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Abstract

Understanding the impact of viral pathogens on the human central nervous system (CNS) has been 

challenging due to the lack of viable human CNS models for controlled experiments to determine 

the causal factors underlying pathogenesis. Human embryonic stem cells (ESCs) and, more 

recently, cellular reprogramming of adult somatic cells to generate human induced pluripotent 

stem cells (iPSCs) provide opportunities for directed differentiation to neural cells that can be 

used to evaluate the impact of known and emerging viruses on neural cell types. Pluripotent 

stem cells (PSCs) can be induced to neural lineages in either two- (2D) or three-dimensional 

(3D) cultures, each bearing distinct advantages and limitations for modeling viral pathogenesis 

and evaluating effective therapeutics. Here we review the current state of technology in stem 

cell-based modeling of the CNS and how these models can be used to determine viral tropism 

and identify cellular phenotypes to investigate virus-host interactions and facilitate drug screening. 

We focus on several viruses (e.g., human immunodeficiency virus (HIV), herpes simplex virus 

(HSV), Zika virus (ZIKV), human cytomegalovirus (HCMV), SARS-CoV-2, West Nile virus 

(WNV)) to illustrate key advantages, as well as challenges, of PSC-based models. We also discuss 

how human PSC-based models can be used to evaluate the safety and efficacy of therapeutic 

drugs by generating data that are complementary to existing preclinical models. Ultimately, 

these efforts could facilitate the movement towards personalized medicine and provide patients 
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and physicians with an additional source of information to consider when evaluating available 

treatment strategies.
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Introduction

Viral infections that impact the central nervous system (CNS) can lead to chronic injury or 

cognitive impairments that have a significant impact on quality of life. Due to the potential 

severity of neurological sequelae following infection, there is a need to determine the 

neurotropism of viruses and understand the underlying pathology. However, this has been 

challenging due to the inaccessibility of viable CNS tissue from patients, the difficulty in 

disentangling direct and indirect effects of infection from analyses of postmortem tissue, 

as well as the complexity of virus-host interactions and variability of immune responses. 

Identifying neural targets of viral infections and the virus-mediated causes of neurological 

symptoms is critical to the development of effective therapeutic or preventative strategies but 

remains a significant challenge within neurovirology (1).

Much of the evidence for neurotropism in humans arises from examinations of postmortem 

tissue of an infected individual or epidemiological studies that suggest neurological 

effects. Both approaches provide invaluable data and are generally the first indication 

that viral infections can impact the CNS. However, these studies do not allow for direct 

experimentation to uncover the causal mechanisms of pathology. Animal studies do allow 

for controlled investigations of viral infections in a physiologically intact model, but can be 

limited due to species-specific differences in virus-host interactions or susceptibility. Cell 

culture is one of the most broadly used experimental approaches in biomedical research, 

including virology, and is highly amenable to controlled investigations. Cell lines such as 

Vero, HeLa, HEK293, or SH-SY5Y have led to critical insight into the mechanisms of 

virus-host interactions and pathogenesis. Each of these lines has been well established in the 

field and offers advantages in terms of consistency, scalability, and ease of access. However, 

most are from non-neural lineages or derived from tumor tissue and have distinct properties 

that may not recapitulate cellular virus-host interactions in developing or mature human 

CNS cell types. Functional assays relevant to understanding the pathogenesis of neurological 

and cognitive symptoms may also be limited in these cell lines.

Human embryonic stem cells (ESCs) were first described in 1998 and were generated from 

the totipotent cells obtained from the inner cell mass of embryos at the blastocyst stage 

(2). Human ESCs demonstrated several defining characteristics first established in mouse 

ESCs, including a proliferative capacity in the undifferentiated state and the potential to 

generate cell types representative of all three embryonic germ layers. These properties 

allow for a renewable source of human cells of nearly any cell type in the body, including 

neural cells derived from an ectodermal lineage. Several ESC lines have been established 

and well-characterized but are limited in number due to restrictions on the generation of 
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additional lines. The development of technology to reprogram human adult somatic cells 

into a pluripotent state reminiscent of ESCs demarcated a radical shift in the field of medical 

research and has opened the door for personalized medicine (3). Human induced pluripotent 

stem cells (iPSCs) offer several distinct advantages over ESCs, including the ability to 

generate new lines from consenting individuals that retain the genetic information of the 

donor. Given that the number of ESC lines available for research is limited, the ability to 

interrogate virus-host interactions in a wide variety of genetic backgrounds in iPSCs could 

facilitate a better understanding of genetic risk factors that can lead to more severe outcomes 

after viral challenges. Similar to ESC lines, iPSCs can be differentiated into almost any 

cell type, including neurons, glia, and immune cells (4). As such, iPSCs are an invaluable 

resource that can provide an unlimited source of cloned human neural cell types from 

individual donors, representing more genetic diversity than in existing ESC lines. However, 

this also suggests an even greater need to conduct studies using more than one donor line to 

account for the variability due to differences in reprogramming and/or genetic background.

As with any model system, there are limitations to PSC-based studies but there is also great 

potential to complement existing animal and cell culture models for further discovery and to 

identify new treatments for known and emerging neurotropic viruses (5–7). In this review, 

we discuss a few of the recent studies that illustrate the advantages of 2D and 3D human cell 

cultures that have advanced our understanding of the impact of viruses on the CNS using 

a repertoire of PSC-derived neural cell types and culturing techniques (Table 1). Although 

iPSC studies have become more popular in recent years and comprise the majority of studies 

we cite, ESCs are still widely used and may be subject to less genomic instability than 

iPSCs. We selected studies to represent a range of neurotropic viruses that also illustrate key 

features and recent advances in cell culture technology. Unfortunately, we were unable to 

cite all relevant PSC studies of neurotropic viruses due to space limitations.

Two-dimensional cultures

Differentiating ESCs and iPSCs into an enriched monolayer culture of targeted cell 

populations enables controlled, rigorous, and focused experimentation. Two-dimensional 

(2D) models are particularly beneficial for investigations focusing on specific human cell 

types, advanced maturational states, defined cellular interactions, and higher-throughput 

phenotyping. Importantly, monolayer culturing of cells allows for consistent exposure to 

the factors in the media (e.g., oxygen, growth factors and nutrients, infectious agents, drug 

concentrations) and temporal control of proliferation to isolate various dynamic states. The 

ability to differentiate iPSCs into highly enriched populations of specific human neural cell 

types is a defining characteristic and key advantage of this in vitro model, especially when 

investigating known targets of a particular neurotropic virus.

Cellular differentiation, enrichment, and cell-type identity

Following the demonstration that iPSCs could be generated from adult somatic cells in 2006 

(94), many protocols have been developed to program these cells into early neural stem 

cells (NSCs) and neural progenitor cells (NPCs), as well as mature cell types representative 

of the CNS, including neurons (95–98), astrocytes (99, 100), microglia (101, 102), and 
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oligodendrocytes (103, 104). Differentiation of cell types typically relies on varying the 

concentration and duration of exposure to patterning factors such as WNT, FGF8, TGF-β, 

and SHH that are critical during embryonic development (105–107). Though the efficiency 

of such methodologies can vary (108, 109), some protocols demonstrate the potential to 

generate robust, nearly 100% homogeneous populations of neural cells (99, 110). Variability 

can be further reduced using purification tools such as fluorescence- or magnetic-activated 

cell sorting to select for cell surface markers of a target population (111, 112).

It is important to note that how cell “type” is defined in a study also contributes to the 

degree of differentiation robustness and purity of the enriched culture (113). Seemingly 

homogeneous populations based on neurotransmitter expression may be comprised of many 

subtypes, such as highly heterogeneous GABAergic neurons or glutamatergic neurons of 

distinct cortical layers (114, 115). Due to the complexity of the CNS and the different ways 

of defining cell types (e.g., morphological, electrophysiological, molecular), the number 

of neural subtypes that exist in the brain has yet to be fully delineated (116). However, 

recent advances in single-cell sequencing technologies have revealed extensive regional and 

cell-type specificity, as well as species-specific differences, at a level of granularity that had 

not been previously appreciated (117).

Cell type-specific viral responses

Maintaining monocultures of different cell types in parallel provides opportunities for 

comparative analyses of responses to viral exposure. One such example of cell type-specific 

susceptibility was shown in a study that tested reactivity of different iPSC-derived CNS 

cell types to investigate the pathogenesis of childhood herpes simplex virus 1 (HSV-1; 

herpesvirus) encephalitis (HSE) (23). Although HSV-1 is a widespread virus that infects 

a large percentage of young adults worldwide, HSE is a rare but life-threatening disorder 

that can result from innate genetic mutations of TLR3 or UNC-93B, which play a key role 

in the immune response (118–120). Mutations affecting these proteins confer a selective 

deficiency in immunity to HSV-1, leading to HSE pathogenesis in affected patients. After 

reprogramming fibroblasts from donors with UNC-93B or TLR3 deficiencies, iPSCs were 

differentiated into NPCs, cortical neurons, astrocytes, and oligodendrocytes (23). Among 

all cell types, the researchers found that neurons and oligodendrocytes can provide strong 

anti-HSV-1 immunity via an intact TLR3 pathway, but these cells are highly vulnerable to 

HSV-1 infection if they are deficient in the TLR-specific UNC-93B membrane protein. In 

contrast, UNC-93B-deficient NSCs and astrocytes were not more susceptible to infection 

(23). These data extend findings from studies showing the importance of intact TLR3 

signaling and UNC-93B function in other cell types (e.g., fibroblasts, T cells) for immunity 

to HSV-1, as well as the prevalence of TLR3-associated genetic variants that may contribute 

to HSE (120, 121). Subsequent studies have identified additional genetic modulators of 

innate immunity for HSV-1, specifically in cortical neurons derived from iPSCs (24). 

Consistent with findings from postmortem tissue, iPSC-derived trigeminal ganglion neurons 

both with and without TLR3 pathway mutations are highly susceptible to HSV-1 infection, 

demonstrating a lack of innate immunity in these neurons that are thought to be one source 

of HSV-1 latency and reactivation (25). HSV-1 latency and treatment has been profiled in 

human ESC-derived neurons as well, demonstrating high infectivity rates with a wild-type 

LaNoce et al. Page 4

Front Virol. Author manuscript; available in PMC 2022 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HSV-1 and the establishment of a latent state of non-productive infection when coupled with 

antiviral drugs (26). Together, these studies highlight the value of generating iPSC lines with 

patient-specific mutations for functional investigations, as well as the capacity for directed 

differentiation of PSCs to reveal cell type-specific tropism and innate immune responses.

Maturation of neural cell types and developmental stage-dependent viral effects

Another key advantage of culturing iPSC-derived cells in 2D is the capacity to generate 

and manipulate large populations of cells from neural lineages of a defined cellular 

age (95, 122–125) (Figure 1). Synchronization of differentiation can generate largely 

homogeneous cultures of cells in the same maturational state. Depending on the cell 

type, in vitro maturity may be attained over several weeks and can be facilitated by 

specialized reagents (e.g., BrainPhys medium) to accelerate synapse formation and the 

emergence of electrophysiological activity that may better reflect properties of postmitotic 

neurons in vivo (126, 127). Mitotic inhibitors such as cytosine arabinoside (AraC) (128) and 

uridine/fluorodeoxyuridine (U/FdU) (129) can synchronize maturation by eliminating NPCs 

from the network, especially when the inhibitors are infused intermittently to account for 

quiescent NPCs working to repopulate depleted progeny (128). Although these methods 

allow for some degree of control over the initiation of differentiation, there are still 

many outstanding questions as to how to define cellular maturity and the most salient 

features may depend on the experimental question. Typically, the state of maturation is 

determined through immunohistochemical analyses of protein expression or morphology, 

gene expression via RNA-sequencing (130), or activity levels via electrophysiological 

properties and calcium transients (131). Single-cell sequencing and electrophysiological 

assays have also shown that co-culturing NPCs and neurons with astrocytes can enhance and 

accelerate the expression of transcriptional signatures associated with neuronal maturation 

(132).

The traditional method for differentiation of iPSCs into neural cell types involves dual-

SMAD inhibition that is meant to recapitulate the full neurogenic process. Although 

astrocytes can be generated through some of the same protocols that produce cortical 

glutamatergic neurons, dedicated astrocyte differentiation protocols are more efficient. 

However, these protocols are typically very time-intensive, with some protocols requiring 

more than 3 months to acquire markers of cell-type specificity and maturation. Protocols 

to accelerate this process have been developed for both astrocytes (133) and neurons 

(97), the most popular of which relies on the inducible overexpression of neurogenin 2 

(NGN2), which can produce functional neurons in ~14 days (134). In a direct comparison 

of neurons derived from a traditional or accelerated protocol, a recent study showed that 

more mature electrophysiological properties could be detected in neurons from the dual-

SMAD differentiation protocol than the NGN2 overexpression protocol and that terminally 

differentiated neurons continued to mature up to 6 months in culture (135). There are 

advantages and disadvantages to both types of protocols in terms of the relative length of 

culture time (~14 days vs. several weeks to months), the degree to which the developmental 

stages of neuronal maturation are recapitulated, and the ability to rapidly scale large 

populations for higher-throughput screening.
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For viruses that may affect the adult CNS, there is a need to investigate postmitotic neural 

cell types (e.g., mature neurons, astrocytes) that better model the mature brain. Previous 

studies indicated that West Nile virus (WNV; flavivirus), rabies virus (RABV; rhabdovirus), 

varicella-zoster virus (VZV; herpesvirus), and Usutu virus (USUV; flavivirus) may target 

these cells both in vivo and in vitro (8, 41, 59, 136–139). Comprehensive understanding 

of the mechanisms underlying infection of WNV and VZV in human neurons, however, 

remains elusive. One of the earliest studies using differentiated neurons combined an in vivo 
model and a stem cell-based approach to study the effect of WNV, a mosquito-transmitted 

virus that can cause neurological consequences such as encephalitis or meningitis in humans 

(138). In the in vivo mouse model, WNV infection disseminated throughout the CNS within 

4 to 6 days and correlated with the death of motor neurons in the spinal cord and symptoms 

of paralysis. Following the in vivo study, the group next examined the mechanism associated 

with neuronal injury using mouse ESC-derived neurons, and found that WNV infection 

caused apoptosis of neurons within 48 hours of infection in the absence of activated 

lymphocytes or microglia (138). This study provided in vivo data in a mouse model that 

was consistent with symptoms observed in WNV patients (140), and evidence of a direct 

effect of WNV on neurons.

Using human stem cell models at various stages of differentiation (e.g. iPSCs, NSCs, 

neurons), a recent study (8) compared several neurotropic viruses for cell type specificity 

and found that WNV most efficiently infected both neurons and NSCs compared to 

Zika virus (ZIKV; flavivirus) and dengue virus (DENV; flavivirus), which have shown 

preferential tropism for NPCs and blood-brain barrier (BBB) cells, respectively (141–144). 

This comparative study represents an effective approach to evaluate relative infectivity of 

different viruses in neural cell types and suggests that WNV replicates more rapidly in 

neurons and induces the highest rates of apoptosis in this population among the three 

related flaviviruses of interest. Though informative, more iPSC-based research could help to 

delineate the chief target of WNV tropism, as well as that of DENV, which has only recently 

been investigated for its neurotropic properties in human PSC models.

A similar study applied a 2D maturation approach to establish a model for examining VZV, 

a highly neurotropic, human-specific herpesvirus which can lead to varicella (chickenpox), 

herpes zoster (shingles), and other neurological and ocular disorders in infected individuals 

(59). Neuronal aggregates, or neurospheres, were produced from primary human fetal brain 

NSCs and dissociated to develop a largely neuronal population of 90% neurons and 5% 

astrocytes in a 2D system. VZV infection experiments revealed only 5–10% of neurons, and 

no astrocytes, consistently contained viral proteins up to 3 weeks after infection, suggesting 

no significant cell-cell transmission. Compared to primary fetal lung fibroblast cultures, 

which led to a cytopathic effect within 5–7 days post-infection, VZV did not promote a 

cytopathic effect or death in cultured neurons. Built upon earlier investigations of primary 

neuron culture and postmortem tissue models (60, 145, 146), this NSC model and other 

ESC-based approaches (61) helped to pave the way for more in-depth examination of 

VZV-neural cell interactions in humans. A study of human dorsal root ganglion xenografts 

in mice later found that VZV infection may persist in neurons for at least 8 weeks (147) and 

retain resistance to apoptosis, increasing the likelihood of latency and reactivation effects 

among infected cells. Others have since extended this dorsal root ganglia model to focus 
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on iPSC-derived sensory neurons, which seem to be one of the few reservoirs of latent 

VZV (27). These studies demonstrate how 2D investigations of mature neuronal populations 

can provide foundational information on different neurotropic viruses with various degrees 

of aggression, informing future analyses of mature cell behavior when exposed to these 

and other infectious agents in a physiologically intact environment. Using these tools, 

researchers can further analyze how PSC-derived cells at various stages of development 

respond to environmental stimuli and perturbagens such as viruses or drugs, and recognize 

any potential effects that different cell types may exert throughout the CNS.

Cell-cell interactions and non-cell autonomous effects of viral infections

Of particular relevance to understanding neurological consequences of viral infections is 

distinguishing between direct and indirect effects. Many viruses exert “bystander” non-cell 

autonomous effects on surrounding cells, resulting in cell death or disturbance of uninfected 

cells (148–151). Many studies investigating in vitro bystander effects of CNS cells involved 

in the immune response, i.e., microglia and astrocytes, utilize various models such as 

immortalized human cell lines, rodent models, or monocyte-derived cultures. Although these 

studies provide valuable information regarding basic mechanisms and processes involved 

in cellular interactions, patient-derived iPSCs allow for investigation of the most relevant 

human cell types and could provide further opportunities to investigate individual variability 

in susceptibility to pathology.

A striking example of the potential for non-cell autonomous effects is the impact of 

human immunodeficiency virus (HIV; retrovirus) on the CNS. Up to 50% of people living 

with HIV experience some degree of cognitive impairment even under viral suppression 

via a therapeutic regimen of antiretroviral drugs (ARVs), but the underlying cause is 

unclear (152). It is well known that HIV does not infect neurons directly, but does 

infect microglia, the resident immune cells of the CNS (16, 153, 154). Some studies have 

suggested astrocytes are vulnerable to infection of HIV (155, 156), while others maintain 

that astrocytes engulf HIV particles but are not subject to direct infection (157). Astrocytes 

may serve as reservoirs or conduits for persistent effects of HIV protein expression or DNA 

integration, potentially facilitating viral transmission among cells (e.g., macrophages, CD4+ 

T cells) via cell-cell contact as revealed through in vitro primary astrocyte cultures and 

patient samples (158). Further complicating the interpretation of the neural consequences of 

HIV infection are reports that some ARVs may be neurotoxic, potentially contributing to 

the persistence of HIV-associated neurocognitive disorders (HAND) (159, 160). For these 

reasons, it is critical to decipher the cell type-specific impact of HIV infection, as well as 

ARVs, in mixed cultures of all relevant cell types.

iPSC-derived co-cultures of neurons, microglia, and/or astrocytes have been established 

to model cell autonomous and non-cell autonomous effects of HIV infection and ARV 

exposure (17, 18). In a tri-culture model of all three cell types, HIV infection of microglia 

led to increased production of proinflammatory cytokines (e.g., IL-1β, IL-1α, TNF-α) 

(17), similar to what has been observed in postmortem tissue from HIV encephalitis cases 

that showed elevated IL-1β in infected microglia (161, 162). Although microglia showed 

the most robust activation of inflammatory pathways, as would be expected from direct 
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HIV infection, elevated levels of cytokines were also observed in neurons and astrocytes 

suggesting a bystander effect on neighboring cells (17).

Microglia have been implicated as targets of infection from other neurotropic viruses such 

as Japanese encephalitis virus (JEV; flavivirus), Chandipura virus (CHPV; rhabdovirus), and 

some coronaviruses (23, 150, 151, 163–165). However, the CNS targets of many viruses 

such as JEV, a mosquito-transmitted virus that causes inflammatory disease with a 25–30% 

mortality rate and 50% likelihood of life-threatening neurological complications (163, 166), 

are not fully known. JEV appears to target developing neurons and glial cells in rodent and 

human ESC models (39, 167), and the viral antigen was detected in several human brain 

regions including the thalamus, brainstem, and hippocampus, as revealed through patient 

postmortem tissue collection (168). One study generated a co-culture of JEV-infected human 

monocyte-derived microglia with susceptible hamster fibroblasts (163). Viral transmission 

from infected microglia to target cells was found to be extremely sensitive to interactions 

within the CX3CR1-CX3CL1 axis, which is also a main regulator of chemotaxis and 

communication between microglia (CX3CR1) and neurons (CX3CL1) (169). The findings 

suggest that cell contact-mediated transmission may contribute to neuronal infection at 

early stages of infection, and that the CX3CR1-CX3CL1 axis may be a prime target for 

therapeutics in infected individuals (163). Studies such as these support the application of 

2D mono- and co-cultures as opportune models for discovering potential candidates for viral 

remediation agents.

High-throughput screening

The efficiency of 2D ESC and iPSC culture protocols provide a platform for high-

throughput screening (HTS) formats (e.g., in 96-, 384-well plates) in which large numbers 

of neural cell types can be produced for molecular manipulation, phenotypic analysis, 

and/or drug screens (170–172). Directed differentiation of PSCs may be more suitable for 

HTS than immortalized cell lines, which tend to yield lower predictive measurements of 

toxicity, due in part to limitations in cell type-specific differentiation and function (171). 

The viability of developing iPSC models with a variety of genetic backgrounds makes this 

model particularly suitable for toxicology research and drug screening, especially when cells 

are obtained from patients who exhibit severe symptoms following viral infections or rare 

side-effects from medication (173). It would also be beneficial to standardize a platform to 

investigate genetic diversity in response to viral challenges and during drug development to 

increase the likelihood of identifying phenotypes or drug responses that are likely to reflect 

the majority of the population. Phenotypic assays such as high-content cell imaging provide 

opportunities for studying biological processes impacted by viruses, including autophagy, 

which can be induced by RABV and HSV-1 (174–176), mitochondrial function, which may 

be disrupted following ZIKV and SARS-CoV-2 infection (coronavirus) (63, 177, 178), as 

well as morphological analyses of neuronal development. Multi-electrode arrays can also 

provide functional readouts of neuronal activity in a medium-throughput format. Once a 

robust phenotype is identified, drug screens can be performed either in an unbiased manner 

using large libraries of bioactive compounds or in a hypothesis-driven approach to screen 

compounds known to affect specific cellular pathways based on predicted mechanisms.
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Based upon previous findings suggesting ZIKV infection of NPCs results in increased 

caspase-3 activation and cell death (64, 74), a recent study developed a high-throughput 

compound-screening approach using 384- and 1,536-well plate assays and libraries 

comprised of over 6,000 compounds to assess efficacy in ZIKV treatment (64). The 

study identified two classes of compounds with antiviral and neuroprotective capabilities 

in iPSC-derived cultures. The pan-caspase inhibitor emricasan was found to be the most 

protective compound against cell death in NPCs, though it does not suppress ZIKV 

infection. Niclosamide, a Food and Drug Administration (FDA)-approved antiparasitic drug, 

and PHA-690509, a cyclin-dependent kinase inhibitor, were classified as the most effective 

compounds, inhibiting replication of all three tested strains of ZIKV. These results also 

indicate a potential benefit of combining both neuroprotective and antiviral compounds in 

ZIKV remediation, which was particularly effective in preserving astrocyte viability after 

infection.

Drug screening is also beneficial when there emerges a need to discover new therapies to 

replace existing, potentially ineffective strategies. In response to reports of drug resistance 

and neurotoxic effects of the drug acyclovir, one study compared a suite of 73 anti-herpetic 

drugs against HSV-1 infection in iPSC-derived neuronal lineages at different stages of 

development (e.g., stem cells, NPCs, neurons) and Vero cell cultures using high-content 

image analysis (28). The screening identified new compounds with anti-HSV-1 properties 

in neuronal cells such as the quinazolinone derivative CB-3–176 and demonstrated that 

a larger number of the drugs tested showed more inhibitory activity in neurons than in 

NPCs, with Vero cells expressing the lowest rates of inhibition. This study illustrates the 

advantages of using PSC-based models for CNS-specific drug screening, as only five of 

the 19 compounds that exhibited significant antiviral activity in the iPSC-derived neurons 

were effective in the Vero model system. For viruses like HSV-1, which express tropism for 

immature neuronal cells (36), examining drug effects on not only mature primary neurons 

but also iPSCs in earlier stages of differentiation remains essential for comprehensive drug 

discovery and the understanding of virus-mediated pathology in the CNS of adults and 

during fetal development.

A more recent development is the emerging technology associated with CRISPR-based 

gene editing strategies to identify causal mechanisms of viral replication and virus-mediated 

pathology. Targeted editing of viruses via CRISPR/Cas9 may provide a new therapeutic 

approach to eliminate viruses in various states of latency within the CNS (179). This 

approach can also be used to identify cellular components within the host that permit viral 

infections (180, 181). This is an exciting avenue and the ability to combine targeted gene 

editing with human neural cell types holds the promise of being able to accelerate our 

understanding of virus-host interactions and facilitate rational drug design.

Limitations of 2D cultures and emerging technologies

PSC models are an invaluable resource for human-specific disease research, especially 

for the CNS, as it can be difficult to investigate causal mechanisms from analyses of 

postmortem brain samples. However, there are several caveats that may constrain some 

applications of 2D models. Although monolayer iPSC cultures have immense scalability, 
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this results in a simplified, less complex model than 3D in vitro models and in vivo 
systems. As such, 2D models inherently express limitations in recapitulating natural 

physiological conditions. Cells may interact more with the culture plate substrate rather 

than with other cells in the network, therefore missing a landmark characteristic of in 
vivo cytoarchitecture: the extracellular matrix (ECM). A lack of ECM can alter dynamics 

such as nutrient and molecular gradients, polarity, migration, proliferation, morphology, 

and communication, which may ultimately affect cellular function and behavior (182–185). 

Low rates of reproducibility and efficiency for some existing differentiation protocols may 

also hinder cell-type specific analyses and integration of data across different research 

groups. Several adaptations have emerged to overcome potential challenges of 2D models 

and develop more physiologically relevant networks and substrates, such as nanowire 

arrays (186, 187), sandwich cultures (188), micropatterning of cell-adhesive islands (189), 

modulated substrates (190), and microfluidic devices (191). Few, however, have been 

applied to study iPSC-based models of neurotropic viruses. One strategy to capitalize 

on the intact physiological system of in vivo animal models to investigate viral-mediated 

responses in human cells is to perform xenografts of PSC-derived cells. Human PSC-derived 

hematopoietic progenitors and microglia have been transplanted to the rodent brain and upon 

engraftment, these cells can acquire molecular properties that are more representative of in 
vivo populations than is typically observed in vitro (192–194). Similar strategies have been 

used to “humanize” animals that are otherwise resistant to infection of some viruses, such 

as HIV (195). Transplantation of human progenitors early in development can also facilitate 

investigations of viral pathogenesis in the developing brain. Another rapidly evolving area 

of research in response to 2D constraints is the generation of organoids or assembloids from 

human PSC-derived cells to develop an in vitro model that includes multiple cell types and 

captures some of the structural features of particular brain regions.

Three-dimensional cultures

Three-dimensional (3D) cell culture approaches are a more recent development in the PSC 

field and there is much excitement about the potential of this model to investigate emergent 

properties of highly organized neural structures, as well as the dynamic features of human 

brain development. Cerebral organoids can be derived from human iPSCs or ESCs and can 

recapitulate many features of cell migration, neural cytoarchitecture, and the formation of 

neural circuits. The cellular heterogeneity that arises from self-organizing populations of 

NSCs facilitates the study of neurotropism of viruses when the target cell type is unknown.

3D differentiation and brain-region specificity

Multiple protocols have been developed to generate organoids that model various regions 

of the CNS, which differ mainly in the patterning factors used and duration of directed 

differentiation. The earliest published protocols relied largely on intrinsic differentiation 

signaling that ultimately results in stochastic organoids that can resemble multiple regions 

of the brain (196, 197). More recently, guided differentiation protocols have been optimized 

that rely on the addition of specific patterning factors to generate organoids that resemble 

specific brain regions, such as the thalamus (198), hypothalamus (199), cerebellum (200), 

midbrain (201), brainstem (202), hindbrain and choroid plexus (203), cerebral cortex (75), 
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hippocampus (204), striatum (205), and spinal cord (206), among others. Similar to directed 

differentiation in 2D cultures, patterning for organoids relies on establishing the appropriate 

concentrations of various morphogens in the cell culture media that mimic niche signals 

present along various points of the dorsal-ventral/anterior-posterior axis of the neural tube 

during development (107, 207, 208). Choosing between region-specific or whole brain 

organoids as a cellular model depends on the tropism of the virus under investigation. For 

example, if the viral tropism in the CNS is unknown, a heterogeneous model may be more 

suitable than a region-specific organoid. This makes stochastic CNS organoids particularly 

useful to study the tropism of emerging viruses. At present, PSC-derived organoid models 

have been used to study the infection of several neurotropic viruses, including ZIKV, HIV, 

HSV, SARS-CoV-2, and human cytomegalovirus (HCMV; herpesvirus) (Table 1).

Several terms to describe 3D cultures have been used in the field, sometimes 

interchangeably, such as spheroids, aggregates, and organoids. However, there are generally 

methodological distinctions that can impact how these various models may be applied 

to interrogate the structure and function of cellular networks in response to viral 

infections. Neuronal spheroids or aggregates are often not the result of the emergent, 

self-organizing properties of differentiating iPSCs or ESCs, but instead from assembling 

already differentiated cells or dedicated neural progenitors into a 3D structure (Figure 1). 

There can be advantages to this approach in that defined ratios of particular cell types can 

be co-cultured, similar to 2D cultures, but in a way that is conducive to the formation of 

cultures in 3D. This could allow for the development of some 3D organization, but may not 

recapitulate all of the cytoarchitecture that would emerge when cells undergo differentiation 

within the 3D structure and the cell-intrinsic processes that guide migration. Organoids 

that are derived directly from PSCs and embryoid bodies, as referred to here, rely more 

on the self-organization of differentiating cells and may result in more complex and/or 

physiologically-relevant architecture. However, organoids are subject to variability as well as 

the limitation that extensive patterning of differentiation to achieve brain-region specificity 

may preclude the appearance of cells from other lineages. Nonetheless, cerebral organoids 

are capable of generating numerous types of neural cells such as NSCs, NPCs, astrocytes, 

inhibitory neurons (GABAergic), excitatory neurons (e.g., glutamatergic, dopaminergic), 

and oligodendrocytes (209–211).

The cellular heterogeneity and brain-region specificity of organoids can reveal unexpected 

targets of neurotropic viruses. For example, epithelial cells were recently identified 

as targets of SARS-CoV-2 infection in organoid models (49, 203). In one of these 

studies, the susceptibility of multiple brain region-specific organoids (cortical, hippocampal, 

hypothalamic, midbrain) to SARS-CoV-2 infection was tested to survey the potential 

susceptibility of different neural cell types (49). Using this screening method, the group 

was able to observe that organoids with choroid plexus-like regions were the most infected 

by SARS-CoV-2, the pathogen responsible for the recent COVID-19 pandemic and known 

primarily for its disruption of the respiratory tract. Following this initial indication of CNS 

tropism, a protocol was developed to generate choroid plexus-specific organoids, which 

led to higher rates of infection in the choroid plexus-like epithelial cells than adjacent cell 

types. Similarly, infected choroid plexus organoids that produce cerebral spinal fluid (CSF) 

were infected with SARS-CoV-2, which led to damaged epithelium and a disruption of the 
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CSF barrier in this model (50). In a study of postmortem brain samples from COVID-19 

patients and age-matched controls, RNA-sequencing data revealed an upregulation of 

inflammatory genes and the antiviral defense gene IFITM3 in choroid plexus cell types, 

although SARS-CoV-2-specific RNA was not detected in any cell type (212). While 

evidence of viral infection was not observed in this study, the inflammatory signals detected 

are consistent with the choroid plexus as a site of SARS-CoV-2-related pathology. Other 

studies of postmortem tissue and functioning murine systems have validated some evidence 

of viral RNA in brain tissue and epithelial cells (51, 213) and this remains an area of 

active investigation. Interestingly, a recent study suggested that dopaminergic neurons were 

susceptible to SARS-CoV-2 pseudo-entry virus infection, implicating a potential pathogenic 

locus related to neurological symptoms observed in COVID-19 patients (52). Together, 

these studies highlight how brain organoid models can be applied to study the tropism of 

new emerging viruses and suggest targets for histological investigations of postmortem and 

animal tissue.

3D models of microcephaly

A striking feature of many cortical organoid models is the presence of neural rosette-like 

structures that resemble some aspects of neural tube patterning of dorsal forebrain regions. 

These rosette-like structures contain NSCs and NPCs that give rise to postmitotic neurons 

that migrate radially and form distinct neuronal layers (211). In particular, cortical organoids 

form distinct proliferative zones, including the ventricular zone, inner subventricular zone, 

outer subventricular zone, cortical plate, and marginal zone, which resemble that of the 

developing embryonic human cortex (75, 214). A primarily human-specific outer radial glia 

cell layer, which is considered a hallmark of human embryonic cortex formation, has also 

been reported in cortical forebrain organoids (75, 76, 214). Unlike 2D monolayers that 

can be treated with antimitotic agents to selectively eliminate progenitors and synchronize 

maturation, organoids typically retain NSCs and NPCs, resulting in the continued presence 

of immature neurons. Some groups have focused on this aspect of cortical organoid models 

to study viruses that appear to target developing neural systems, such as JEV (40) and ZIKV 

(75).

Forebrain organoids have been particularly useful in studying the potential of neurotropic 

viral infections to cause structural impairments in early brain development such as 

microcephaly. During the ZIKV outbreak in 2015–2016, there was an increase in the 

birth prevalence of microcephaly that was associated with a dramatic increase in ZIKV 

transmission in some geographical regions (215), but whether there was a causal link was 

not known. To investigate if ZIKV infection could lead to structural deficits in human 

iPSC-derived organoids, forebrain organoids were infected with ZIKV, resulting in an 

overall decrease in the size of organoids and neuronal layers that resembled features of 

microcephaly (75). Deficits in the cytoarchitecture of the organoids and decreased size of 

ZIKV-infected organoids due to NPC depletion have been observed by several groups (65, 

77, 78), supporting and extending the initial findings that ZIKV targets human NPCs as 

observed in 2D cultures (74).
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Microcephaly has been implicated in other neurotropic virus infections, including HCMV. 

Although most instances of congenital HCMV infection are asymptomatic, symptomatic 

cases convey several neurological outcomes, such as primary microcephaly (216). In a 

recent study, HCMV-infected iPSCs were used to generate forebrain organoids and the 

infection impacted the formation of cortical structures in the organoids, with a minimal 

impact on overall growth (14). This was attributed to the focal regions of antigen detection 

in the organoids developed from infected iPSC lines, which mirrors clinical observations 

involving a wide spectrum of tissue necrosis and structural damage (217, 218). HCMV-

infected organoids also presented large vacuoles and necrosis, in addition to impaired 

expression of the neuronal marker β-tubulin III. Another recent study (15) found that 

forebrain organoids infected with the HCMV strain TB40/E impaired the development and 

growth of cortical structures, which resulted in a significant decrease in organoid size, as 

well as reduced neuronal activity. One of the key differences between these studies is that 

infection of the iPSC line before differentiation resulted in sporadic signs of infection at 

later stages, whereas infection of organoids following 45 days of differentiation resulted 

in high levels of infection in NPCs, which could lead to a decrease in the expansion of 

cortical layers and an overall reduction in the size of the organoid. Other reports have 

suggested differences in permissiveness to HCMV between ESCs/iPSCs and later stage 

NPCs (219, 220). Collectively these studies reveal how tropism may evolve over time in 

these heterogeneous models of early brain development and may also depend on both the 

cell line and strain of virus. It should be noted that the differences observed in many 

of the human PSC culture studies compared to congenital infection outcomes may be 

linked to variations in tropism, growth, antibody sensitivity, and the genomic instability 

of low-passage wild type (e.g., TB40/E, Toledo) and high-passage laboratory strains (e.g., 

AD169, Towne) of HCMV used in culture (221). Thus, investigations focused on HCMV 

and other viruses should be designed with these associated cell culture confounds in mind, 

ensuring that the strain in hand is relevant to the goals of the study and can accurately reflect 

congenital infection in vivo.

In addition to HCMV and ZIKV, HSV-1-associated microcephaly has also been modeled 

in brain organoids where productive infection of NPCs disrupted neuroepithelial polarity, 

leading to a reduction in the overall size of the organoids and impaired cytoarchitecture. 

Importantly, many of these structural changes were distinct from that observed in 2D 

cultures and revealed the impact of HSV-1 infection on cell adhesion and polarity that 

was unique to the 3D system (29). Another study that focused on modeling HSV-1 latency 

reported striking differences between 2D and 3D models, showing much less reactivation 

of latently infected cells in organoids than in cultured neuronal networks (30). Cell-cell 

and cell-ECM interactions were thought to play a role in this difference, suggesting that 

organoids may provide a better model of viral latency and reactivation in vivo. Overall, these 

studies illustrate the utility of brain organoids to study neurotropic viruses that can impact 

structural integrity and cytoarchitecture in the developing brain.

Drug discovery using organoids

Similar to 2D cultures, organoids have been useful for evaluating the efficacy 

of pharmacological compounds to ameliorate viral infections or mitigate functional 
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consequences, although typically in a lower throughput format. Most of the studies to 

date using neural organoids have resulted from investigations of ZIKV infection, which 

is believed to contribute to microcephaly. One of the earliest studies used a combined 

approach and performed a large initial screen of more than 1,000 FDA-approved compounds 

in 2D cultures of iPSC-derived NPCs, followed by a smaller-scale screen of the top 

candidates in brain organoids to identify the most effective drugs to inhibit ZIKV replication 

and pathology in a 3D environment (79). Two of the target compounds, amodiaquine 

dihydrochloride dihydrate and hippeastrine hydrobromide, were shown to be effective in 

suppressing ZIKV infection in NPCs and organoids, although amodiaquine dihydrochloride 

dihydrate was determined to be cytotoxic at higher concentrations and only hippeastrine 

hydrobromide was shown to have a therapeutic effect in an in vivo model of infected mice. 

In one study focused on ZIKV, forebrain organoids were infected with the Puerto Rican 

ZIKV strain PRVABC 59 and a variety of antibiotics and compounds with predicted antiviral 

properties were tested (76). Several factors were identified that significantly reduced ZIKV 

mRNA in forebrain organoids including 25-hydroxycholesterol, a natural defense protein. 

However, some toxicity of this compound was observed, offsetting any potential rescue 

of cell death. Among the antibiotics tested that had previously shown some efficacy in 

mediating flavivirus infections, both ivermectin and duramycin dramatically reduced ZIKV 

mRNA while azithromycin had a minimal effect. Further, ivermectin, but not duramycin, 

showed some toxicity on its own. In a different study, the antibiotic enoxacin was shown 

to inhibit ZIKV replication and rescue cell proliferation, as well as the thinning of the 

ventricular zone and layered structures in organoids, in an RNAi-dependent manner (65). 

Although most of the targeted drug studies in these systems have focused on ZIKV, 

structural phenotypes have also been investigated in the context of HCMV. It was recently 

shown that the experimental drug maribavir partially rescued disrupted cytoarchitecture and 

reduced the spread of the virus, but was not sufficient to maintain calcium signaling after 

infection in HCMV-infected organoids (11).

Results from these studies illustrate how organoids can be used to evaluate candidate 

antiviral compounds to compare both toxicity and efficacy in inhibiting viral infection. 

Despite established protocols to target differentiation of these cultures to model specific 

brain regions, there is still a high degree of variability among organoids. Therefore, this 

3D platform may be more useful to test targeted drugs rather than a large library of 

compounds. Although these early results are promising, the use of organoids as a mode 

of drug discovery and evaluation will likely depend upon further identification of robust and 

reproducible virus-induced phenotypes that can be observed in 3D culture conditions, such 

as dysregulated processes of cell migration or the structural integrity of certain brain regions.

Modeling fetal brain development and drug exposure during pregnancy

Human PSC-based models recapitulate many of the processes that occur during early 

development and organoids in particular have been proposed as a model of neural 

development. In addition to cytoarchitecture and cellular diversity, brain region-specific 

organoids can also mirror the transcriptomic profile of human fetal brain tissue in the early 

stages of development. RNA-sequencing analyses of forebrain organoids have demonstrated 

that their transcriptome highly correlates with fetal brain tissue through the second trimester 
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(75, 222, 223). This suggests that organoids may be a favorable model for evaluating the 

efficacy and safety of therapeutic drugs during pregnancy. There is currently a lack of data 

on the effects of many drugs on the developing fetal brain due to the limited inclusion of 

pregnant people in clinical trials. Much of the data available on the potential for adverse 

outcomes during pregnancy is obtained from observational studies following the approval 

of a given drug for use among the general population. There is an urgent need not only to 

conduct more inclusive clinical trials, but to develop additional preclinical models that could 

generate relevant safety information for therapeutic decision-making.

One of the clearest examples of how such information could be used to impact treatment 

strategies is in the case of ARVs for people living with HIV. Currently recommended 

regimens often require multiple drugs that rely on at least two different mechanisms 

of action. As the health of the mother and prevention of vertical transmission of HIV 

is paramount, ARVs should be taken throughout pregnancy. There are several different 

approved drugs within each class, but often minimal data on the impact of the drugs on 

neurodevelopment. A few years ago, the FDA and the European Medicines Agency issued 

safety notices regarding the use of the ARV drug dolutegravir. The warnings were based on 

the results of an initial interim observational study in Botswana suggesting that dolutegravir, 

if taken at the time of conception or early in pregnancy, may slightly increase the risk 

for severe neural tube deficits in newborns (224). Although a follow-up study suggested 

a statistically significant, albeit very small, increase in the risk for neural tube defects, 

dolutegravir is again listed as a preferred or alternative drug throughout pregnancy based 

on its availability, efficacy, and tolerance among most of the population (225). Using ESC-

derived aggregates, one group found that dolutegravir disrupted gene expression of different 

developmental regulators, such as HOXB1 and CYP26A1, in concentrations as low as 

0.5μM (21). Further investigation of CNS-like organoids that model fetal brain development 

could provide a new avenue to evaluate the effects of drugs and antiviral therapies on 

neurodevelopment and provide novel data on the most relevant human cell types.

Limitations of 3D cultures and emerging technologies

Organoids possess several advantages to study the effects of neurotropic viral infection 

and drug efficacy during pregnancy, but they are far from a perfect model. Some of 

the major limitations of brain region-specific organoids are the lack of vascularization, 

relative immaturity of constitutive cell types, and the absence of immune cells. A lack of 

vascularization in brain organoids leads to the deprivation of nutrients and oxygen from 

the media that results in the formation of a necrotic core. The necrotic core becomes more 

evident at later stages of culturing when the organoids grow larger in size. One strategy 

to overcome diffusion limits is the repeated slicing of organoids at periodic intervals to 

expose the inner core to factors in the media (211). This approach was shown to extend 

viability of the interior progenitor zones, enabling further maturation of the cortical layers 

and fate specification reminiscent of late-stage fetal brain development. Emerging advances 

in microfluidic applications may also address many of these problems. A recent study 

demonstrated a microfluidic device containing a brain-like ECM that facilitates nutrient 

and oxygen diffusion, in addition to promoting structural and functional maturation of the 

organoids (226). In the context of viral infection in the CNS, the absence of a BBB in brain 
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organoids also presents a limitation to modeling physiologically-relevant processes of viral 

infection and drug exposure, particularly when viral infections may impact the BBB, as in 

the case of DENV (144). However, advances in biomedical engineering have also allowed 

the generation of BBB models using microfluidic devices, which presents new opportunities 

to study drug permeability, transport, and efficacy (227, 228).

Brain region-specific organoids typically contain immature cell populations regardless of the 

length of time in culture, which is why they are often used to model early development. 

Modeling later stages of neurodevelopment in organoids is possible, but requires extensive 

time in culture. A recent study showed that organoids can resemble the postnatal brain 

at the transcriptional level if they are cultured for more than 250 days (229). Although 

postmitotic neurons and some glial cell types populate organoids over time, the progenitor 

population is maintained as well. Unlike 2D systems in which antimitotic agents can be used 

to eliminate neural progenitors, this is not typically done in 3D, and the continued existence 

of proliferative zones may prevent full maturation of adjacent postmitotic neurons.

Another major limitation of brain organoids is the lack of immune cells, specifically 

microglia. Microglia are not endogenously present in cerebral organoids because they arise 

from a distinct lineage of the embryonic mesoderm (230). During early development, 

microglia derived from primitive myeloid progenitors populate and colonize the brain 

(231) and play important roles including surveillance of the CNS environment, synaptic 

and axonal pruning during development, and injury response (232). As observed in HIV, 

microglia have been shown to be direct targets of neurotropic viruses and can also serve 

as reservoirs in the adult brain (153, 233). New protocols have begun to incorporate 

microglia in brain organoids to account for this deficit. Recently, one study described 

the generation of organoids that contained innate mesoderm-derived microglia cells (234), 

but this approach may reduce brain-region specificity. Another recent study described 

a different approach to generate organoids/spheroids that contained a defined ratio of 

microglia cells by reaggregating NPCs with primitive macrophage progenitors (80). This 

method allows for the integration of cells in proportions that more closely approximate in 
vivo conditions, but the reaggregation of cells after partial differentiation precludes some 

of the self-directed organization and resultant cytoarchitecture that would occur through the 

generation of organoids that develop directly from iPSCs or ESCs. Similar to xenografts 

of NSC populations, transplantation of organoids to the intact circuitry of mouse models 

could allow for the integration of physiologically-relevant cell types to better model cell-cell 

interactions.

Conclusion

Both 2D and 3D PSC-based culture strategies can provide complementary information to 

better understand neural pathology, neurotropism, and susceptibility to viral infections, as 

well as providing a platform for drug discovery (Figure 1). 2D models have the advantage 

of being highly scalable, easily reproducible with minimal variability, and permissive of 

temporal and spatial control over identified cell populations. Cell types can be defined at 

the molecular level (e.g., through the expression of known markers) or in terms of dynamic 

states (e.g., over the course of maturation). Culturing PSC-derived neural cells in monolayer 
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cultures permits control over both of these axes of cell type identity, while 3D models 

offer distinct and complementary advantages. Organoids may provide data on the structural 

impact of various perturbagens, including viral infections. The cellular heterogeneity that 

occurs in organoids can be useful to identify cell types that are susceptible to emerging 

viruses when very little is known about the tropism within the CNS. Ultimately, the 

similarities to fetal brain development provide new opportunities to model in utero exposure 

to both viral infections and antiviral therapies. Although the field is continuing to evolve, 

current 2D and 3D cell culture models can augment existing models of viral infection. Doing 

so may allow for controlled investigations of human CNS cell types that can accelerate 

the process to determine neurotropism and associated pathology, and eventually inform the 

development of targeted antiviral therapeutics.
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FIGURE 1. 
Applications of PSC models to study neurotropic viruses. Human pluripotent stem cells 

(PSCs) can be guided to differentiate into 2D (top) or 3D (bottom) in vitro neural networks, 

which can be used in a variety of assays, including high-throughput screenings (HTS) and 

electrophysiological recordings (right). PSCs can develop into various complex organoid 

models which can recapitulate aspects of human neural development and neuroanatomy, 

or 3D models of desired cell types which strive to mimic in vivo cell behavior and 

physiology. PSCs can follow differentiation protocols to become monolayers of neural 

progenitor cells (NPCs), immature neural cells, and ultimately any central nervous system 

(CNS) cell type, such as microglia, astrocytes, oligodendrocytes, and post-mitotic neurons. 

Antimitotic agents can be used to synchronize maturation and generate more homogeneous 

2D cultures for controlled investigations that can be further elaborated in 3D models, 

refined again in 2D formats, and so on by way of reciprocal hypothesis testing. Specialized 

human cell types (e.g., fibroblasts, blood) can be transdifferentiated directly into neural 

cells without transitioning through a pluripotent state, providing another platform for CNS 

experimentation.
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