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Abstract

In this article we investigate group differences in phthalate exposure profiles using NHANES 

data. Phthalates are a family of industrial chemicals used in plastics and as solvents. There 

is increasing evidence of adverse health effects of exposure to phthalates on reproduction and 

neurodevelopment and concern about racial disparities in exposure. We would like to identify a 

single set of low-dimensional factors summarizing exposure to different chemicals, while allowing 

differences across groups. Improving on current multigroup additive factor models, we propose 

a class of Perturbed Factor Analysis (PFA) models that assume a common factor structure after 

perturbing the data via multiplication by a group-specific matrix. Bayesian inference algorithms 

are defined using a matrix normal hierarchical model for the perturbation matrices. The resulting 

model is just as flexible as current approaches in allowing arbitrarily large differences across 

groups but has substantial advantages that we illustrate in simulation studies. Applying PFA to 

NHANES data, we learn common factors summarizing exposures to phthalates, while showing 

clear differences across groups.
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1. Introduction.

Exposures to phthalates are ubiquitous. They are present in soft plastics, including vinyl 

floors, toys and food packaging. Medical supplies such as blood bags and tubes contain 

phthalates. They are also found in fragrant products such as soap, shampoo, lotion, 

perfume and scented cosmetics. There is substantial interest in studying levels of exposure 

of people in different groups to phthalates and in relating these exposures to health 
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effects. This has motivated the collection of phthalate concentration data in urine in 

the National Health and Nutrition Examination Survey (NHANES) (https://wwwn.cdc.gov/

nchs/nhanes). Excess levels of phthalates in blood/urine have been linked to a variety of 

health outcomes, including obesity (Kim and Park (2014), Zhang et al. (2014), Benjamin 

et al. (2017)) and birth outcomes (Bloom et al. (2019)). When they enter the body, 

phthalate parent compounds are broken down into different metabolites; assays measuring 

phthalate exposures target these different breakdown products. As these chemicals are often 

moderately to highly correlated, it is common to identify a small set of underlying factors 

(e.g., Weissenburger-Moser et al. (2017)). Epidemiologists are interested in interpreting 

these factors and in using them in analyses relating exposures to health outcomes.

However, many research groups have noticed a tendency to estimate very different factors in 

applying factor analysis to similar datasets or groups of individuals. For example, Maresca 

et al. (2016) examined data from three children’s cohorts and noted marked differences 

in factor structure in one of them. James-Todd et al. (2017) found variation in phthalate 

exposure patterns of pregnant women by race. Bloom et al. (2019) noted differences in 

both phthalate exposures and in associations with the birth outcomes by race. Certainly, we 

would like to allow for possible differences in exposures across groups; indeed, studying 

such differences is one of our primary interests. Such differences may relate to questions 

of environmental justice and may partly explain differences with ethnicity in certain health 

outcomes. However, even though the levels and specific sources of phthalate exposures may 

vary across groups, there is no reason to suspect that the fundamental relationship between 

levels of metabolites and latent factors would differ. Such differences in the factor structure 

are more likely to arise due to statistical uncertainty and sensitivity to slight differences in 

the data and can greatly complicate inferences on similarities and differences across groups.

To set the stage for discussing factor modeling of multigroup data, consider a typical factor 

model for p-variate data Yi = (Yi1, …, Yip)T from a single group,

Y i = Ληi + ϵi, ηi ∼ N(0, Ik), ϵi ∼ N(0, Σ), (1.1)

where it is assumed that data are centered prior to analysis, ηi = (ηi1, …, ηik)T are latent 

factors, Λ is a p × k factor loadings matrix and Σ = diag(σ1
2, …, σp2) is a diagonal matrix of 

residual variances. Under this model, marginalizing out the latent factors ηi induces the 

covariance H = cov(Yi) ΛΛT + Σ.

To extend (1.1) to data from multiple groups, most of the focus has been on decomposing 

the covariance into shared and group-specific components. A key contribution was Joint 

and Individual Variation Explained (JIVE) which identifies a low-rank covariance structure 

that is shared among multiple data types collected for the same subject (Feng, Hannig 

and Marron (2015), Lock et al. (2013), Feng et al. (2018)). In a Bayesian framework, 

Roy, Schaich-Borg and Dunson (2019) proposed Time Aligned Common and Individual 

Factor Analysis (TACIFA) for a related problem. More directly relevant to our phthalate 

application are the multistudy factor analysis (MSFA) methods of De Vito et al. (2018, 

2019). These approaches replace Ληi in (1.1) with an additive expansion containing shared 

and group-specific components. De Vito et al. (2018) implement a Bayesian version of 
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MSFA (BMSFA), while De Vito et al. (2019) develop a frequentist implementation. Kim et 

al. (2018) propose a related approach using PCA.

The above methods are very useful in many applications but do not address our goal 

of improving inferences in our phthalate application by obtaining a common factor 

representation that holds across groups. In addition, we find that additive expansions can 

face issues with weak identifiability; the model can fit the data well by decreasing the 

contribution of the shared component and increasing that of the group-specific components. 

This issue can lead to slower convergence and mixing rates for sampling algorithms for 

implementing BMSFA and potentially higher errors in estimating the component factor 

loadings matrices.

We aim to identify a single set of phthalate exposure factors under the assumption that the 

data in different groups can be aligned to a common latent space via multiplication by a 

perturbation matrix. We represent the perturbed covariance in group j as QjΣQj
T , where Σ is 

the common covariance and Qj is the group-specific perturbation matrix. As in the common 

factor model in (1.1), the overall covariance Σ can be decomposed into a component 

characterizing shared structure and a residual variance. The utility of the perturbation model 

also extends beyond multigroup settings. In the common factor model the error terms only 

account for additive measurement error. We can obtain robust estimates of factor loadings 

from data in a single group by allowing for observation-specific perturbations. This accounts 

for both multiplicative and additive measurement error. In this case we define separate Qi’s 

for each data vector Yi. Here, Qi ’s are multiplicative random effects with mean Ip. Thus, 

E(QiYi) = E(Yi) and the covariance structure on Qi would determine the variability of QiYi.

We take a Bayesian approach to inference using Markov chain Monte Carlo (MCMC) 

for posterior sampling, related to De Vito et al. (2018) but using our Perturbed Factor 

Analysis (PFA) approach instead of their additive BMSFA model. Model (1.1) faces well-

known issues with nonidentifiability of the loadings matrix Λ (Früehwirth-Schnatter and 

Lopes (2018), Lopes and West (2004), Ročková and George (2016), Seber (2009)); this 

nonidentifiability problem is inherited by multiple group extensions such as BMSFA. It 

is very common in the literature to run MCMC ignoring the identifiability problem and 

then postprocess the samples. Aßmann, Boysen-Hogrefe and Pape (2016), McParland et al. 

(2014) obtain a postprocessed estimate by solving an orthogonal Procrustes problem but 

without uncertainty quantification (UQ). Roy, Schaich-Borg and Dunson (2019) postprocess 

the entire MCMC chain iteratively to draw inference with UQ. Lee, Lin and McLachlan 

(2018) address nonidentifiability by giving the latent factors nonsymmetric distributions, 

such as half-t or generalized inverse Gaussian. We instead choose heteroscedastic latent 

factors in the loadings matrix and postprocess based on Roy, Schaich-Borg and Dunson 

(2019). We find this approach can also improve accuracy in estimating the covariance, 

perhaps due to the flexible shrinkage prior that is induced.

The next section describes the data and the model in detail. In Section 3 prior specifications 

are discussed. Our computational scheme is outlined in Section 4. We study the performance 

of PFA in different simulation setups in Section 5. Section 6 applies PFA to NHANES 

data to infer a common set of factors summarizing phthalate exposures, while assessing 
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differences in exposure profiles between ethic groups. We discuss extensions of our 

NHANES analysis in Section 7.

2. Data description and modeling.

NHANES is a population representative study collecting detailed individual-level data on 

chemical exposures, demographic factors and health outcomes. Our interest is in using 

NHANES to study disparities across ethnic groups in exposures. Data are available on 

chemical levels in urine recorded from 2009 to 2013 for 2749 individuals. We consider 

eight phthalate metabolites—Mono-(2-ethyl)-hexyl (MEHP), Mono-(2-ethyl-5-oxohexyl) 

(MEOHP), Mono-(2-ethyl-5-hydroxyhexyl) (MEHHP), Mono-2-ethyl-5-carboxypentyl 

(MECPP), Mono-benzyl (MBeP), Mono-ethyl (MEP),Mono-isobutyl (MiBP) and Mono-n-

butyl (MnBP)—and measured in participants identifying with racial and ethnic groups: 

Mexican American (Mex), Other Hispanic (OH), Non-Hispanic White (N-H White), Non-

Hispanic Black (N-H Black) and Other Race (Other) which includes multiracial. Previous 

work has shown differences across ethnic groups in patterns of use of products that contain 

phthalates (Taylor et al. (2018)) and in measured phthalate concentrations (James-Todd et 

al. (2017)). Recent work has also indicated exposure effects themselves may vary across 

ethnic groups (Bloom et al. (2019)), but this may be difficult to disentangle if summaries of 

exposure lack sufficient robustness and generalizability.

We summarize the average level of each chemical in each group in Table 1. In Table 2 

we compute the Hotelling T2 statistic between each pair of groups. As noted in Bloom 

et al. (2019), exposure levels were generally higher among non-whites. For each phthalate 

variable we also fit a one-way ANOVA model to assess differences across the groups 

taking Mexican–Americans as the baseline. The results are included in Tables 2-6 in the 

Supplementary Materials (Roy et al. (2021)). For the majority of phthalates, concentrations 

are lowest among non-Hispanic whites. We plot group-specific covariances in Figure 1. It is 

evident that there is shared structure with some differences across the groups.

Fitting the common factor model (1.1) separately for each group, we obtain noticeably 

different loadings structures, as depicted in Figure 2. Throughout the article, including for 

Figures 1 and 2, we plot matrices using the mat2cols() function for R package IMIFA 

(Murphy, Viroli and Gormley (2020a, 2020b)). This function standardizes the color scale 

across the different matrices. We choose color palettes coral3 and deeppink4 from R 

package RColorBrewer (Neuwirth (2014)) for positive and negative entries, respectively. 

Zero entries are white, and the color gradually changes as the value moves away from zero. 

In the next subsection we propose a novel approach for multigroup factor analysis to identify 

common phthalate factors.

2.1. Multigroup model.

We have data from multiple groups, with the groups corresponding to individuals in different 

racial and ethnic categories in NHANES. Each p-dimensional mean-centered response Yij, 

belonging to group Gj, for j ∈ 1 : J and i ∈ 1 : nj, is modeled as

ROY et al. Page 4

Ann Appl Stat. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



QjY ij = Ληij + ϵij,
Qj ∼ MNp × p(Ip, U, V ), ηij ∼ N(0, E),
ϵij ∼ N(0, Σ) .

(2.1)

The perturbation matrices Qj are of dimension p × p, and follow a matrix normal 

distribution, with isotropic covariance U = V αIp. The latent factors ηij are heteroscedastic, 

so that E is diagonal with nonidentical entries such that E = diag(e1, …, ek) with k factors in 

the model and Σ = diag(σ1, …, σp). We discuss advantages of choosing heteroscedastic 

latent factors in more detail in Section 2.3. After integrating out the latent factors, 

observations are marginally distributed as Y ij ∼ N(0, Qj
−1[ΛEΛT + Σ](Qj

−1)T ). If we write 

Qj
−1 = Ip + Ψj, then Λ is the shared loadings matrix, and ΨjΛ is a group-specific loadings 

matrix. We can quantify the magnitude of perturbation as ∥Ψj∥F, where ∥ · ∥F stands for the 

Frobenius norm. For identifiability of Qj ’s, we consider Q1 = Ip and n1 ≥ 2. We call our 

model Perturbed Factor Analysis (PFA).

2.1.1. Model properties.—Let Ω1 and Ω2 be two positive definite (p.d.) matrices. Then, 

there exist nonsingular matrices A and B, where Ω1 = AAT and Ω2 = BBT. By choosing E = 

AB−1, we have Ω1 = EΩ2ET. If the two matrices Ω1 and Ω2 are close, then E will be close to 

the identity. However, E is not required to be symmetric. In our multigroup model in (2.1), 

the Qjs allow for small perturbations around the shared covariance matrix H = ΛEΛT + Σ. 

We define the following class for the Qj ’s:

Cϵ = {Q :‖Q − Ip‖F ≤ ϵ} .

The index ϵ controls the amount of deviation across groups. In (2.1) we define U = V = 

αIp, for some small α, which we call the perturbation parameter. By choosing U = V to 

be isotropic covariances, we impose uniform perturbation across all the rows and columns 

around Ip. However, the perturbation matrices themselves are not required to be symmetric.

LEMMA 1. P(Qi ∉ Cϵ) ≤ exp(−ϵ2/2α2).

The proof follows from Chebychev’s inequality. This result allows us to summarize the level 

of induced perturbation for any given α. Using this lemma, we can show the following 

result:

KL(N(0, Qj−1[ΛEΛT + Σ](Qj−1)T), N(0, Ql
−1[ΛEΛT + Σ](Ql

−1)T))
≲ ∣ ‖Qj−1‖F

2 − ‖Ql
−1‖F

2 ∣ .

Therefore, the Kullback–Leibler divergence between the marginal distributions of any two 

groups j and l can be bounded by ∣ ‖Qj
−1‖F

2 − ‖Ql
−1‖F

2 ∣ up to some constant. We define a 

divergence statistic between groups j and l as djl =
∣ ‖Qj−1‖F

2 − ‖Ql
−1‖F

2 ∣
p2 . This generates a 
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divergence matrix D = ({djl}), where larger djl implies a greater difference between the two 

groups.

As in other factor modeling settings, it is important to carefully choose the number of 

factors. This is simpler for PFA than for other multigroup factor analysis models, because 

we only need to select a single number of factors instead of separate values for shared 

and individual-specific components. Indeed, we can directly apply methods developed in 

the single group setting (Bhattacharya and Dunson (2011)). Due to heteroscedastic latent 

factors, we can directly use the posterior samples of the loading matrices without applying 

factor rotation. Computationally, PFA tends to be faster than multigroup factor models such 

as BMSFA due to a smaller number of parameters and better identifiability, leading to better 

mixing of Markov chain Monte Carlo (MCMC).

2.1.2. Choosing the parameter α for multigroup data.—The parameter α controls 

the level of perturbation across groups. We use a cross-validation technique to choose α 
based on 10 randomly chosen 50–50 splits. We randomly divide each group 50/50 into 

training and test sets 10 times. Then, for a range of α values we fit the model on the training 

data and calculate the average predictive log-likelihood of the test set for all the 10 random 

splits. After integrating out the latent factors, the predictive distribution is QjYij ∼ N(0, 

ΛEΛT Σ). If there are multiple values of α with similar predictive log-likelihoods, then the 

smallest α is chosen.

Alternatively, we can take a fully Bayesian approach and put a prior on α. We call this 

method Fully Bayesian Perturbed Factor Analysis (FBPFA). We see that FBPFA performs 

similarly to PFA in practice but involves a slightly more complex MCMC implementation. 

PFA avoids sensitivity to the prior for α but requires the computational overhead of cross-

validation, ignores uncertainty in estimating α and can, potentially, be less efficient in 

requiring a holdout sample.

2.2. Measurement-error model.

We can modify the multigroup model to obtain improved factor estimates in single group 

analyses by considering observation-level perturbations. Here, we observe Yij ’s for j 
= 1, …, mi, which are mi, many proxies of “true” observation Wi with multiplicative 

measurement errors Qij
−1’s such that Wi = QijYij. The modified model is

QijY ij = Ληi + ϵij, ϵij ∼ N(0, Σ),
Qij ∼ MNp × p(Ip, U, V ), ηi ∼ N(0, E) . (2.2)

In this case the Qij ’s apply a multiplicative perturbation to each data vector. We 

have Y ij = Qij
−1W i where Qij

−1 is a matrix. Thus, here the measurement errors are 

Uij = (Qij
−1 − Ip)W i and E(Uij∣Wi) = 0. This model is different from the multiplicative 

measurement error model of Sarkar et al. (2018). In their paper, observations Yij ’s are 

modeled as Yij = Wi ◦ Uij, where ◦ denotes the elementwise dot product and Uij ’s are 

independent of Wi with E(Uij) = 1. Thus, the measurement error in the lth component 
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(i.e., Uijl) is dependent on Wi primarily through Wil. However, in our construction the 

measurement errors are a linear function of the entire Wi.

This is a much more general setup than Sarkar et al. (2018). With this generality comes 

issues in identifying parameters in the distributions of Qij and Yij. For simplicity, we again 

assume U = V = αIp. In this case we have

E(QijY ij) = 0,
V (QijY ij) = E(V (QijY ij ∣ Qij)) + V (E(QijY ij ∣ Qij))

= E(V (QijY ij ∣ Qij)) + 0 = α2s Ip + H, s = ∑
j = 1

p
Hjj .

Thus, only the diagonal elements of H are not identifiable, and the perturbation parameter 

α does not influence the dependence structure among the variables. Hence, with our 

heteroscedastic latent factors we can still recover the loading structure. To tune α, we 

can use the marginal distributions QijYij ∼ N(0, α2sIp + H) to develop a cross validation 

technique when mi > 1 for all i = 1, …, n, as in Section 2.1.2. We split the data into 

training and testing sets. Then, fit the model in the training set, and find the α minimizing 

the predictive log-likelihood in the test set. We can alternatively estimate α as in FBPFA by 

using a weakly informative prior concentrated on small values, while assessing sensitivity to 

hyperparameter choice.

2.3. The special case Qj = Ip for all j.

For data within a single group without measurement errors (in the sense considered in the 

previous subsection), we can modify PFA by taking Qj = Ip for all j. Then, the model reduces 

to a traditional factor model with heteroscedastic latent factors,

Y i = Ληi + ϵi, ϵi ∼ N(0, Σ),
ηi ∼ N(0, E), (2.3)

where E is assumed to be diagonal with nonidentical entries. Integrating out the latent 

factors, the marginal likelihood is Yi ∼ N(0, ΛEΛT + Σ). Except for the diagonal matrix E, 

the marginal likelihood is similar to the marginal likelihood for a traditional factor model. 

As E has nonidentical diagonal entries, the likelihood is no longer invariant under arbitrary 

rotations. For the factor model in (1.1), (Λ, η) and (ΛR, RT η) have equivalent likelihoods 

for any orthonormal matrix R. This is not the case in our model unless R is a permutation 

matrix. Thus, this simple modification over the traditional factor model helps to efficiently 

recover the loading structure. This is demonstrated in Case 1 of Section 5. We also show that 

the posterior is weakly consistent in the Supplementary Materials (Roy et al. (2021)).

3. Prior specification.

As in Bhattacharya and Dunson (2011), we put the following prior on Λ to allow for 

automatic selection of rank and easy posterior computation:
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λlk ∣ ϕlk, τk ∼ N(0, ϕlk
−1τk

−1),

ϕlk ∼ Gamma(v1, v1), τk = ∏
i = 1

k
δi

δ1 ∼ Gamma(κ1, 1), δi ∼ Gamma(κ2, 1) for i ≥ 2 .

The parameters ϕlk control local shrinkage of the elements in Λ, whereas τk controls 

column shrinkage of the kth column. We follow the guidelines of Durante (2017) to choose 

hyperparameters that ensure greater shrinkage for higher indexed columns. In particular, we 

let κ1 = 2.1 and κ2 = 3.1 which works well in all of our simulation experiments.

Suppose we initially choose the number of factors to be too large. The above prior will then 

tend to induce posteriors for τk
−1 in the later columns that are concentrated near zero, leading 

to λlk ≈ 0 in those columns. The corresponding factors are then effectively deleted. In 

practice, one can either leave the extra factors in the model, as they will have essentially no 

impact, or conduct a factor selection procedure by removing factors having all their loadings 

within °ζ of zero. Both approaches tend to have similar performance in terms of posterior 

summaries of interest. We follow the second strategy, motivated by our goal of obtaining 

a small number of interpretable factors summarizing phthalate exposures. In particular, we 

apply the adaptive MCMC procedure of Bhattacharya and Dunson (2011) with ζ = 1 × 10−3.

For the heteroscedastic latent factors, each diagonal element of E has an independent prior,

ei ∼ IG(u, 0.1)

for some constant u. In our simulations we see that u has minimal influence on the predictive 

performance of PFA. However, as u increases, more shrinkage is placed on the latent factors. 

We choose u = 10 for most of our simulations. For the residual error variance Σ, we place a 

weakly informative prior on the diagonal elements,

σi ∼ IG(0.1, 0.1) .

In our simulations a weakly informative IG(0.1,0.1) prior on α works well in terms of both 

predictive performance and estimation of the loading structure, including in single group 

analyses.

4. Computation.

Because all of the parameters have conjugate full conditional distributions, posterior 

inference is straightforward with a Gibbs sampler. For the model in (2.1), the full conditional 

of the perturbation matrix Qj is

vec(Qj) ∣ Y ∼ N(Γj(V ⊗ U)−1 vec(Ip), Γj),
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where Гj = [(V ⊗ U)−1 + Sj ⊗ H−1]−1 and Sj = ∑iY ijY ij
T . The notation ⊗ stands 

for Kronecker’s product. The full conditionals for all other parameters are described in 

Bhattacharya and Dunson (2011), replacing Yij by QjYij. For the model in (2.2), the full 

conditional of Qij is

vec(Qij) ∣ Y ∼ N(Γij(V ⊗ U)−1 vec(Ip), Γij),

where Гij = (V ⊗ U)−1 + Sij ⊗ H−1]−1 and Sj = Y ijY ij
T . Other parameters can again be 

updated using the results in Bhattacharya and Dunson (2011), replacing Yij by QijYij. To 

sample the entire vec(Qij) or vec(Qj) together, we need to invert a p2 × p2 matrix at each 

step. Instead, we iteratively update the columns of Qij or Qj which does not require matrix 

inversion when U = V = αIp. For simplicity in notation, we only show the update for the 

columns in Qj of the model in (2.1). The full conditional of the lth column in Qj is

Qj, l ∣ Y ∼ N(MlV l, V l),

where V = 1 ∕ (∑k ∈ GjY l, k
2 ∕ diag(Σ) + 1 ∕ α) and Ml = −∑k∈Gj (Qj,−lY−l,k − Ληk)Yl,k/Σ 

+ gl/α with Σ the diagonal error covariance matrix. Here, Qj,−l denotes the p × (p − 1) 

dimensional matrix removing the lth column from Qj. Similarly, Y−l,k denotes the response 

of the kth individual from group Gj, removing the lth variable and gl the p-dimensional 

vector with one in the lth entry. If we put a prior on α, the posterior distribution of 

α is given by IG(0.1 + (J − 1)p2, 0.1 + ∑j‖Qj − Ip)2‖F
2 ) for the model in (2.1) and for the 

model in (2.2); the posterior distribution of α is IG(0.1 + p2∑imi, 0.1 + ∑ij‖Qij − Ip)2‖F
2 ). 

The posterior distribution of σ1l
2  is IG(0.1 + n ∕ 2, 0.1 + ∑j = 1

J ∑k ∈ Gj (Qj(l, )Y kj − λl, ηkj)2 ∕ 2), 

where Qj(l,) denotes the lth row of Qj. The posterior distribution of σ2l
2  is 

IG(0.1 + n ∕ 2, 0.1 + ∑j = 1
J ∑k ∈ Gjηl, kj

2 ∕ 2).

5. Simulation study.

In this section we study the performance of PFA in various simulation settings. As ground 

truth we consider the two loading matrices given in Figure 3. These are similar to ones 

considered in Ročková and George (2016). R code to generate the data is provided in the 

github page https://github.com/royarkaprava/Perturbed-factor-model. The two matrices both 

have five columns, the first has 21 rows and the second has 128 rows. We compare the 

estimated loading matrices for different choices of the perturbation parameter α and the 

shape parameter u, controlling the level of shrinkage on the diagonal entries of E.

For the single group case we compare with the method of Bhattacharya and Dunson (2011) 

(B&D) which corresponds to the special case of our approach that fixes the perturbation 

matrices and latent factor covariances equal to the identity. A point estimate of the loading 

matrix for B&D is calculated by postprocessing the posterior samples. We use the algorithm 

of Aßmann, Boysen-Hogrefe and Pape (2016) to rotationally align the samples of Λ, as 
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in De Vito et al. (2018). In contrast, our method uses the postprocessing algorithm of 

Roy, Schaich-Borg and Dunson (2019). For the multigroup case we compare our estimates 

with Bayesian Multi-Study Factor Analysis (BMSFA). We use the MSFA package at https://

github.com/rdevito/MSFA.

We compare the different methods using predictive log-likelihood. Simulated data are 

randomly divided 50/50 into training and test sets. After fitting each model on the training 

data, we calculate the predictive log-likelihood of the test set. All methods are run for 7000 

iterations of the Gibbs sampler, with 2000 burn-in samples. Each simulation is replicated 30 

times.

5.1. Case 1: Single group, Qj = Ip.

We first consider single group factor analysis. Starting with the two loading matrices in 

Figure 3, we simulate latent factors from N(0, I5) and generate datasets of 500 observations, 

with residual variance Σ = I5. We compare B&D with our method when Qj = I5, so the 

only adjustment is to use heteroscedastic latent factors. Note that the simulated latent factors 

actually have identical variances.

In Tables 3 and 4, we compare methods by MSE of the estimated vs. true covariance matrix. 

For the loading matrix 1, B&D had an MSE of 2.59 which is dominated by our method 

across a range of values of u.

For the loading matrix 2, B&D had an MSE of 10.81. Again, our method beats this across 

a range of values of u. The B&D model is a special case of PFA with E = Ip in (2.3). 

We conjecture that the gains seen for PFA are due to the more flexible induced shrinkage 

structure on the covariance matrix.

We compare the estimated and true loading matrices in Figure 4. Throughout the paper, 

PFA estimated loadings are based on ΛE1 ∕ 2, where Λ and E are the estimated loading 

and covariance matrix of the factors, respectively. This makes the loadings comparable to 

methods that use identity covariance for the latent factors. PFA performs overwhelmingly 

better at estimating the true loading structure compared with B&D FA. The first five 

columns of the estimated loadings based on PFA are very close to the true loading structure 

under some permutation. This gain over B&D may be due to a combination of the more 

flexible shrinkage structure and the different postprocessing scheme. On comparing ΛE1 ∕ 2

for different choices of u, we see that the estimates are not sensitive to the hyperparameter 

u. Estimation MSE is better for smaller u, but the general structure of the loadings matrix is 

recovered accurately for all u.

5.2. Case 2: Multigroup, multiplicative perturbation.

In this case we simulate data from the multigroup model in (2.1) for i = 1, …, 500. 

Observations Yi are first generated using the same method as in Case 1. The data are then 

split into 10 groups of 50 observations such that Gj = {Yk : 50(j – 1) ≤ k ≤ 50j} for j = 1, …, 

10. The groups are perturbed using matrices Qj0 ~ MN(Ip, α0Ip, α0Ip) for different choices 

of α0, setting Q1 = Ip.
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Figure 5 shows the estimated loading matrices. We obtain accurate estimates, even when 

assuming a higher level of perturbation than the truth, α0 ≤ α. However, the estimates are 

best when α = α0 = 10−4. Performance degrades more sharply when we underestimate the 

level of perturbation, as in the case where α = 10−4, α0 = 10−2. The BMSFA code requires 

an upper bound on the number of shared and group-specific factors; we choose both to be 

6. The estimated loadings from PFA and FBPFA are better than BMSFA. Except for cases 

with a higher level of perturbation using BMSFA, the estimated loadings matrix is close to 

the truth under some permutation of the columns. BMSFA estimated loadings usually are of 

lower magnitude which may be due to the additive structure of the model. Thus they look 

faded in almost all the figures. The cumulative shrinkage prior used in PFA and BMSFA 

induces continuous shrinkage instead of exact sparsity but, nonetheless, does a good job 

overall of capturing the true sparsity pattern. BMSFA estimated loadings for α0 = 10−2 

look blank as the estimated loading has all entries near zero. Results for the Case 2 loading 

structure are shown in Figure 5 of the Supplementary Material (Roy et al. (2021)).

We also apply the same simulation setting with higher error variances. Figure 6 compares 

the estimated loadings. All the methods identify the true structure when the residual standard 

deviation is 5, but only PFA with correctly specified α produces good estimates when we 

increase it to 10.

In Figure 7 we show the predictive log-likelihood averaged over all the splits under a 

range of α values. For each choice of α, we fit the model to a training set and calculate 

the predictive log-likelihood on a test set for 10 randomly chosen training-test splits. This 

demonstrates the utility of our cross-validation technique in finding the optimal α. In Table 

5 we compare the performance of PFA with optimal α, FBPFA and BMSFA in terms of 

predictive likelihood. PFA and FBPFA have overwhelmingly better performance. We also 

show the range of predictive log-likelihoods for each choice of α in Figure 7 using dotted 

red lines. FBPFA is better at recovering the true loading structure for p = 21, but for the 

higher dimensional case with p = 128 PFA tends to be better.

5.2.1. Case 2.1: Partially shared factors.—We also repeat the Case 2 simulation but 

modified to accommodate a partially shared structure. In particular, we generated the data as 

in Case 2, but for the last two groups we let QjY i ∼ N(Λ01Λ01
T + Ip) for i ∈ Gj and j = 9, 10. 

Here, Λ01 = Λ0[, 1 : 3 is a p × 3 dimensional matrix having the first three columns from Λ0. 

The choices for Λ0 are given in Figure 3.

The estimated loading matrices are compared in Figure 8 for two levels of perturbations, α0 

= 10−4, 10−2. FBPFA works well for any level of perturbation, while BMSFA works well for 

only the lower perturbation level. The estimated loading in Figure 8(d) looks blank due to 

near zero entries. Estimated loadings for the case 2 loading structure are in Figure 6 of the 

Supplementary Material (Roy et al. (2021)).

5.3. Case 3: Multigroup factor model.

In this case we generate data from the Bayesian multistudy factor analysis (BMSFA) model, 

as in De Vito et al. (2018),
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Y i = Ληi1 + Ψjηi2 + ϵ1i and Y i ∈ Gj,
ϵ1i ∼ N(0, Σ), ηi1, ηi2 ∼ N(0, Ip), (5.1)

where the group-specific loadings (Ψj ’s) are lower in magnitude in comparison to the 

shared loading matrix Λ. We generate the Ψj s from N(−0.5, 0.8). These Ψj matrices are the 

same dimension as the shared loading matrix Λ.

Figure 9 compares the estimated loadings with the true shared loadings across different 

methods—PFA for two different perturbation parameters, FBPFA and BMSFA. Although we 

generate the data from BMFSA, all the estimates are very much comparable in Figure 9. 

However, PFA and FBPFA again outperform BMSFA in terms of predictive log-likelihoods, 

as shown in Table 6. In the Supplementary Material (Roy et al. (2021)) we present another 

simulation setting akin to BMSFA. There, the data generating process is similar to BMSFA 

with minor modifications in the shared and group-specific loading structures. Estimated 

loadings for the Case 2 loading structure are in Figure 7 of the Supplementary Material (Roy 

et al. (2021)).

5.4. Case 4: Mimic NHANES data.

In this section we generate data from the model in (2.1). However, the model parameters 

Qj ’s and Λ are first estimated on the NHANES data with α = 10−2. Then, based on 

these estimated parameters, we generate the data following the same model. Figure 10 

compares the estimated loadings across all the methods—PFA for different choices of α, 

FBPFA and BMSFA. We find that all the methods recover loading structures that match with 

our estimated loadings from Section 6. For PFA and FBPFA, we selected the number of 

factors, as described in Section 3, and hence these approaches produced fewer columns than 

BMSFA.

6. Application to NHANES data.

We fit our model in (2.1) to the NHANES dataset, as described in Section 2, to obtain 

phthalate exposure factors for individuals in different ethnic groups. Before analysis the 

mean chemical levels across all groups are subtracted to mean-center the data. The data are 

then randomly split, with 2/3 in each group as a training set and 1/3 as a test set. We collect 

5000 MCMC samples after a burn-in of 5000 samples. Convergence is monitored based on 

the predictive log-likelihood of the test set at each MCMC iteration. The hyperparameters 

are the same as those in Section 5. The predictive log-likelihood of the test data are used 

to tune α, as described in Section 2.1.2. Based on our cross-validation technique, α = 

10−2 is chosen. Note that our final estimates are based on the complete data. Our BMSFA 

implementation sets the upper bounds at 8 for both shared and group-specific factors. Figure 

4 of the Supplementary Material (Roy et al. (2021)) depicts trace plots of the loading and 

perturbation matrices for FBPFA.

Figure 11 shows the estimated loadings using PFA, FBPFA and BMSFA. All plots show 

two significant factors, with some suggestions of a third factor. For PFA and FBPFA, all 

the chemicals load on the first factor, and the second factor is loaded on by the first four 
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chemicals, namely MEHP, MEOHP, MEHHP and MECPP. Figure 1 also suggests that these 

four chemicals are related to each other more than the others. This is not surprising, as 

MECPP, MEHHP and MEOHP are oxidative metabolities of MEHP.

Comparing the predictive log-likelihoods for PFA, FBPFA and BMSFA, we obtain values of 

4.12, 5.02 and −7.99, respectively, suggesting much better performance for the PFA-based 

approaches. As an alternative measure of predictive performance, we also consider test 

sample MSE using 2/3 of the data as training and 1/3 as test. The predictive value of the 

test data is estimated by averaging the predictive mean conditionally on the parameters and 

training data over samples generated from the training data posterior. We obtain predictive 

MSE values of 0.05 and 0.09 for PFA with α = 10−4 and α = 10−2, respectively. FBPFA 

yields a value of 0.14, while BMSFA has a much larger error of 0.70. Considering that 

the data are normalized before analysis, the naive prediction that sets all the values to zero 

would yield an MSE of 1.0.

To explore similarities across groups, we calculate divergence scores and create the 

divergence matrix D. This matrix is provided in Table 7. To summarize D, we also 

provide a network plot between different groups in Figure 12. The plot uses greater edge 

widths between ethnic groups when the divergence statistic between the groups is small. 

In particular, the edge width between two nodes (j, l) is calculated as 60/djl. Thicker edges 

imply greater similarity. This figure implies that non-Hispanic whites differ the most in 

phthalate exposure profiles from the other groups, supporting the findings of our exploratory 

ANOVA analysis in the Section 3 of the Supplementary Material (Roy et al. (2021)) and 

findings in the prior literature (Bloom et al. (2019)). We find evidence of one extra factor 

among non-Hispanic whites relative to the other groups in Figure 2. The two Hispanic 

ethnicity groups are very similar in loadings as shown in Figure 2 and also their Hotelling 

T2 distance is relatively small in Table 2. These results support our preliminary analysis, 

described in Section 2.

In Table 8 we show square norm differences between the group-specific loadings, estimated 

using BMSFA. The (i, j)-th entry of the table is calculated as ∑lk (Aill − Ajlk)2, where 

the matrices Ai and Aj are the estimated group-specific loadings for the groups i and j, 
respectively, using BMSFA. Based on these results, BMSFA-based inferences on differences 

in exposure profiles across ethnic groups are noticeably different from our PFA-based results 

reported above. In particular, all the groups seem to be approximately the same distance 

apart. The results using BMSFA from Table 8 are not consistent with Hotelling T2-based our 

exploratory data analysis results from Table 2 and PFA-based results from Table 7.

7. Discussion.

In this paper our focus has been on identifying a common set of phthalate exposure factors 

that hold across different ehtnic groups, while also inferring differences in exposure profiles 

across groups. To accomplish this goal, we focused on data from NHANES which contain 

rich information on ethnicity and exposures. We found that our proposed perturbed factor 

analysis (PFA) approach had significant advantages over existing approaches in addressing 

our goals.
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There are multiple important next steps to consider to expand on our analysis. A first is 

to include covariates. In addition to phthalates and ethnic group data, NHANES collects 

information that may be relevant to understanding ethnic differences in exposure profiles, 

including BMI, age, socioeconomic status, gender and other factors. Li and Jung (2017) 

consider a related problem of incorporating covariates into factor models for multiview data. 

Perhaps the simplest and most interpretable modification of our PFA model of the NHANES 

data is to allow the factor scores ηij to depend on covariates Xij = (1, Xij2, …, Xijq)T through 

a latent factor regression. For example, we could let ηij = βXij + ξij, with β a k × q matrix of 

coefficients and ξij ∼ N(0, E).

Another important direction is to extend the analysis to allow inferences on relationships 

between exposure profiles and health outcomes. NHANES contains rich data on a variety of 

outcomes that may be adversely affected by phthalate exposures. To include these outcomes 

in our analysis and effectively extend PFA to a supervised context, we can define separate 

PFA models for the exposures and outcomes, with these models having shared factors 

ηij but different perturbation matrices. It is straightforward to modify the Gibbs sampler 

used in our analyses to this case and/or the extension described above to accommodate 

covariates Xij; further modifications to mixed continuous and categorical variables can 

proceed as in Carvalho et al. (2008), Zhou et al. (2015) with the perturbations conducted 

on underlying variables. Relying on such a broad modeling and computational framework, it 

would be interesting to attempt to infer causal relationships between ethnicity and phthalates 

and adverse health outcomes. Mediation analysis may provide a useful framework in this 

respect.

Beyond this application the proposed PFA approach may prove useful in other contexts. The 

important features of PFA include both the incorporation of a multiplicative perturbation 

of the data and the use of heteroscedastic latent factors. These innovations are potentially 

useful beyond the multiple group setting to meta analysis, measurement error models, non-

linear factor models (including Gaussian process latent variable models (Lawrence (2004), 

Lawrence and Candela (2006))) and variational autoencoders (Kingma and Welling (2014), 

Pu et al. (2016)) and even to obtaining improved performance in “vanilla” factor modeling 

lacking hierarchical structure.

Code is available for implementing the proposed approach and replicating our results 

from Section 5.2 at https://github.com/royarkaprava/Perturbed-factor-model and the 

Supplementary Material (Roy et al. (2021)).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Covariance matrices of the phthalate chemicals across different ethnic groups for NHANES 

data.
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Fig. 2. 
Estimated loadings matrices for different ethnic groups in NHANES based on applying 

separate Bayesian factor analyses using the approach of Bhattacharya and Dunson (2011).
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Fig. 3. 
Simulation study true loading matrices of dimension 25 (Loading 1) and 128 × 5 (Loading 
2), respectively.
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Fig. 4. 
Comparison of true and estimated loading matrices and covariance matrices for Case 1. 

Comparison of B&D FA with our method for different choices of u. Results for loading 
matrix 1 are in (a) and two in (b). For all the cases, we fix Qj = I .The color gradient added 
in the last image of each row holds for all the images in that row.
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Fig. 5. 
Comparison of estimated loading matrix 1 in simulation Case 2 with different choices of α0 

and α where Qj0 ∼ MN(Ip, α0Ip, α0Ip) and U = αIp = V. (a) α = 10−4, α0 = 10−4, (b) α 
= 10−2, α0 = 10−4, (c) FBPFA with α0 = 10−4, (d) BMSFA with α0 = 10−4, (e) α = 10−4, 

α0 = 10−2, (f) α = 10−2, α0 = 10−2, (g) FBPFA with α0 = 10−2, (h) for BMSFA with α0 = 

10−2. True loading matrices are plotted twice in columns 1 for easier comparison with other 
images.
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Fig. 6. 
Comparison of estimated loading matrices in simulation Case 2 with increasing error 
variances and α0 = 10−4: (a) α = 10−4 with error variance 25, (b) α = 10−4 with error 
variance 100, (c) BMSFA with error variance 25, (d) BMSFA with error variance 100, (e) 

FBPFA with error variance 25, (f) FBPFA with error variance 100.

ROY et al. Page 22

Ann Appl Stat. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Average predictive log-likelihoods in black along with two dotted red lines, denoting 
the range of predictive log-likelihoods across all the splits for different choices of α in 
simulation Case 2 for two cases—in the first case the perturbation matrices are generated 
using true α0 = 10−2, and in the second case α0 = 10−4. This is based on the simulation 
experiment of Figure 5.
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Fig. 8. 
Comparison of estimated loading in the partially shared modification of simulation Case 2. 

Row 1 corresponds to true loading structure 1 and row 2 to true loading structure 2. (a) 

FBPFA with α0 = 10−4, (b) FBPFA with α0 = 10−2, (c) BMSFA with α0 = 10−4, (d) BMSFA 
with α0 = 10−2.
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Fig. 9. 
Comparison of estimated loading matrices in simulation Case 3 when the true data 
generating process follows the model in (5.1). (a) PFA with α = 10−4, (b) PFA with α 
= 10−2, (c) FBPFA, (d) BMSFA.
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Fig. 10. 
Comparison of estimated loading matrices in simulation Case 4 where the true loading 
matrix is PFA estimated loading with α = 10−2 for mean-centered NHANES data and the 
data are simulated from the model (2.1). (a) PFA with α = 10−2, (b) PFA with α = 10−4, (c) 

FBPFA, (d) BMSFA. The color gradient added in the last image holds for all the images.

ROY et al. Page 26

Ann Appl Stat. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Comparison of estimated loading matrices with different methods. PFA estimates are based 
on α = 10−2.
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Fig. 12. 
Network plot summarizing similarity between ethnic groups based on the divergence metric 

with thicker edges implying smaller divergence scores. Nodes correspond to different ethnic 

groups.
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Table 1

NHANES data comparison across ethnic groups in terms of number of participants and average levels of 

different phthalate chemicals, with standard deviations in brackets

Mex OH N-H White N-H Black Other/multi

Number of participants 566 293 1206 516 168

MnBP 3.85 (1.96) 4.31 (4.96) 3.56 (2.17) 4.21 (1.81) 3.76 (2.11)

MiBP 2.88 (1.36) 3.21 (1.70) 2.52 (1.20) 3.47 (1.67) 2.79 (1.21)

MEP 8.32 (6.64) 9.51 (6.99) 6.91 (5.43) 11.16 (9.38) 7.33 (7.57)

MBeP 2.79 (1.58) 2.78 (1.61) 2.70 (1.67) 3.06 (1.77) 2.56 (1.68)

MECPP 4.80 (3.68) 4.55 (2.68) 4.16 (2.40) 4.36 (2.38) 4.34 (2.64)

MEHHP 3.83 (3.01) 3.73 (2.59) 3.45 (2.25) 3.79 (2.26) 3.57 (2.45)

MEOHP 3.11 (2.41) 3.00 (1.92) 2.79 (1.69) 3.05 (1.71) 2.86 (1.86)

MEHP 1.58 (1.23) 1.59 (1.29) 1.33 (0.89) 1.61 (0.99) 1.58 (1.31)
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Table 2

Hotelling T2 statistic between phthalate levels for each pair of groups in NHANES

Mex OH N-H White N-H Black Other/multi

Mex 0.00 31.84 108.59 191.93 28.04

OH 31.84 0.00 156.45 63.48 28.69

N-H White 108.59 156.45 0.00 409.64 55.51

N-H Black 191.93 63.48 409.64 0.00 101.90

Other/multi 28.04 28.69 55.51 101.90 0.00
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Table 3

MSE of estimated covariance matrix for loading matrix 1, across different values of u

u MSE

0.1 1.04

10 1.32

100 1.38
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Table 4

MSE of estimated covariance matrix for loading matrix 2, across different values of u

u MSE

0.1 5.21

10 9.45

100 10.32
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Table 5

Average predictive log-likelihood for PFA with optimal α, FBPFA and BMSFA in simulation Case 2

True loading α 0 PFA for optimal α FBPFA BMSFA

Loading 1 10−4 −31.65 −25.92 −679.36

10−2 −30.32 −26.01 −921.76

Loading 2 10−4 −210.43 −251.13 −6871.38

10−2 −351.42 −304.10 −25,018.50
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Table 6

Average predictive log-likelihood for PFA for different choices of α, FBPFA and BMSFA in Simulation Case 
3

Generative
distribution of Ψj ’s

True
loading

PFA 
for 

α = 10−2

PFA 
for 

α = 10−4 FBPFA BMSFA

N(−0.2, 0.2) Loading 1 −33.41 −44.10 −26.16 −500.66

Loading 2 −336.58 −259.79 −265.77 −9547.77

N(−0.5, 0.8) Loading 1 −49.25 −53.32 −37.89 −720.35

Loading 2 −584.82 −308.72 −1003.02 −14,187.36
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Table 7

Estimated divergence scores for different pairs of ethnic groups based on NHANES data

Mex OH N-H White N-H Black Other/multi

Mex 0.00 5.86 41.35 10.22 3.82

OH 5.86 0.00 40.93 8.38 4.45

N-H White 41.35 40.93 0.00 40.06 41.17

N-H Black 10.22 8.38 40.06 0.00 9.48

Other/multi 3.82 4.45 41.17 9.48 0.00
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Table 8

Square norm difference of the group-specific loadings, estimated using BMSFA

Mex OH N-H White N-H Black Other/multi

Mex 0.00 0.75 0.70 0.59 0.78

OH 0.75 0.00 0.63 0.75 0.73

N-H White 0.70 0.63 0.00 0.68 0.84

N-H Black 0.59 0.75 0.68 0.00 0.91

Other/multi 0.78 0.73 0.84 0.91 0.00
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