5f). Further effort is needed to determine whether this uncommon transport pathway is essential
for intercellular communication or nuclear transport of oncogenes/oncoproteins (Hashizume et al., 2010; Hazawa et al., 2018),
and viral proteins (Sajidah et al., 2021).
In conclusion, we have presented HS-AFM as a versatile nanoimaging tool that, by manipulating physicochemical stresses, is

capable of answering a broad range of sEV- and EV-related questions.
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