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Abstract

Exposure to traffic-related pollutants, including diesel exhaust, is associated with increased risk 

of cardiopulmonary disease and mortality; however, the precise biochemical pathways underlying 

these effects are not known. To investigate biological response mechanisms underlying exposure 

to traffic related pollutants, we used an integrated molecular response approach that included 

high-resolution metabolomic profiling and peripheral blood gene expression to identify biological 

responses to diesel exhaust exposure. Plasma samples were collected from 73 non-smoking 

males employed in the US trucking industry between February 2009 and October 2010, and 

analyzed using untargeted high-resolution metabolomics to characterize association with shift- and 

week-averaged levels of elemental carbon (EC), organic carbon (OC) and particulate matter with 

diameter ≤ 2.5 μm (PM2.5). Metabolic associations with EC, OC and PM2.5 were evaluated for 

biochemical processes known to be associated with disease risk. Annotated metabolites associated 

with exposure were then tested for relationships with the peripheral blood transcriptome using 

multivariate selection and network correlation. Week-averaged EC and OC levels, which were 

averaged across multiple shifts during the workweek, resulted in the greatest exposure-associated 

metabolic alterations compared to shift-averaged exposure levels. Metabolic changes associated 

with EC exposure suggest increased lipid peroxidation products, biomarkers of oxidative stress, 

thrombotic signaling lipids, and metabolites associated with endothelial dysfunction from altered 

nitric oxide metabolism, while OC exposures were associated with antioxidants, oxidative 

stress biomarkers and critical intermediates in nitric oxide production. Correlation with whole 

blood RNA gene expression provided additional evidence of changes in processes related to 

endothelial function, immune response, inflammation, and oxidative stress. We did not detect 

metabolic associations with PM2.5. This study provides an integrated molecular assessment of 

human exposure to traffic-related air pollutants that includes diesel exhaust. Metabolite and 

transcriptomic changes associated with exposure to EC and OC are consistent with increased 

risk of cardiovascular diseases and the adverse health effects of traffic-related air pollution.
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INTRODUCTION

Exposure to traffic-related pollution has been linked to increased risk of all-cause mortality, 

cardiovascular disease (CVD), cardiopulmonary outcomes and lung cancer mortality, (Hart 

2016; Pope et al. 2002; Pope et al. 2009) with 2010 estimates suggesting 3.1 million 

deaths were attributable to ambient particulate exposure alone. (Lim et al. 2012) Suspected 

mechanisms that contribute to disease risk include increased oxidative stress, endothelial 

dysfunction and inflammation; however, study in human populations has shown conflicting 

results. (Bates et al. 2015b; Brugge et al. 2013; Chuang et al. 2007; Donaldson et al. 2001; 

Sorensen et al. 2003)

Exhaust emissions consist of a complex mixture of particle-bound and free chemicals. 

Source, fuel type, combustion efficiency and distance from the source contribute to both 

the individual constituents and composition of particulate matter present in traffic-related 

air pollution. However, in general, combustion related particulate matter includes ultrafine 

particles with an elemental carbon core (EC) and a particulate organic carbon (OC) 

fraction that originates both from chemicals produced during incomplete combustion as 

well as condensation of organic volatile gases on the particle surface during atmospheric 

transport. Evidence suggests the composition of particulate matter, specifically EC, are 

a robust indicator of combustion-based exposures from traffic. (Janssen et al. 2012) EC 

is a major component of carbonaceous particulates arising from diesel exhaust lacking 

modern emission controls and is also present to a lesser extent in exhaust from other mobile 

sources, including spark-ignition vehicles. (Costantini et al. 2016; Grahame et al. 2014; 

Schauer 2003; Sheesley et al. 2009) Several studies have shown using EC as a measure of 

traffic-related exposures results in higher effect estimates associated with cardiopulmonary 

disease when compared to PM2.5 (particulate matter with diameter ≤ 2.5 μm); however, 

these findings have not been consistent across different populations and it is not clear if 

EC is independently associated with outcomes or an indirect measure of particle mass. 

(Beelen et al. 2008; Lipfert et al. 2006; Luben et al. 2017; Ostro et al. 2007; Sarnat et al. 

2015) Cumulative EC exposure based upon 5- and 1-year lag periods has been associated 

with lung cancer mortality in trucking industry workers in the US, (Garshick et al. 2008) 

while the International Agency for Research on Cancer has classified diesel exhaust as 

a Group 1 carcinogen. (Benbrahim-Tallaa et al. 2012) Although health risks of EC have 

been documented, the contribution of EC and other traffic-related pollutants such as particle 

associated organic chemicals (assessed by measuring OC) to metabolic responses has not 

been well characterized.

The human metabolome is a functional measure of the interaction between the genome, 

diet, environment, and metabolism. (Wishart et al. 2013) Identifying metabolic changes 

associated with environmental exposures has the potential to improve understanding of 

response to exposures, providing new insight into the biological changes underlying 

exposure-related diseases. Untargeted chemical profiling techniques based upon high 

resolution mass spectrometry now make possible measurement of up to 20,000 chemical 

features, providing sufficient metabolic characterization for precision medicine and 

exposome research. (Liu et al. 2016) When combined with complementary response 

measures, such as gene expression, protein levels or epigenetic changes, it is possible to 
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develop an in vivo, systems biology approach to investigate how environmental exposures 

contribute to disease risk in humans. Development of aggregated biological response 

patterns across multiple ‘omic layers represents a new paradigm for combining toxicology 

with molecular and environmental epidemiology.

In the present study, we used untargeted high-resolution metabolomics (HRM) and 

whole blood RNA gene expression to characterize the integrated molecular response of 

US trucking industry workers following occupational exposure to diesel exhaust. Using 

exposure levels measured at the workplace and blood samples collected at multiple 

time points throughout the workweek, we evaluated metabolic alterations associated with 

shift- and week-averaged EC and organic carbon (OC) in particles <1 μm in diameter 

(PM1.0), and fine particulate matter (PM2.5). Using metabolic changes associated with 

week-averaged exposures, we applied a data-driven network approach to identify correlating 

gene expression pathways. Our objective was to provide an integrated assessment of human 

molecular response to traffic-related pollutants and identify biological pathways that may 

underlie the observed effects of these exposures.

METHODS

Study population

Details on the study population, recruitment and sample collection have been reported 

previously. (Neophytou et al. 2013; Neophytou et al. 2014) Briefly, 95 participants were 

recruited from 10 unionized trucking terminals located throughout the northeastern US 

(Connecticut, Massachusetts, Maryland, New Jersey, New York and Pennsylvania), and 

classified based upon job duties with different patterns of roadway traffic and freight 

terminal exposures from working in proximity to diesel powered trucks. Job classifications 

include pickup and delivery drivers, freight dock workers, and office clerks. Participants 

were selected for enrollment in the study if they had at least two days off prior to the start 

of the study. Measurements and sample collection were completed between February 2009 

and October 2010, with terminals sampled one at a time for up to 8 continuous days. To 

reduce confounding due to smoking and sex differences, the present analysis was restricted 

to 73 non-smoking, male workers. All participants provided informed consent, and the study 

protocol was approved by the Institutional Review Board of the Brigham and Women’s 

Hospital and the Human Subject Committee of the Harvard T.H. Chan School of Public 

Health.

Exposure assessment

Stationary samplers for exposure assessment were placed at indoor office spaces, terminal 

docks and within truck cabs for all 10 terminal locations during the full workweek (6–

9 days). Exposure measures of traffic-related pollutants included PM2.5, and EC and 

OC in PM1.0. Collection protocols and detailed methodology on assigning exposures are 

described elsewhere. (Neophytou et al. 2013) PM2.5 was collected on a 37-mm Teflon 

filter (Gelman/Pall, Port Washington, NY, USA) after passing through a precision-machined 

cyclone pre-selector (GK2–5-SH, BGI, Inc., Waltham, MA USA) to remove particles greater 

than 2.5 μm in aerodynamic diameter. The method was consistent with the EPA PQ200 
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Federal Reference Method. (Tainio et al. 2005; Yanosky and MacIntosh 2001) EC and OC 

were measured by collecting PM1.0 on a 22-mm quartz tissue filter preceded by precision 

machined cyclone separator (SCC1.062 Triplex, BGI Inc., Waltham, MA USA), which was 

then analyzed by thermal-optical carbon analyzer using the NIOSH 5040 method. (NIOSH 

2003) Individualized, personal exposures were then estimated for each participant using a 

weighted average of the reported time spent at each work location on each workday.

Biomarker sampling

A total of four blood samples was collected from each participant over the course of the 

workweek. The first blood sample was collected from each participant prior to the day’s 

work shift on their first day back after at least two days off, followed by a second blood 

sample at the end of the first work shift. Pre- and post-shift samples were collected again 

on the last day of the same workweek. Following each blood draw, blood tubes were stored 

at 4°C until processing. EDTA plasma samples for metabolomic analysis were centrifuged, 

aliquoted, and stored in the vapor phase of liquid nitrogen freezers at < −130°C. RNA was 

extracted from PaxGene tubes using the Qiagen RNAEasy kit and stored at −80°C.

High-resolution metabolomics

Untargeted HRM profiling was completed using verified protocols. (Accardi et 

al. 2016a; Go et al. 2015) Plasma aliquots were removed from storage and 

thawed on ice. A 65 μL aliquot of plasma was then added to 130 μL of 

acetonitrile containing a mixture of stable isotopic standards that included [13C6]-D-

glucose, [15N]-indole, [2-15N]-L-lysine dihydrochloride, [13C5]-L-glutamic acid, [13C7]-

benzoic acid, [3,4-13C2]-cholesterol, [15N]-L-tyrosine, [trimethyl-13C3]-caffeine, [15N2]-

uracil, [3,3-13C2]-cystine, [1,2-13C2]-palmitic acid, [15N,13C5]-L-methionine, [15N]-choline 

chloride, and 2’-deoxyguanosine-15N2,13C10-5’-monophosphate, vortexed, and allowed to 

equilibrate for 30 minutes. (Soltow et al. 2013) Triplicate 10 μL aliquots were analyzed 

by reverse-phase C18 liquid chromatography (Targa 100 mm x 2.1mm x 2.6 μm, Higgins 

Analytical Inc) with detection by a Thermo Scientific Q-Exactive high-resolution mass 

spectrometer. Analyte separation was accomplished using water, acetonitrile and 2% [v/v] 

formic acid in water (solution A) mobile phases operating under the following gradient: 

initial 2 min period of 80% A, 5% water, 15% acetonitrile, followed by linear increase to 

0% A, 5% water, 95% acetonitrile at 6 min and then held for an additional 4 min. Mobile 

phase flow rate was held at 0.35 mL/min for 6 min, and then increased to 0.5 mL/min. 

The high-resolution mass spectrometer was equipped with an electrospray ionization source 

operated in positive ion mode with spray voltage of 4.5 kV, probe, capillary temperature 

275°C, sheath gas flow 45 (arbitrary units), auxiliary gas flow 5 (arbitrary units) and S-lens 

RF level of 69. Resolution was set at 70,000 (FWHM) and mass-to-charge (m/z) scan range 

85–1275. Spectra were collected in full scan only without MSMS. Samples were analyzed in 

batches of 20, in addition to a quality control (QC) pooled reference sample included at the 

beginning and end of each batch of samples to evaluate batch effects and reproducibility of 

the detected metabolite features.

Upon injection of all study and quality control samples, mass spectral features with replicate 

coefficient of variation (CV) ≤ 100% were extracted and aligned using apLCMS (Yu et al. 
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2013) with modifications by xMSanalyzer (Uppal et al. 2013) and batch effect correction by 

ComBat (Johnson et al. 2007). Detected chemical signals were defined by accurate mass-to-

charge ratio (m/z), retention time and intensity, referred to as metabolite features throughout. 

Prior to statistical analysis, replicate injections were averaged, and metabolite features not 

detected in >50% of the participants were removed, resulting in 7,042 and 7,035 metabolite 

features for the shift- and week-averaged analyses, respectively. All participant covariates 

and untargeted metabolomics data underlying this article are available under Study ID 

ST001930 in the Metabolomics Workbench at http://dx.doi.org/10.21228/M84Q3H.

Whole blood RNA gene expression

Gene expression associations with PM2.5, EC and OC in this cohort have been described 

previously. (Chu et al. 2016) Analysis was conducted using the Illumina HumanHT-12 v4 

Expression BeadChip, with RNA labeling and array hybridization performed according to 

protocol. Image capture was performed using the Illumina BeadArray Reader. Standard 

QC and pre-processing procedures were applied, with background correction and quantile 

normalization procedures completed using the R package lumi. (Du et al. 2008) The final 

data set was log2 transformed prior to network integration and included information for 

47,295 probes. Previous analysis of gene expression profiles from this cohort show no 

significant differences were present when comparing pre- and post-shift gene expression on 

day 1, or across post-shift samples on days 1 and 4. (Chu et al. 2016) Thus, to reduce adding 

any additional variability due to diurnal effects and simplify interpretation of correlation 

results only post-shift measurements from both days were considered.

Metabolome wide-association study of traffic-related pollutants

Due to the availability of repeat HRM and exposure measures in this study, we completed 

metabolome-wide association study (MWAS) of PM2.5, EC and OC separately for shift- and 

week-averaged workplace exposures. The association of each metabolite feature with PM2.5, 

EC and OC were determined using linear mixed effects regression models, which included 

a random intercept for each subject to account for baseline inter-individual differences. 

Fixed effects for both models included the interquartile range (IQR) normalized exposure 

measure, age, day (factor for first and last day of the workweek), and body mass index 

(BMI, calculated from measured height and weight). The effect of day as a continuous 

variable and race was also evaluated; however, accounting for time differences between 

blood sample collection or race as a fixed factor in the regression models did not impact 

MWAS results and were excluded as covariates. We first tested for daily associations with 

PM2.5, EC and OC using metabolite feature measured in post-shift blood samples collected 

on both days and the corresponding exposures measured over the course of that workday. 

Week-averaged effects were evaluated using the average exposure calculated using the first 

and last shift for each participant and metabolomic results measured in blood samples 

collected at all time points. To account for diurnal effects, we included sampling time (pre- 

or post-shift) as an additional covariate to allow metabolite peak intensity to vary with 

time irrespective of exposure measures. Regression analysis was performed using the R 

package lme4 and completed separately for each exposure and time combination. (Bates et 

al. 2015a) The likelihood ratio test of the complete model against the null model, which 

excluded the corresponding exposure measures as the independent variable, was used to 
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obtain p for each metabolite feature-exposure pair. Model fits were evaluated by calculating 

the conditional and marginal r2. To account for multiple hypothesis testing and estimate 

the expected proportion of incorrectly rejected null hypotheses (i.e. false positives), a 

Benjamini-Hochberg false discovery rate (FDR) was applied to identify metabolite features 

associated with each pollutant. (Benjamini and Hochberg 1995) Associated metabolite 

features were identified using an FDR threshold of 20% to balance the rate of type I and II 

errors, which when combined with dose-response linear regression and metabolic pathway 

enrichment has been shown to improve detection of biological activity and reduce false 

positives. (Li et al. 2013; Walker et al. 2016)

Metabolite annotation and pathway enrichment

The metabolite features associated with each exposure were first matched using accurate 

m/z detected using MS1 and retention time to a database of 120 metabolites previously 

confirmed with MS2 and co-elution studies (Level 1 identification). (Accardi et al. 2016b; 

Liu et al. 2020; Schymanski et al. 2014) To generate additional biological insight into 

effects of exposure EC, OC and PM2.5, metabolite features not matching the database 

of 120 metabolites were annotated using MS1 detected accurate m/z based upon positive 

electrospray ionization adducts and the Human Metabolome Database (HMDB) release 

3.0. (Wishart et al. 2013) Metabolite annotations were assigned using evidence scoring 

(Uppal et al. 2016a) and ± 10 parts-per-million (ppm) mass tolerance (Δmerror /mtheoretical 

× 106). While these annotations provide low confidence matches (Level 4 annotation) that 

predict chemical formulas only and do not inform on compound structures, combining low 

confidence annotations with functional activity patterns within the untargeted data improves 

the ability to uncover novel insight into metabolite response profiles to exposures. (Uppal 

et al. 2016b) Thus, we combined annotation of features with pathway-based functional 

enrichment analysis using Mummichog to characterize metabolic activity patterns associated 

with each exposure. (Li et al. 2013) Enriched metabolite pathways were selected using a 

Mummichog scoring threshold ≤ 0.05.

Metabolome x transcriptome exposure response pathways

To evaluate integrated metabolic and gene expression patterns associated with exposure to 

traffic-related pollutants, we performed a network-based correlation analysis using xMWAS 

to characterize relationships between annotated metabolites associated with week-averaged 

exposures and peripheral blood transcriptomic results. (Uppal et al. 2018) Correlations 

with |r| ≥ 0.4 and p< 0.05 were then selected for visualization in Cytoscape, with gene 

and metabolite pathway enrichment determined using MetaCore (Thomson Reuters) and 

Mummichog, respectively. An enrichment score of 0.1 was used to identify metabolite 

pathways and p <0.05 for gene expression pathways. Previously reported relationships 

between gene pathways present in the integrated network and exposure to traffic related 

pollutants were evaluated using the Comparative Toxicogenomics Database (CTD). (Davis 

et al. 2013) To identify previous gene-exposure relationships, we used the top two most 

connected gene nodes from each cluster for searching reported gene-chemical interactions 

within CTD.
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RESULTS

Study population

A summary of participant characteristics is provided in Table 1. HRM profiling was limited 

to 73 individuals who were otherwise healthy, non-smoking males from all three-job 

categories with blood samples available on both sampling days. Comparison of exposure 

levels at the beginning and end of the workweek showed no differences between the two 

workdays (p >0.7). Week-averaged exposures showed a weak correlation between PM2.5 

and EC (Pearson r= 0.39, p= 0.0007) and between PM2.5 and OC (Pearson r= 0.27, 

p= 0.021), while no correlation was present between EC and OC (Pearson r= 0.03, p= 

0.78). Dockworkers and pickup and delivery drivers had higher PM2.5 and EC exposures 

compared to office clerks, while OC was lowest among dockworkers. (Neophytou et al. 

2013; Neophytou et al. 2014) Participant shift-and week-averaged exposure levels for EC, 

OC and PM2.5 are provided in Supplementary Figure 1.

Shift-averaged exposure MWAS

To evaluate acute effects of exposure to EC, OC and PM2.5, we used an MWAS framework 

to test the relationship between shift-averaged exposures and metabolite features measured 

in post-shift samples obtained on both workdays (Figure 1A). Using an FDR threshold 

of 20%, 68 and 48 unique m/z features were associated with EC and OC, respectively 

(Supplementary Tables 1 and 2). Only 3 metabolites were identified at level 1, the 

remaining were annotations based upon accurate mass matching only. Annotated metabolites 

associated with EC included metabolic intermediates related to inflammation, endothelial 

function, lipid peroxidation and co-factors (Table 2); enriched pathways included butanoate 

metabolism (p= 0.01) and urea cycle/amino group metabolism (p= 0.04). For OC, metabolite 

annotations were consistent with nucleotide metabolism, porphyrin metabolites and lipid 

peroxidation products (Table 2), and enriched pathways included changes in selenoamino 

acid metabolism (p= 0.003), glycerophospholipids (p= 0.003), pyruvate metabolism (p= 

0.009), serine metabolism (p= 0.01), glycolysis/gluconeogenesis (p= 0.03) and arginine/

proline metabolism (p= 0.03). None of the metabolite feature intensities were associated 

with shift PM2.5 at FDR<20%.

Week-averaged exposure MWAS

Previous results in this cohort have shown changes in gene expression, inflammatory 

markers, oxidative stress and urinary exposure biomarkers are largely dependent on week-

averaged, rather than shift-averaged exposures. (Chu et al. 2016; Neophytou et al. 2013; 

Neophytou et al. 2014) Therefore, we next performed MWAS for PM2.5, EC and OC 

using plasma samples collected at all timepoints and averaged exposures for the workweek 

(Figure 1B). Using FDR <20%, 845 and 650 metabolite features were associated with 

week-averaged EC and OC levels, respectively; none met the FDR criteria for PM2.5 

(Supplementary Tables 3 and 4). Comparison of the results for week-averaged MWAS 

showed 168 metabolite features were associated with both EC and OC. For EC 49 

metabolite features were associated with both shift- and week-averaged exposure levels, 

while OC included 28 metabolite features associated with both exposure time periods. 

(Figure 2). The majority of the metabolite features showed a positive association with 
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exposure at FDR<20%, including 634 for EC and 384 for OC that increased with increasing 

exposure levels.

Metabolite identification for both exposures was first completed by comparison to a 

reference database of confirmed metabolites (Level 1 identification), which was then 

complemented with annotation by accurate mass matching and confidence scoring, 

which allows prediction of chemical formulas and potential metabolite structures (Level 

4 annotation). Annotated endogenous metabolites associated with week-averaged EC 

included lipid peroxidation products, oxidative stress biomarkers, endothelial function-

related metabolites and co-factors (Table 3). Lipid peroxidation products and oxidative 

stress metabolites included 4-oxo-2-nonenal, glutathione and 12-oxo-10E-octadecenoic acid. 

Pathway enrichment identified 13 metabolic pathways, including changes to fatty acid 

metabolism, pro-inflammatory lipid signaling, co-factor metabolism and nitrogen catabolism 

(Figure 3). Only urea cycle/amino group metabolism was also associated with shift-averaged 

EC.

Annotation of metabolite features associated with week-averaged OC show changes to key 

metabolic intermediates, including co-factor metabolism, increased oxidative stress, and 

disruption to nitric oxide (NO) production and endothelial function (Table 4). Pathway 

enrichment identified 23 pathways associated with week-averaged OC, which were related 

to endothelial function, co-factor metabolism, inflammatory signaling, nitrogen catabolism, 

mitochondrial bioenergetics and amino acid metabolism (Figure 3). Pathways including 

selenoamino acid metabolism, serine metabolism, arginine/proline metabolism, pyruvate 

metabolism and glycerphospholipid were associated with both shift- and week-averaged OC 

exposure.

Network correlation of molecular response

We used an integrative network approach developed for combining multi-omic datasets 

to identify correlated gene and metabolite pathways associated with week-averaged EC 

and OC exposure (Figure 4). A high degree of connectivity was observed for the two 

datasets, resulting in 1,234 molecular probes and 146 metabolites with |r| ≥ 0.4 and p≤ 

0.05. Multi-level community detection identified four clusters in the molecular response 

network. Excluding cluster 2, the remaining were largely gene expression dominated, with 

clusters 1, 3 and 4 including 120, 370 and 699 genes, respectively, associated with 65, 

2 and 22 metabolites. Cluster 2 contained 57 metabolites and 45 genes. To assess the 

biological functions associated with each of the clusters, we tested for the presence of 

metabolite and gene expression pathways enriched in each cluster. The complete results 

are provided in Supplementary Table 5. Cluster 1 showed association with 15 metabolic 

and 23 gene expression pathways, which included pathways related to inflammation 

and immune response, DNA damage, cell adhesion and vascular function. Metabolites 

present in cluster 2 included 26 metabolic and 13 gene expression pathways. These were 

consistent with developmental processes, endothelial NO synthases, nucleotide metabolism 

and oxidative stress processes. Oxidative stress pathways included changes to ascorbate/

aldarate metabolism, sulfur amino acid metabolism and TNF-alpha-induced ROS-dependent 

Caspase-3 signaling, with the metabolites ascorbic acid, glutathione and cysteamine also 
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present in the correlation cluster. Cluster 3 consists almost entirely of gene expression 

nodes, with the vitamin E metabolite 7’-carboxy-alpha-chromanol and pyrroline the only 

two identified metabolites present. Due to this, 60 gene expression pathways were enriched 

from a diverse range of processes, including adipocyte differentiation, apoptosis, immune 

response, oxidative and reticulum stress response, inflammation and red blood cell adhesion. 

Similarly, cluster 4 only showed enrichment in Vitamin E metabolism. The gene expression 

results showed 47 pathways, including NO synthase signaling in muscle tissue, platelet 

aggregation, TNF signal transduction, mitochondrial dysfunction, immune response and 

regulation of lung epithelial progenitor cell differentiation.

Integration of gene expression and metabolites associated with EC and OC identified 

four main clusters of gene-metabolite correlations. We next evaluated the top two most 

connected genes present in each cluster to see if these genes had previously been 

linked to traffic related pollutants by searching CTD for literature reported gene-chemical 

interactions. For cluster 1, MATR3 and PPM1A showed interaction with benzo[a]pyrene, 

and exposures listed as volatile organic chemicals and vehicle emissions. In addition, BPDE, 

dinitrotoluene and nanoparticle exposures had reported effects on expression of MATR3. 

Cluster 2 nodes included one gene providing no matches in CTD (LOC100131165). The 

second gene, SNORA14A, only showed interactions with 1-(4-methoxyphenyl)-2-(3,4,5-

trimethoxyphenyl)ethane, a methylated analog of resveratrol that has been shown to 

reduce levels of induced NO synthase. Chemical interactions listed in CTD for the 

topmost connected gene expression nodes in cluster 3 included environmental pollutants 

originating from exhaust emissions. For KIDINS220, traffic-related pollutants included 

dinitrobenzene, benzene and PAH dipole epoxides, while dinitrotoluenes, PAHs and 

dipole epoxide metabolites, carbon nanotubes, tobacco smoke and vehicle emissions have 

documented interactions with expression of IVNS1ABP listed in CTD. Cluster 4 resulted 

in similar interactions, including dinitrotoluenes, dioxin and PAH-related chemicals for the 

topmost connected gene in that cluster (UBE2D2), while interactions with dinitrotoluene, 

dinitrobenzene, a PAH dipole epoxide, dioxins and nitroarenes were present for OTUB1.

DISCUSSION

The present study provides an integrated molecular characterization of the biological 

response to PM2.5, EC and OC based upon trucking industry workers whose jobs included 

operating and working in proximity to diesel powered trucks in trucking terminals and on 

roadways. Untargeted metabolomics was used to characterize metabolic changes associated 

with EC and OC from shift- and week-averaged exposures. The results showed week-

averaged EC and OC were associated with the greatest number of metabolic alterations, 

and included metabolite changes consistent with oxidative stress, endothelial function and 

inflammation. Changes in these pathways were also present in gene expression profiles 

correlated with EC and OC-associated metabolites, providing new insight into biological 

effects underlying exposure to traffic-related pollutants and cardiovascular disease risk.
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Metabolomic profiling of exposure to traffic-related pollutants

Due to the ability of metabolomics to characterize multiple key biological processes 

related to human health and disease, metabolomics approaches studying the effects of 

traffic related pollution include a wide range of exposure scenarios and timescales, 

which were recently detailed extensively by Jin et al. (2021). These studies include 

controlled exposure to ambient air pollution and specific constituents, (Cheng et al. 2018) 

observational studies that provide comprehensive assessment to traffic related pollutants, 

(Liang et al. 2018; Vlaanderen et al. 2017) natural and non-natural intervention studies, 

(Li et al. 2017; Mu et al. 2019) and long-term exposure assessment using location-based 

exposure estimates. (Menni et al. 2015; Walker et al. 2018; Yan et al. 2019) In several 

of these studies, how the metabolome mediates relationships between air pollution and 

other health phenotypes, including pregnancy, asthma and cardiovascular disease, has 

provided new insight into potential pathways underlying adverse effects of these exposures. 

(Inoue et al. 2020; Jeong et al. 2018; Liang et al. 2019) While reported metabolites 

associated with traffic-related pollution have varied depending on the study design and 

metabolomic platforms used, most studies have consistently shown exposure is associated 

with endothelial pathways that include critical intermediates for NO, alterations in vitamin 

E metabolites, antioxidants, sulfur-containing amino acids, fatty acids and lipid peroxidation 

products consistent with oxidative stress, and changes in inflammatory signaling pathways 

that include prostaglandins and leukotrienes. Many of these metabolites have also been 

identified in metabolomic studies of diseases linked to air pollution exposure, including 

lung cancer, chronic obstructive pulmonary disease (COPD) and cardiovascular disease. 

(Cruickshank-Quinn et al. 2018; Fitzpatrick et al. 2014; Seow et al. 2019) To date, these 

studies have largely focused on ambient exposures, which can include emissions from 

many sources. In the present study, we provide metabolomic characterization specific to 

workers with occupational exposures primarily from diesel exhaust. Metabolomic and gene 

expression changes in our study were consistent with many of the pathways described by 

others, suggesting diesel exhaust exposure results in similar biological response pathways. 

However, these associations were largely driven by exposure composition, measured as EC 

and OC, rather than PM2.5. These results were unexpected, since PM2.5 and other particulate 

exposures have been linked to metabolic changes and all-cause mortality. (Cohen et al. 2017; 

Walker et al. 2018) Lack of association with PM2.5 could be due to the focus on monitoring 

exposures during working hours, which would be expected to catch the majority of diesel-

related EC and OC exposure, while PM2.5. levels could vary considerable throughout the 

day based upon other factors, such as residence location, home ventilation, commute, and 

cooking. These results highlight the importance of considering air pollution composition and 

levels outside of monitoring periods when evaluating metabolic effects of exposure.

Both EC and OC were associated with dose-associated alterations to central metabolic 

pathways, including amino acids, co-factors, lipids and fatty acids and consistent with 

changes in oxidative stress, endothelial dysfunction and inflammation. Due to the 

complexity and varied composition of EC and OC and associated exhaust constituents in 

particulate matter, findings on the health effects of these two pollutants have largely been 

inconsistent across different population studies. (Schauer 2003) However, both toxicological 

and epidemiological studies suggest EC as a marker of traffic exposure and important 
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contributor to adverse health effects linked to traffic-related exposures. (Janssen et al. 2011) 

Only a small number of studies have evaluated metabolic effects associated with EC and 

diesel exhaust. (Liang et al. 2019; Liang et al. 2018) To measure acute response to biodiesel 

fuel exhaust exposure, Surowiec et al. (2016) evaluated human lung lavage fluids from 

different lung regions following a 1-hr controlled exposure to biodiesel exhaust emissions, 

and similar to the associations with EC and OC in the present study identified changes in 

amino acids, including aspartic acid, ornithine, fatty acids, benzoic acid metabolites and 

co-factor metabolism following exposure. Additional studies in humans show diesel exhaust 

results in altered DNA methylation profiles, (Jiang et al. 2014) gene expression, (Peretz et 

al. 2007) and changes to bioactive lipids in lung lavage fluids. (Gouveia-Figueira et al. 2017) 

Model systems provide additional evidence of metabolic changes associated with exposure 

to diesel emissions. Oeder et al. (2015) applied a multi-omic approach that included 

proteomic, transcriptomic and metabolomic assessment of exposure to emissions from diesel 

and heavy fuel oil using human epithelial lung cells. The results showed diesel fuel resulted 

in pathway alterations across multiple omic-layers that were not observed for the heavy 

fuel oil particulates. Metabolomic profiling of mouse models using mixed vehicle emissions 

that included both gasoline and diesel exhaust have identified similar metabolic changes 

in oxidative stress-related metabolites, inflammation and lipid peroxidation products, in 

addition to alterations in intermediates of NO production critical for proper vascular and 

endothelial function. (Brower et al. 2016)

Metabolomic response profiles of occupational EC exposure

Week-averaged EC levels were associated with antioxidant metabolites and biomarkers of 

increased oxidative stress, which have been linked to risk of CVD. Increased oxidative 

stress and formation of in vivo ROS has been well documented in exposure to particulate 

matter. (Bates et al. 2015b; Lodovici and Bigagli 2011; Neophytou et al. 2014) Previous 

HRM studies have also identified similar changes in oxidative stress-related metabolites 

associated with ultrafine particulates from near highway exposures, (Walker et al. 2018) 

including increased levels of lipid peroxidation products, which have been implicated in 

the pathogenesis of multiple chronic diseases. (Akude et al. 2010; Selley 1998) In addition, 

the two antioxidants GSH and ascorbic acid were identified. GSH and its corresponding 

oxidized form, glutathione disulfide (GSSG) are one of the primary thiol/disulfide redox 

couples and provide multiple critical functions, which include protecting against oxidative 

stress, chemical detoxification and arginine turnover during NO synthase. (Hofmann and 

Schmidt 1995) Ascorbic acid, which is a protective antioxidant with functions similar to 

GSH, contributes in multiple ways to endothelial functions, including chemical stabilization 

of tetrahydrobiopterin during NO synthesis, vascular endothelial function, and has beneficial 

effects on vascular dilation. (Brown and Hu 2001; Heller et al. 2001; Jackson et al. 1998; 

Padayatty et al. 2003) Increased oxidation, particularly of thiol couples, and subsequent shift 

towards a more positive steady state redox potential has been shown to regulate early events 

in atherosclerosis and is associated with CVD and endothelial dysfunction. (Ashfaq et al. 

2008; Go and Jones 2005) A high burden of oxidative stress has also been associated with 

mortality in patients with coronary heart disease. (Patel et al. 2016)
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Additional associations with EC exposure consistent with CVD risk include inflammatory 

and endothelial-related metabolites. Thromboxane A2 (TxA2) provides multiple 

physiological functions, which include signaling for activation of new platelets and 

increased aggregation, vasoconstriction, endothelial adhesion molecule expression, cell 

proliferation and acts as a hypertensive agent. (Ding and Murray 2005; Ishizuka et al. 1998; 

Smyth 2010) Elevated biosynthesis of TxA2 and increased receptor expression are elevated 

in CVD. (Smyth 2010) Additional inducers of TxA2 production and receptor expression 

include inflammation, oxidative stress and NO, with TxA2 and other prostaglandin 

formation almost entirely driven by NO following inflammatory events. (Mollace et al. 

2005) This is consistent with the EC-associated increase in hydroxy-L-homoarginine, 

which is a minor metabolic byproduct of NO production by oxidation of the arginine 

(Arg) analogue, homoarginine. (Moali et al. 1998) Increased prostaglandin I2 (PGI2) and 

hepoxilin A3-C (HxA3-C) provides additional evidence of disruption to this pathway. The 

physiological functions of PGI2 include mediation of vasodilation and platelet inhibition, 

(Cheng et al. 2002; Whittle et al. 1978) and homeostatic control for the vasoactive 

effects of TxA2. HxA3-C is the glutathione adduct of hepoxilin A3, which is also an 

arachidonic acid metabolite with pro-inflammatory and vasodilation signaling properties. 

Taken together, these results provide strong evidence that exposure to EC results in changes 

to physiologically active signaling pathways that are implicated in a wide range of processes 

related to CVD and endothelial dysfunction.

Metabolomic response profiles of occupational OC exposure

Both shift- and week-averaged OC exposures resulted in changes to metabolites providing 

antioxidant effects and markers of oxidative stress. Metabolite changes suggesting increased 

oxidative stress include methionine sulfoxide, (Moskovitz et al. 1997) and LGSH, which 

is a byproduct of GSH dependent degradation of methylglyoxal (MG) by glyoxalate I. 

(Chang and Wu 2006) MG has been implicated in a number of disease processes, including 

hypertension, diabetes and formation of atherosclerotic lesions. (Chang and Wu 2006) 

Pathways consistent with antioxidant processes were also detected, including vitamin E 

metabolism and ascorbate/aldarate metabolism. Alpha-tocopherol was positively associated 

with OC, which has previously been observed to protect against decreasing lung function 

following PM2.5 exposure, (Menni et al. 2015) and has been associated with exposure to 

other traffic-related pollutants. (Liang et al. 2018)

OC exposure was associated with the greatest number of metabolites related to endothelial 

function. This included alterations to arginine and proline metabolism, and changes to 

metabolites with functions that include NO production from arginine, required co-factors, 

decreased thrombotic signaling molecules and endogenous inhibitors of NO. Many of these 

changes indicate OC results in disruption to NO production itself, while EC associations 

suggest increased platelet formation and aggregation. Changes consistent with possible 

disruption to NO included agmatine, acetylagmatine and n-(omega)-hydroxyarginine. 

Agmatine, which is an endogenously produced decarboxylation product of Arg, inhibits 

inducible NO synthase and acts as a modulator of NO production. (Raghavan and Dikshit 

2004) Decreased levels suggest elevated rates of NO production, which is consistent with 

the changes in n-(omega)-hydroxyarginine but not citrulline. N-(omega)-hydroxyarginine is 
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the first oxidative product of arginine by NO synthase and can as both an inhibitor of Mn 

dependent arginase enzymes and catalytic intermediate in NO production. (Cox et al. 2001) 

Taken together, these results suggest OC exposure contributes to metabolic alterations that 

have important implications for endothelial function.

Differential metabolomic response to EC and OC occupational exposures

While many of the underlying biological processes associated with OC were similar to 

those observed for EC, specific metabolite changes differed and overlapping metabolites 

showed opposing direction of change following exposure to the two pollutants. A possible 

explanation for this trend is different patterns of exposure and particulate origin, which 

is consistent with the lack of correlation between EC and OC. (Zhang et al. 2011) Prior 

characterization of this cohort has shown exposure patterns differ based upon job title and 

pollutant, with pickup/delivery drivers and dockworkers exhibiting highest exposure levels 

of EC, while office workers and drivers showed the highest OC levels. (Neophytou et al. 

2013) The OC fraction of particulate matter consists of a complex mixture of polar and 

non-polar chemicals that can be formed after initial combustion, including organic matter 

condensation, binding of semi-volatile organics on the particulate surface and interaction 

with aerosols, in addition to atmospheric changes occurring during transport. Thus, while 

EC represents exposures from diesel fuel exhaust, the measured OC could arise from a 

variety of sources and may not be due to diesel emissions alone.

Gene expression by metabolome molecular correlation networks

Following characterization of the metabolome, we tested for additional associations 

with gene expression levels to characterize potential biological activity networks linking 

metabolite and gene expression pathways. Exposure to environmental chemicals can 

influence local and global changes in gene transcription and enzyme activity, resulting 

in varied biological changes that can influence metabolic changes and contribute to 

underlying toxicological mechanisms. Integrating gene expression results with MWAS has 

the potential to enhance understanding of how functional molecular mechanisms interact 

due to environmental exposures, providing a systems biology framework for studying 

toxicological effects of air pollution in vivo. Enriched gene pathways were consistent 

with the identified metabolic changes associated with EC and OC exposure, providing 

additional evidence that exposure to traffic-related pollution leads to changes in endothelial 

function, inflammation and oxidative stress. Most importantly, enriched metabolite and 

gene expression pathways within each cluster consisted of different biochemical processes, 

suggesting that the biological response to traffic-related air pollution is systemic and has 

important implications for homeostatic control and health. Comparison to curated data in 

CTD showed the most-connected genes for each cluster have previously been demonstrated 

to interact with pollutants present in exhaust emissions, including PAHs and diol epoxide 

metabolites, VOCs and nitroaromatics. Thus, not only were the in vivo identified biological 

changes from gene expression and the metabolome consistent, using CTD we show the 

most connected transcript in each cluster have been associated with gene changes due to 

traffic-related pollutants in vitro.
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Limitations

We acknowledge several limitations of this work. First, this study was limited to an 

all-male, non-smoking, predominantly Caucasian cohort employed in the US unionized 

trucking industry. Therefore, we were unable to examine differences due to sex or other 

unaccounted for confounders. Although samples were collected over the course of a 

workweek, only exposures occurring at the workplace were considered, and we could not 

account for those that occurred during commuting or at home. Second, results showed 

week-averaged exposures resulted in the greatest molecular changes; however, these were 

estimated based upon one week only, and due to the length of the study we could not 

evaluate the effects of longer exposure periods or how levels varied over time. Third, the 

results from this study are correlative in nature. While we accounted for age, BMI and 

measurement day in our model, we could not account for unknown and uncharacterized 

confounders. In addition, we evaluated correlation between gene expression levels and the 

metabolome. Previous results in humans have shown signals in whole blood generally reflect 

organism wide processes; (Bartel et al. 2015) however, although the metabolome represents 

an integrated profile of multiple body compartments and processes, it is not possible to 

assess cell specific metabolite or gene changes. Fourth, only a small number of metabolites 

were identified by comparison to standards, and the majority of metabolite features were 

annotated using MS1 accurate mass only. Limited reference standards, low abundance of 

many of the metabolite features and lack of fragmentation spectra from MSMS render 

characterization and identification challenging. Finally, exposure was determined using 

aggregate measures that included PM2.5, EC and OC. We were unable to characterize 

other exposures associated with vehicle-exhaust exposures (e.g. nitrogen oxides, volatile or 

semi-volatile organics, or even individual PAHs or nitro-PAHs). Despite these limitations, 

we identified EC and OC exposure-associated changes consistent with increased oxidative 

stress, endothelial dysfunction and inflammation, which are common risk factors for 

diseases related to air pollution and diesel exhaust exposure. Integrating gene expression 

and metabolome profiles showed these changes were present across both molecular layers, 

providing additional evidence of biological response pathways underlying environmental 

exposure to traffic related pollutants. Continued application of these approaches in humans 

will provide improved understanding of how environmental exposures contribute to adverse 

health outcomes.

CONCLUSIONS

To elucidate the molecular response of occupational exposure to traffic-related pollutants 

in the US trucking industry, we used an MWAS framework to identify plasma metabolic 

changes in workers following shift- and week-averaged exposure to EC, OC and PM2.5. 

MWAS of EC and OC identified dose-associated metabolic alterations consistent with 

endothelial function, inflammation and oxidative stress. These include annotated metabolites 

that function as thrombotic signaling molecules, antioxidants, biomarkers of oxidative 

stress, lipid peroxidation products and intermediate metabolites in NO production. Week-

averaged levels of both pollutants were associated with the greatest number of metabolite 

alterations observed in study participants, suggesting persistent workplace exposure 

influence biological changes that are not mediated by time off. Data-driven integration of 
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gene expression levels with exposure-associated metabolites identified additional functional 

changes related to endothelial function, NO synthase, inflammation and immune response, 

including changes that have been reported as associated with traffic-related pollutants in 

other studies. Taken together, the results show exposure to traffic-related pollutants that 

includes diesel exhaust emissions influences metabolite and gene expression pathways 

implicated in cardiopulmonary disease risk and provide insight into the molecular pathways 

underlying the adverse effects of traffic-related pollution.
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HIGHLIGHTS

• Diesel exhaust pollutants were evaluated for workers in the US trucking 

industry.

• Metabolomic alterations were associated with elemental carbon and organic 

carbon.

• No metabolites were associated with PM2.5 exposure.

• Exposure-associated metabolites were related to oxidative stress and nitric 

oxide production

• Gene and metabolite networks support associations with cardiopulmonary 

disease
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Figure 1: 
Manhattan plot showing −log p as a function m/z feature retention time for A) daily and B) 

week-average exposure to PM2.5, EC and OC. MWAS was completed using linear mixed 

effects models and post-shift metabolite intensity only. Fixed effects included daily shift 

length exposure, age, day and BMI. Red= positive association; Blue= negative association
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Figure 2: 
Overlapping features associated with shift-length and week averaged exposure to the two 

pollutants at false discovery rate threshold 20%.
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Figure 3: 
Metabolic pathways associated with week-averaged exposure to elemental and organic 

carbon. Dot size is a function of the number of metabolites from that pathway associated 

with the corresponding exposure measure. Only pathways with P<0.05 were considered.
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Figure 4: 
Metabolite and gene expression integration network. Discriminatory features and network 

correlations were determined using the R package xMWAS. The top discriminatory genes 

and identified metabolites were first selected using multilevel sparse partial least squares 

regression analysis, which were then evaluated for correlation with |r|≥ 0.4 and p< 0.05. 

Clusters of gene expression and metabolite profiles were identified using a using multi-level 

community detection algorithm that groups nodes showing a high-degree of connection 

among each other and are less connected to other nodes in the network (cluster 1= blue 

nodes, cluster 2= orange nodes; cluster 3= green nodes; cluster 4= red nodes). Each 

cluster was then evaluated for biological activity and overlap between metabolite and gene 

expression pathways. Three of clusters that were identified included both metabolites and 

genes; cluster 3 was predominantly genes and only included two metabolites, suggesting 

a minimal degree of overlap between metabolic and gene expression related processes 

present in cluster 3. For each cluster, the main pathways linked to endothelial function, 
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inflammation, oxidative stress and related are provided; a full list of gene expression and 

metabolite pathways present in the correlation network are provided in Supplementary Table 

5. Cl= Cluster; M= metabolite node, G= gene expression node.
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Table 1.

Population characteristics of 73 male unionized trucking industry workers included in HRM profiling

Characteristic Total

Number of individuals 73

Age (years, mean±SD) 49.8 ± 8.3

BMI (mean±SD) 29.8 ± 4.5

Race (n, (%))

 White 68 (93%)

 Hispanic 5 (7%)

Primary job title (n, (%))

 Pick-up and delivery driver 38 (52%)

 Dockworker 14 (19%)

 Officeworker 21 (29%)

Average first day of work exposures (mean±SD)

 PM2.5 (μg/m3) 10.0 ± 5.7

 EC (μg/m3) 0.6 ± 0.5

 OC (μg/m3) 8.8 ± 2.9

Average last day of work exposures (mean±SD)

 PM2.5 (μg/m3) 9.7 ± 4.8

 EC (μg/m3) 0.6 ± 0.4

 OC (μg/m3) 8.6 ± 4.3

Average work-week exposures (mean±SD)

 PM2.5 (μg/m3) 10.0 ± 4.5

 EC (μg/m3) 0.6 ± 0.4

 OC (μg/m3) 8.7 ± 3.1

Median work-week exposures (median, IQR)

 PM2.5 (μg/m3) 9.7, 6.3

 EC (μg/m3) 0.5, 0.6

 OC (μg/m3) 8.9, 4.0
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Table 2.

Annotated metabolites related to oxidative stress and endothelial function associated with shift-averaged 

exposure to elemental carbon (EC) and organic carbon (OC) detected in plasma from 73 male unionized 

trucking industry workers.

m/z Associated 
exposure Identity

Number of 

matches
1

Annotation 

confidence
2 Exposure β (95% CI) p-value

155.1067 EC 4-oxo-2-Nonenal 13 4 −0.9 (−1.3, −0.5) 4.88E-06

389.1350 EC 16-Hydroxy-4-carboxyretinoic 
acid

15 4 −2.4 (−3.7, −1.0) 1.09E-03

105.0341 EC Benzoic acid 1 1 −3.7 (−5.8, −1.5) 8.18E-04

167.9929 EC 2-Mercaptobenzothiazole 1 4 2.3 (0.9, 3.7) 1.61E-03

422.2357 EC Leukotriene E4 16 4 3.2 (1.4, 5.1) 8.66E-04

223.1054 EC Dihydrobiopterin 2 4 3.4 (1.5, 5.5) 1.15E-03

854.373 EC Heme A 1 4 3.9 (2.0,5.8) 7.20E-05

130.0337 OC Methionine-sulfoxide 1 1 −1.8 (−2.2, −1.3) 1.40E-12

311.1286 OC Porphyrin 25 4 −1.8 (−2.7, −1.0) 7.10E-05

136.0622 OC Adenine 2 4 −2.4 (−3.8, −1.0) 1.05E-03

157.1224 OC 4-hydroxynonenal 28 4 −2.8 (−4.2, −1.4) 1.65E-04

589.2770 OC Mesoporphyrin 2 4 2.7 (1.1, 4.3) 1.35E-03

402.0927 OC Lactoylglutathione 11 4 3.3 (1.6, 5.1) 2.50E-04

107.0537 OC Serine 1 1 3.5 (1.7, 5.3) 2.00E-04

132.0657 OC L-Glutamate-5-semialdehyde 19 4 3.9 (1.8, 6.1) 3.70E-04

1.
Total number of compounds matching accurate mass m/z using HMDB 3.0 at 10 ppm mass accuracy.

2.
Identification confidence based upon Schymanski et al. (2014). Level 4 confidence levels are based upon accurate mass matching only, and 

do not inform on compound structures. The full list of metabolite matches from HMDB 3.0 are provided in Supplementary Table 1 (EC) and 
Supplementary Table 2 (OC).
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Table 3.

Annotated metabolites related to oxidative stress, endothelial function and cofactor metabolism associated 

with week-averaged exposure to elemental carbon (EC) detected in plasma from 73 male unionized trucking 

industry workers.

m/z Identity Number of Matches
1

Identification confidence
2 Change per IQR (95% CI) p

196.1335 4-oxo-2-nonenal 3 4 0.5 (0.1, 0.9) 1.5E-02

263.2366 Linoleic acid 1 1 1.6 (0.5, 2.8) 6.9E-03

297.2410 12-oxo-10E-octadecenoic acid 8 4 1.8 (0.6, 2.9) 3.2E-03

371.1007 Glutathione 11 4 2.4 (0.7, 4.1) 6.0E-03

177.0400 Ascorbic acid 1 1 3.9 (1.9, 5.9) 2.3E-04

351.2144 Prostaglandin I2 19 4 1.7 (0.3, 3.1) 1.7E-02

335.2214 Thromboxane B2 5 4 2.6 (.5, 4.8) 1.5E-01

375.2141 Thromboxane A2 6 4 2.7 (0.8, 4.5) 5.8E-03

624.2953 Hepoxilin A3-C 7 4 2.9 (1.0, 4.8) 3.6E-03

854.3730 Heme A 1 4 3.5 (1.7, 5.2) 2.2E-04

227.1097 Hydroxy-L-homoarginine 5 4 2.6 (0.8, 4.4) 6.3E-03

169.0592 Glutamine 1 1 −0.5 (−1.0, −0.1) 1.7E-02

156.0278 Aspartic acid 1 1 2.7 (0.6, 4.8) 1.1E-02

445.1649 Dihydrofolic acid 1 1 −2.2 (−3.7, −0.7) 5.4E-03

459.1986 Riboflavin 12 4 −3.8 (−6.0, −1.6) 8.2E-04

1.
Total number of compounds matching accurate mass m/z using HMDB 3.0 at 10 ppm mass accuracy.

2.
Identification confidence based upon Schymanski et al. (2014). Level 4 confidence levels are based upon accurate mass matching only, and do not 

inform on compound structures. The full list of metabolite matches from HMDB 3.0 are provided in Supplementary Table 3.
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Table 4.

Annotated metabolites related to oxidative stress, endothelial function and cofactor metabolism associated 

with week-averaged exposure to organic carbon (OC) detected in plasma from 73 male unionized trucking 

industry workers.

m/z Identity Number of matches
1

Identification confidence
2 Change per IQR (95% CI) p

221.0940 Hippuric acid 1 −2.5 (−4.2, − 0.8) 5.2E-03

204.0086 Methionine sulfoxide 1 1 0.8 (0.3, 1.4) 3.5E-03

402.0921 Lactoylglutathione 11 4 3.4 (1.0, 5.7) 5.1E-03

177.0691 Homocysteine 1 1 −2.4 (−4.3, −0.4) 1.7E-02

156.1021 4-hydroxyhexenal 16 4 −2.6 (−4.5, −0.6) 9.3E-03

214.0578 Citrulline 1 1 −0.7 (−1.2, −0.1) 1.6E-02

303.1179 Dihydrobiopterin 5 4 −3.8 (−5.6, −2) 9.8E-05

335.2214 Thromboxane B2 5 4 −3.8 (−6.2, −1.4) 2.4E-03

227.1097 Hydroxy-Lhomoarginine 5 4 −3.9 (−5.9, 1.8) 4.2E-04

169.0860 Agmatine 11 4 −4.2 (−6.4, −1.9) 3.8E-04

209.0081 Ornithine 4 4 1.3 (0.3, 2.2) 1.1E-02

217.1045 Acetylagmatine 1 4 1.9 (0.4, 3.3) 1.1E-02

229.0682 N-(omega)-Hydroxyarginine 8 4 2.7 (0.9, 4.4) 2.9E-03

132.0657 Lactate 19 4 3.1 (1.2, 4.9) 1.7E-03

195.9779 Threonine 1 1 −3.7 (−5.6, −1.9) 1.5E-04

156.0278 Aspartic acid 1 1 −3.6 (−6, −1.2) 4.2E-03

216.1960 alpha-Tocopherol 4 4 1.9 (0.6, 3.2) 6.1E-03

134.0635 Asparagine 1 1 2.6 (1, 4.2) 1.7E-03

107.0537 Serine 1 1 4.1 (2.2, 6) 6.1E-05

202.1074 Pantothenic acid 17 4 3.9 (1.6, 6.3) 1.4E-03

1.
Total number of compounds matching accurate mass m/z using HMDB 3.0 at 10 ppm mass accuracy.

2.
Identification confidence based upon Schymanski et al. (2014). Level 4 confidence levels are based upon accurate mass matching only, and do not 

inform on compound structures. The full list of metabolite matches from HMDB 3.0 are provided in Supplementary Table 4.
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