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Single-cell RNA sequencing highlights the functional role of
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Summary
Background Gallbladder cancer (GBC), the most common malignancy of the biliary tract, shows late diagnosis and
low survival rate and requires continued search for new diagnostic biomarkers and therapeutic targets. Human
endogenous retroviruses (HERVs) are specifically prone to be reactivated in diverse cancers and are implicated in
cancer progression and immunotherapy.

Methods Single-cell RNA sequencing was performed on tumor tissues and paired adjacent tissues from 4 GBC
patients. Dual-luciferase reporter assay was applied to measure enhancer activity of HERV sequences.

Findings We dissected the cellular diversity and described the HERV transcriptomic landscape for GBC. We found
that HERVs were transcribed in a cell type-specific manner and different HERV families were associated with diverse
biological effects. HERVs could function as enhancers, presumably causing altered expression of neighboring genes.
The transcription level of HERVH was gradually elevated with the malignant transformation of epithelial cells,
suggesting HERVH may be a potential early diagnostic biomarker of GBC. HHLA2, a newly emerging immune
checkpoint, was derived by HERVH, exhibited an expressional correlation with HERVH, and was identified as a
promising target for immunotherapy.

Interpretation Exploring the transcriptional landscape and potential functional impact of HERVs highlights the
important role of HERVs in GBC and provides a fresh perspective on managing GBC.
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Research in context

Evidence before this study
Gallbladder cancer (GBC) is characterized by late-stage
diagnosis and poor prognosis, so research efforts should
continue to find biomarkers for early detection and innovate
therapeutic approaches for improving clinical outcomes.
Human endogenous retroviruses (HERVs) are remnants of
ancient exogenous retroviruses and make up ∼8% of the
human genome. HERVs are specifically reactivated in various
cancers and are implicated in cancer development, which has
spurred many studies exploring HERVs as promising
diagnostic and therapeutic targets. The involvement of HERVs
in GBC, which is essential for improved management of this
malignancy, has not yet been systematically elucidated.

Added value of this study
We revealed the cell-type diversity of GBC by single-cell RNA
sequencing and delineated the transcriptional landscape of

HERVs at the single-cell level. There are substantial differences
in HERV activation among different cell types, which
contributes to the intratumoral heterogeneity of GBC. HERVs
were demonstrated to serve as enhancers, potentially
regulating the expression of neighboring genes in cancer cells.
Biological functions that may be affected by those aberrantly
activated HERVs were also identified for each cell population.
HERV members (HERVH and HHLA2) were recognized as
promising targets to help achieve early diagnosis and advance
GBC immunotherapy.

Implications of all the available evidence
Exploring HERV transcription patterns and their potential
impacts on cellular functions highlights the essential role of
HERVs in shaping the tumor microenvironment, provides
novel insights into GBC development, and offers a valuable
resource for better management of GBC.
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Introduction
Gallbladder cancer (GBC) is a rare malignancy and the
most common type of GBC is adenocarcinoma.1,2 GBC
is often diagnosed at a late stage because it usually
doesn’t cause noticeable signs or symptoms until it’s
advanced. The progression of GBC is frequently fast and
the prognosis is very poor. Current therapeutic ap-
proaches, such as surgical resection, targeted therapy
and immunotherapy, benefit a subset of patients with
GBC.3,4 Innovative strategies to achieve early diagnosis
and effective treatment are urgently needed.

Human endogenous retroviruses (HERVs), which
are estimated to account for 8% of the human genome,
are relics of ancestral germ-line infections by exogenous
retroviruses and became stable during the course of
evolution.5,6 The intact structure of HERV is the same as
exogenous retroviruses: 5′LTR-gag-pro-pol-env-3′LTR,
but they usually accumulated so many mutations and
deletions that their viral replication is restricted in the
human genome.7 Although most HERVs are silenced in
normal tissues, cumulative evidence indicates that
HERVs could be reactivated in diverse cancers due to
dysregulated epigenetic modifications and play an
important role in modulating carcinogenesis.8,9 The
flanking LTRs could lead to expressional alteration of
adjacent genes by acting as promoters or enhancers. For
example, the expression of Krüppel-associated box
(KRAB) domain–containing zinc-finger protein (KZFP)
genes has been demonstrated to be induced by adjacent
HERVs in tumors.10 HERV expression may trigger a
’viral mimicry’ pathway, which can increase antigen
presentation, expression of interferon-related genes, and
expression of immune checkpoint genes, potentially
sensitizing tumor cells to recognition.11,12 Furthermore,
some HERVs may be translated to tumor-specific
antigens that can serve as targets of T cells.13–17 These
characteristics make them especially attractive as new
therapeutic possibilities for diverse malignancies.
Actually, HERVs have recently received much attention
in immunotherapy and the combined use of DNA
demethylation agents (resulting in HERV derepression)
and immune checkpoint therapy is being tested in
clinical trials in a variety of cancers.18–20

Single-cell RNA sequencing (scRNA-seq) has been
widely applied to dissect the cellular composition of
tissues and explore functional heterogeneity.21–23 It pro-
vides a convenient way to investigate how HERV
expression varies among different cell types. Given that
HERVs are dispersed in multiple copies throughout
human genome, achieving accurate estimation of locus-
specific expression of HERVs with scRNA-seq data is
challenging.24 Tools tailored for scRNA-seq data to ach-
ieve locus quantification taking multi-mapped reads into
consideration are lacking. Keeping only uniquely map-
ped reads is a commonly used strategy in RNA-seq
analysis, although it would lead to expressional under-
estimation of some HERVs.10,25,26 Therefore, the findings
related to HERVs should be interpreted in the context of
the techniques and methods used.

Given the essential role of HERVs in other cancers
and the fact that the contribution of HERVs to GBC is
currently unknown, we would like to investigate
whether HERVs are also reactivated and implicated in
various cellular processes in GBC, aiming to find new
insights into GBC management. In this study, we
applied scRNA-seq to reveal the cellular composition of
the tumor microenvironment (TME) and report the
comprehensive single-cell transcriptome profile of
HERVs in GBC tumor tissues and adjacent normal tis-
sues. In addition, we investigated the enhancer activity
www.thelancet.com Vol 85 November, 2022
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of HERV-derived sequences by dual-luciferase reporter
assay and explored their potential functional impacts in
each cell type. These results would help us further the
understating of the functional role of HERVs and pro-
vide clues to the discovery of better treatment strategies
for GBC.

Methods
Ethics approval and consent to participate
4 patients with gallbladder adenocarcinoma were
recruited and they all signed the consent forms. Tumor
tissue and adjacent normal tissue were collected from
each GBC patient. The matched adjacent normal tissue
was taken from the mucosal tissue of the gallbladder at
least 2 cm from the edge of the tumor. This present
study was approved by the Ethics Committee of Eastern
Hepatobiliary Surgery Hospital (EHBHKY2021-K-006).

Single-cell dissociation
Fresh tumor tissues and adjacent normal tissue
collected were stored in MACS Tissue Storage Solution
(Miltenyi Biotec) before processing. The single-cell
suspension was generated as described below. First,
the tissue sample was minced into small pieces that
were ∼1 mm3 in size on ice after washing with
phosphate-buffered saline (PBS, Gibco). Collagenase IV
(Worthington) and DNase I (Worthington) were subse-
quently used to enzymatically dissociated these pieces
and this step lasted for 30 min at 37 ◦C. After dissoci-
ation, the sample was passed through a 70 μm cell
strainer (Falcon) and the mixture was then centrifuged
for 5 min at 300×g to remove the supernatant. Next, the
red blood cells were lysed with red blood cell lysis buffer
(Miltenyi Biotec) and the sample was washed with PBS
containing 0.04% BSA (Thermo Fisher Scientific). A
35 μm cell strainer (Falcon) was added to re-filtered cell
pellets after re-suspending in PBS containing 0.04%
BSA. Cell viability was assessed by staining dissociated
cells through Calcein-AM (Thermo Fisher Scientific)
and Draq7 (BD Biosciences). Finally, the dead cells in
the single cell suspension were removed using a MACS
dead cell removal kit from Miltenyi Biotec.
Single-cell library preparation and sequencing
Whole transcriptomic information of each sample was
captured with the BD Rhapsody single-cell system. To
realize single-cell capture, the suspension was randomly
distributed across more than 200,000 microwells by
limited dilution method. Beads containing oligonucle-
otide barcodes were required to be added excessively to
make sure that almost each microwell has one bead.
Trapped cells were lysed, allowing the released mRNA
molecules to hybridize with barcoded capture oligos on
the beads in the microwell. Beads were transferred to a
single tube and then reverse transcription and ExoI
(Thermo Fisher Scientific) digestion were carried out.
www.thelancet.com Vol 85 November, 2022
Next, the unique molecular identifier (UMI) and cell
barcode were used to tag the synthetic cDNA at the 5′
end, that is equivalent to the 3′ end of the mRNA
molecule. The final single cell library was generated
through several procedures including random priming
and extension (RPE), RPE amplification PCR and WTA
index PCR. Library quantification was performed by
Agilent Bioanalyzer 2200 High Sensitivity DNA Chip
and Qubit High Sensitivity DNA assay (Thermo Fisher
Scientific). All generated libraries were sequenced by an
illumina sequencer (Illumina, San Diego, CA) with
PE150 strategy (paired-end 150bp).
Cell culture
The GBC-SD (RRID: CVCL_6903), human gallbladder
carcinoma cell line was purchased from Zrbiorise
(Shanghai, China). GBC-SD and HEK293T (ATCC,
RRID: CVCL_0063) cells were maintained in high-
glucose DMEM (Gibco) supplemented with 10% fetal
bovine serum (FBS, Gibco), penicillin (100 IU/ml,
Gibco) and streptomycin (100 μg/ml, Gibco) in a hu-
midified atmosphere containing 5% CO2 at 37 ◦C. The
GBC-SD and HEK293T cell lines were characterized by
Azenta Life Sciences (Jiangsu, China) using short tan-
dem repeat (STR) markers (Supplementary File 1).
Plasmids
PGL3-promoter, PGL3-control and pRL-TK were pur-
chased from HedgehogBio Science and Technology Ltd
(Shanghai, China). All potential enhancer sequences of
HERV (Supplementary Table S4) were amplified from
the HEK293T genome using nested PCR with
2 × Phanta Max Master Mix (Vazyme, P525). The PGL3-
promoter was enzymatically cut using KpnI-HF (NEB,
R3142S). All potential enhancer sequences of HERV
were inserted into the PGL3-promoter separately using
NEBuilder HiFi DNA Assembly Master Mix (NEB,
E2621). The sequences of all plasmids were confirmed
by Sanger sequencing.
Dual-luciferase reporter assay
A total of 5 × 104 GBC-SD cells were plated in 24-well
cell culture plates (corning, 3524) and transfected with
500 ng plasmids per well by using Lipofectamine 2000
Transfection Reagent (Invitrogen, 11668019). The ratio
of the experimental vector to the co-reporter vector pRL-
TK was 24:1. After 48 h, the cells were collected for
luciferase activity evaluation by using a dual-luciferase
reporter system (HANBIO, China) according to the
manufacturer’s protocol.
Quantification of gene and HERV expressions
Raw sequencing data was analyzed using whole tran-
scriptome analysis (WTA) pipeline of BD Rhapsody™
3
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on a local installation (BD® Single-Cell Multiomics
Analysis Setup User Guide, Doc ID: 47383). The steps
in the WTA analysis mainly include removing reads
with low quality, annotating R1 and R2 reads, collapsing
reads into raw molecules, determining putative cells and
generating expression matrices. For details, please refer
to BD® Single-Cell Multiomics Bioinformatics Hand-
book (Doc ID: 54169). During the annotation process,
STAR (v2.5.2b)27 was used to align reads to the human
reference genome (GRCh38.p12, UCSC). Gene anno-
tation file was downloaded from GENCODE (https://
www.gencodegenes.org/, Release 31) and HERV anno-
tation file which was compiled by RepeatMasker was
obtained from UCSC Table Browser for GRCh38
(https://genome.ucsc.edu/cgi-bin/hgTables). Only the
uniquely mapped reads were calculated to estimate gene
and HERV expression levels. Besides, many HERV loci
were found to overlap with exons of host genes, so the
overlapping regions were removed for HERV loci to
avoid quantification bias.
Quality control and cell type determination
The gene-cell count matrix was imported into R package
Seurat (version 4.0.6) for subsequent analyses.28 Low
quality cells and cell doublets or multiplets were
removed based on the gene count and mitochondrial
contamination (Supplementary Table S1) and genes
expressed in less than 3 cells were filtered out for each
sample. After applying these filtering criteria, the
filtered gene-cell count matrix was normalized by the
function NormalizeData() and 2000 most variable genes
of each sample were selected to correct the batch effect
derived from individual samples. Significant principal
components identified by function ElbowPlot() were
used for graph-based clustering and t-distributed sto-
chastic neighbor embedding (tSNE) visualization. Sub-
clustering of cell types of interest was done with the
same method. The identity of each cluster was charac-
terized by the expression of the canonical marker genes.

For HERV(locus)-cell count matrix, only cells that
passed through the previous filter and HERV loci that
were expressed in at least 3 cells were retained and
HERV(family)-cell count matrix was calculated by
aggregating counts of each HERV locus belonging to the
same family. The filtered HERV-cell count matrices
were also normalized by the function NormalizeData().
Comparison of HERV expression
To describe the difference of HERV expression between
GBC and normal samples, the number of active HERV
loci and total expression level of HERV loci were
calculated and displayed. We defined a HERV locus
active if it was expressed in at least 3 cells for each
sample. The statistical method used for each compari-
son was two-sided Wilcoxon rank sum test and signifi-
cance levels were indicated by these symbols: ns, not
significant; *, p ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001;
****, p ≤ 0.0001.

Differential expression analysis
The specific HERV families (adjusted p-value < 0.05 and
log2FC > 0.5) of each major cell type from GBC tissues
were selected by the function FindAllMarkers(). Differ-
entially expressed HERV families and HERV loci be-
tween tumor- and normal-derived cells were identified
using the function FindMarkers(). HERV families or
HERV loci were considered statistically significant if
their adjusted p-values by Bonferroni were less than
0.05. The contribution of significantly upregulated
HERV loci to the total increment in HERV expression in
each cell type was calculated as the ratio of the sum of
expression increments from significantly upregulated
HERV loci over the sum of expression increments from
all upregulated HERV loci (log2FC > 0). The expression
increment of a HERV locus was defined as the average
change in expression between cells from the tumor and
adjacent normal tissue.
HERV-derived enhancer prediction in epithelial cells
To search for HERV loci that may have enhancer activity
to improve the expression of adjacent differentially
expressed genes (DEGs) (genes with adjusted p-value
< 0.05), pairs between HERV loci and DEGs within
500 kb in the genome were selected as the base set.29–31

The initial screening was based on whether HERVs and
DEGs were both upregulated (gene.log2FC > 0 &
HERV.log2FC > 0) in GBC-derived epithelial cells. The
further filtering was carried out according to these 3
aspects: co-expression between HERV locus and DEG,
enhancer-gene link predicted by GeneHancer, and
DNase and histone modification signal from ENCODE
project. The co-expression was defined if there was a
positive correlation (Spearman correlation coefficient
> 0.3) between HERV and DEG expression. Gene-
Hancer interactions were downloaded from the GeneLoc
database (https://genecards.weizmann.ac.il/geneloc/
index.shtml) and ENCODE Candidate Cis-Regulatory
Elements (cCREs) data was obtained from the UCSC
Table Browser (https://genome.ucsc.edu/cgi-bin/hgTables).
Identification of malignant cells
There are two key considerations when separating ma-
lignant cells from non-malignant epithelial cells. On the
one hand, copy number variation (CNV) is thought to be
a characteristic of malignant cells and inferCNV
(https://github.com/broadinstitute/inferCNV) was used
to detect somatic chromosomal copy number alter-
ations. This algorithm was implemented for each pa-
tient and fibroblasts and endothelial were considered as
the reference. The CNV signal of each epithelial cell was
summarized as CNV score, which was the mean square
www.thelancet.com Vol 85 November, 2022
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of the CNV estimates across all genomic locations. On
the other hand, phenotypic similarities of malignant
cells will drive them to cluster together, so we per-
formed sub-clustering for epithelial cells with a high
resolution. A cell cluster composed mainly of cells
with high CNV scores was designated as malignant.
Here, subcluster 11 and 12 showing highest CNV
scores were classified as malignant cells (Supplementary
Figure S3c).
Single-cell trajectory construction
The epithelial cell trajectory was generated by Monocle
(Version 2.20.0) algorithm.32 Differentially expressed
genes selected by Seurat were used to define each cell’s
progress and “DDRTree” method was applied to reduce
data dimensionality. HERV families that changed along
with the developmental trajectory were calculated by
function differentialGeneTest().
Identification of genes and putative pathways
associated with HERV families
To investigate how dramatically upregulated HERV
families (adjusted p-value < 0.05, log2FC > 0.5) poten-
tially influence the cellular function, we performed
correlation analysis to find the genes whose expression
pattern was similar to that of HERV family (Spearman
correlation coefficient > 0.3) and gene ontology (GO)
enrichment analysis was used to identify pathways
enriched by top 100 correlated genes.
HERV-gene interaction prediction
To predict the interactions between upregulated HERV
loci and neighboring DEGs (within 500 kb) in GBC-
derived cell types, we calculated the expression correla-
tions between them. HERV locus and DEG were
thought to be associated if HERV expression was posi-
tively correlated with DEG expression (Spearman
correlation coefficient > 0.3).
Role of funders
The funders played no role in study design, data
collection, data analyses, interpretation, or writing of
report.
Results
Aberrant activation of HERVs in GBC
To investigate the cellular heterogeneity and charac-
terize the molecular signature in GBC, tumor tissues
and matched normal tissues were collected from 4 pa-
tients with gallbladder adenocarcinoma to perform
scRNA-seq (Fig. 1a, Supplementary Table S2). After
quality filtering, a total of 28,301 cells were obtained and
catalogued into 11 main cell types annotated with ca-
nonical marker genes, including epithelial cells, B cells,
www.thelancet.com Vol 85 November, 2022
T cells, natural killer (NK) or natural killer T (NKT) cells,
monocytes, macrophages, dendritic cells (DCs),
neutrophils, mast cells, fibroblasts and endothelial cells
(Fig. 1b and c, Supplementary Figure S1a and b). T cells
and epithelial cells were the most abundant cells in
both tumor and adjacent normal tissues (Fig. 1d,
Supplementary Figure S1c). Moreover, epithelial cells,
monocytes and macrophages were predominantly
enriched in tumor tissues.

We characterized the HERV expression patterns in
patients with GBC and found that samples from GBC
tissues had more active HERV loci and higher HERV
expression levels than samples from adjacent normal
tissues (Fig. 1e). The derepression of HERVs in tumor
tissues implies that HERVs may play a role in the
initiation and progression of GBC. Furthermore,
dimension reduction analyses based on HERV expres-
sion alone showed that the cells with the same cell labels
tended to cluster together, indicating that HERVs were
actively transcribed in tumors in a cell type-specific
manner (Fig. 1f). To identify which HERVs contribute
to tumor heterogeneity in terms of cellular composition,
the differential expression of all HERV families and
HERV loci was calculated in each cell type (Fig. 1g,
Supplementary File 3). Interestingly, HERVE, HERVK
and HERVH, the most reported families in cancer
research, were found to be mainly expressed in epithe-
lial cells (Supplementary Figure S1d).
HERVs as enhancers potentially regulate adjacent
DEGs
For all cell types except NK/NKT cells, HERVs were
extensively activated in tumors compared to adjacent
normal tissues and HERVs were expressed at the
highest level in epithelial cells (Fig. 2a, Supplementary
Figure S2a and b). Based on the criteria of log2FC
> 0.5 and adjusted p-value < 0.05, only 4 significantly
increased HERV loci were detected in T cells derived
from tumors compared to T cells derived from adjacent
normal tissues and only 5 HERV loci were signifi-
cantly increased in GBC-derived DCs (Supplementary
Figure S2c). Actually, for each cell type, the increment
caused by significantly elevated HERVs loci accounted
for only a small part of the total increment caused by all
HERVs (Fig. 2b), suggesting that the HERV loci that
have not passed the cut-off should also be considered by
researchers. This also reminds us to explore the
abnormal expression of HERVs in GBC at both the lo-
cus level and family level.

The exaptation of HERVs as regulatory elements
influencing the transcription of host genes has been
established by many studies.25,34 To find HERVs which
act as enhancers to drive the expression of the neigh-
boring DEGs, scRNA-seq data for epithelial cells com-
bined with other informative data were used to predict
the possible links (Fig. 2c). First, we picked out the pairs
5
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Fig. 1: Single-cell landscape and HERV expression patterns in GBC and adjacent normal tissues. a Overview of the study design. b tSNE projection of 28,301 single
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of HERVs and neighboring DEGs in which both HERV
loci and neighboring DEGs were upregulated in
epithelial cells from GBC. Then, further filtering was
performed based on the following criteria: 1) co-
www.thelancet.com Vol 85 November, 2022
expression between HERV and neighboring DEG in
GBC-derived epithelial cells; 2) predefined enhancer-
gene link by GeneHancer database which predicted
the associations between regulatory elements
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(enhancers and promoters) and target genes based on
multiple information sources35; 3) HERV region
showing enhancer-like signature supported by high
DNase and H3K27ac with low H3K4me3 signal from
ENCODE cCREs.36 As long as pairs of HERVs and
neighboring DEGs met any two of the above criteria,
HERVs were considered to be candidate enhancers
modeling the expression of the neighboring DEGs. The
predicted HERV-DEG pairs were provided in
Supplementary File 4.

We selected some HERVs predicted by our pipeline
to validate that the genomic fragments derived from
HERVs had enhancer activity using dual-luciferase re-
porter assay (Fig. 2d and e, Supplementary Table S3).
Interestingly, non-LTR sequence derived from HERV,
such as MLT1F-int-dup5-chr16 (chr16:29915600-
29916253), also showed significant enhancer activity.
The neighboring genes, such as UCA1, SEPHS2 and
DCTPP1, that are potentially regulated by HERV-
derived enhancers, have been reported to play onco-
genic roles in tumor proliferation and metastasis
(Supplementary Table S4).37–40 However, some neigh-
boring genes, TMEM219 and YPEL3, mediate anti-
tumor activities.41,42

HERVH expression is increased with the malignant
transformation of epithelial cells
GBC originates from epithelial cells, which has been
demonstrated by previous studies.43,44 To distinguish
malignant and normal epithelial cells resident in GBC
tissues, large-scale CNVs were inferred with stromal
cells as references. The epithelial cells were divided into
subclusters and the subclusters with markedly higher
CNV scores were identified as malignant cells (Fig. 3a
and b, Supplementary Figure S3a–c). The remaining
non-malignant subclusters were further annotated as
Epi_EDN1(low) and Epi_EDN1(high) according to the
expression level of EDN1 (Fig. 3a and c). The Epi_
EDN1(high) subtype, which simultaneously exhibited
high expression of a mesenchymal marker (MMP7) and
a cancer stem cell marker (CD44), was thought to
represent an intermediate cell state (ICS) between
normal and malignant cells (Supplementary Figure S3d)
and the Epi_EDN1 (low) subtype was expected to
represent normal epithelial cells. The Epi_EDN1 (high)
cells at the middle stage and Epi_EDN1 (low) cells at the
early stage in the transcriptional trajectory of malignant
distribution of epithelial cell subtypes in different tissue types estimated
epithelial cell subtypes. Statistical significance was evaluated by two-sided
cells compared to non-malignant cells (adjusted p-value < 0.05 and lo
epithelial cells inferred by Monocle2, color-coded by cell type. h Dynam
trajectory. i Heatmaps depicting expression correlation between gene and
was also shown) and relative expression of these correlating genes across e
collected immune checkpoints in epithelial cell subtypes. k Scatter plot sh
Spearman correlation coefficient and two-tailed p-value were shown.

www.thelancet.com Vol 85 November, 2022
transformation confirmed these assumptions (Fig. 3g,
Supplementary Figure S3h). Tumor and adjacent
normal tissues contained all subtypes at different frac-
tions (Fig. 3d, Supplementary Figure S3e). As expected,
malignant cells were dominantly identified in tumors,
whereas Epi_EDN1(low) cells were more enriched in
adjacent normal tissues.

We compared the total expression level of HERVs
among these subtypes and found that malignant cells
exhibited the highest level (Fig. 3e). HERVs showed a
higher signal of transcription in Epi_EDN1(high) than
in Epi_EDN1(low), indicating that the activation of
HERVs has already occurred in the epithelial cells at
intermediate state before transforming into malignant
cells. Next, we identified HERV families that showed
differential expression in these subtypes. Strikingly,
HERVH-associated elements (HERVH-int, LTR7Y)
upregulated in Epi_EDN1(high) (vs. Epi_EDN1(low))
were further elevated in malignant cells (Fig. 3f,
Supplementary Figure S3f, Supplementary File 5). At
the locus level, 37/55 of the upregulated HERV loci in
malignant cells (vs. non-malignant cells) belong to the
HERVH family (Supplementary Figure S3g,
Supplementary File 5). These results imply the func-
tional importance of HERVH in GBC formation. To
further explore the aberrant activation of HERVH, we
constructed a transcriptional trajectory with the defini-
tive malignant and non-malignant epithelial cells
(Fig. 3g, Supplementary Figure S3h). Among the
HERVs displaying transcriptional alterations with the
tumor progression, HERVH-int, LTR7Y and LTR7 of
the HERVH family showed the highest significance
(Fig. 3h, Supplementary File 6), suggesting that
HERVH may be a promising biomarker for early GBC
diagnosis. To elucidate the impacts of HERVH dere-
pression on this biological process, we identified the
genes whose expression was correlated with the
expression of these HERVH elements in malignant
cells. These genes were highly enriched for GO terms
related to protein targeting to ER, granulocyte chemo-
taxis, cell proliferation and differentiation (Fig. 3i,
Supplementary Figure S3i). It is possible that the alter-
ation of these genes’ expression was caused by the
derepression of HERVH. HERVH has been reported to
play a crucial role in pluripotency maintenance in hu-
man pluripotent stem cells25,45 and functions of HERVH
in malignant cells revealed by us are consistent with
by Ro/e (right). e Comparison of overall expression of HERVs among
Wilcoxon rank sum test. f HERV families upregulated in malignant

g2FC > 0.5). g Differentiation trajectory of malignant and normal
ic expression changes of HERVH elements along the differentiation
HERV family in malignant cells (left, Spearman correlation coefficient
pithelial cell subtypes (right). j Violin plot displaying expression of the
owing expression correlation between HHLA2 and HERVH element.
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that. In addition, we noticed that the gene UCA1
showed a strong association with HERVH-int and was
specifically increased in malignant cells (Supplementary
Figure S3j), which fit well with the fact that UCA1,
which has been found to enhance the proliferation,
migration and invasion of bladder cancer cell, is a
lncRNA generated by HERVH elements.46

HERVs are highly valued in immunotherapy, such as
immune checkpoint inhibitors, for their ability to sensi-
tize tumor cells to immunological recognition.47 Human
endogenous retrovirus-H long terminal repeat-
associating 2 (HHLA2), a recently emerging immune
checkpoint, is considered to be derived by HERVH.48

HHLA2 was thought to play a dual role in carcinogen-
esis: one for immunostimulation and another for
immunosuppression.49 We examined the transcription of
HHLA2 in epithelial cell subtypes, as well as some im-
mune checkpoints potentially expressed in tumor cells
(Fig. 3j). We found that HHLA2 expression was detect-
able in Epi_EDN1(high) (represent ICS) and malignant
cells and was higher than that of PD-L1 (CD274), which
is the most studied immune checkpoint. The weak signal
for PD-L1 transcription may explain, at least in part, the
limited efficacy of immunotherapy targeting PD-L1 in
some patients with GBC. The elevated expression level of
HHLA2 in intermediate and malignant cells and its dual
role (one for immunostimulation and another for
immunosuppression) in carcinogenesis suggest that
HHLA2 may serve as a favorable candidate for GBC
treatment. Further, we found an expressional correlation
of HHLA2 and HERVH elements (Fig. 3k), implying that
combining DNA demethylating agents that aim to induce
HERVH activation with targeting HHLA2 therapy may
be a promising therapeutic strategy.
Proliferative T cells show abnormally high
expression of HERVs
T cells display heterogeneity in cellular composition and
functional states in the TME. Here, T cells were further
partitioned into 7 distinct subpopulations annotated by
marker genes, including naïve CD4+ T, CD4+ T helper
(CD4+ Th), regulatory/exhausted CD4+ T, CD8+ T
GZMK, CD8+ T GZMB, proliferative T and CD4−/
CD8− T cells (Fig. 4a and b, Supplementary Figure S4a
and b). Compared with the adjacent normal tissues,
tumor tissues showed reduced proportions of naïve
CD4+ T and CD4−/CD8− T cells and increased pro-
portions of proliferative T and regulatory/exhausted
CD4+ T cells (Fig. 4c, Supplementary Figure S4c). More
regulatory/exhausted CD4+ T cells accumulated in tu-
mor tissues, indicating a change from immune activa-
tion to immune suppression during tumor progression.
families upregulated in GBC-derived T cell subtypes (adjusted p-value < 0
between gene and HERV family in tumor-derived proliferative T cells (
expression of these correlating genes in all proliferative T cells (right).

www.thelancet.com Vol 85 November, 2022
HERVs were expressed at different levels in different
subtypes of T cells. When we compared cells from tu-
mor tissues with those from adjacent normal tissues,
significant HERV transcription changes were observed
in all T cell subtypes except naïve CD4+ T and CD4+ Th
cells (Fig. 4d). Proliferative T cells were characterized by
the prominent expression levels of HERVs in our data.
HERVH-associated elements (LTR7Y and HERVH-int),
LTR13A, MER41B, LTR12C and MLT1D were upregu-
lated in proliferative T cells from tumor tissues (Fig. 4e).
The top correlated genes with upregulated HERVH
were associated with T cell activation (Fig. 4f,
Supplementary Figure S4d). Strikingly, we observed that
many genes involved in neutrophil behaviors, such as
neutrophil activation and degranulation, were tran-
scriptionally increased in tumor-derived proliferative T
cells and displayed association with HERVH, MER41B
and LTR12C. The association between neutrophil ac-
tivity and one HERVK locus has been reported in pe-
ripheral blood mononuclear cells (PBMCs) from elderly
people.50 Here, we hypothesized that the neutrophil
state is regulated by proliferative T cells in GBC and that
HERV may play an important role in this process.

Besides, high expression of HERVH-int in regulato-
ry/exhausted CD4+ T cells, MER65-int in CD8+ T
GZMB and LTR7Y and Harlequin-int in CD4−/CD8− T
cells was also detected in tumor tissues (Fig. 4e).
The association of IgG genes with the MLT1C locus
in plasma B cells
B cells that infiltrate the TME play a multifaceted role in
modulating the tumor immunity.51 Three major B cell
subtypes, including follicular B cells (MS4A1), plasma B
cells (IGHG1) and granzyme B-secreting B cells
(GrB+ B cells, GZMB), were identified from our data
based on the signature genes (Fig. 5a and b,
Supplementary Figure S5a and b). The composition of
these B cell subtypes was distinct between GBC and
normal samples (Fig. 5c, Supplementary Figure S5c).
The relative proportion of plasma B cells was observed
to be increased in GBC, whereas follicular B cells were
enriched in normal samples and comprised the majority
of B cells in the adjacent normal tissues.

Direct comparison of the expression level of HERVs
in GBC and normal tissues for each B cell subtype
revealed that tumor-derived follicular B and plasma B
cells exhibited the increased abundance of HERV tran-
scription (Fig. 5d). Compared with non-tumor-derived
follicular B cell, cells in tumors showed higher expres-
sion levels of HERVH-int and MSTC (Fig. 5e). Plasma B
cells, which are terminally differentiated B cells, can
secrete antibodies that are an essential component of
.05 and log2FC > 0.5). f Heatmaps depicting expression correlation
left, Spearman correlation coefficient was also shown) and relative
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Fig. 5: IgG genes are associated with the neighboring MLT1C locus in plasma B cells. a tSNE projection of B cells, color-coded by cell type. b
Violin plot displaying expression of canonical marker genes for B cell subtypes. c Relative proportion of B cell subtypes in different tissue types
(left). Dot plot showing the distribution of B cell subtypes in different tissue types estimated by Ro/e (right). d Comparison of overall expression
of HERVs between GBC and normal tissue cells for each B cell subtype. Statistical significance was evaluated by two-sided Wilcoxon rank sum
test. e HERV families upregulated in GBC-derived Follicular B cells (adjusted p-value < 0.05 and log2FC > 0.5). f Scatter plot showing expression
correlation between the indicated gene and HERV locus. Spearman correlation coefficient and two-tailed p-value were shown. g Dot plot
displaying expression level of the MLT1C locus in plasma B cells. h Violin plot displaying expression of IgG genes in plasma B cells.
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humoral immunity.52 Immunoglobulin G (IgG), a type
of antibody, is produced and released by plasma B cells.
Through our analysis, we discovered a transcriptional
association between one MLT1C locus (MLT1C-dup586-
chr14, chr14:105750174-105750614) and neighboring
IgG genes (IGHG1, IGHG4 and IGHG3) (Fig. 5f). The
expression association and upregulation of both them
led us to speculate that MLT1C-dup586-chr14 may be a
regulator that can promote the expression of these
neighboring IgG genes (Fig. 5g and h).
www.thelancet.com Vol 85 November, 2022
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Overexpression of HERVH in all myeloid cell types
Emerging evidence emphasizes the key role of myeloid
cells in modulating cancer progression.53 In our study,
the myeloid cells were separated into monocytes, mac-
rophages, DCs and neutrophils (Fig. 1b). DCs were
further categorized into conventional DC (cDC1 and
cDC2), monocyte-derived DC (mo–DC) and mature DC
based on the prominent expression markers (Fig. 6a and
b, Supplementary Figure S6a and b). For both tumor
and adjacent tissues, cDC2 and mo-DC accounted for
the majority of DCs. Notably, mo-DCs and mature DCs
were enriched in GBC tissues, while cDC1s and cDC2s
were depleted (Fig. 6c, Supplementary Figure S6c).

HERV expression patterns were different among DC
subtypes (Fig. 6d). cDC1s and mo-DCs in GBC showed
significant elevations in HERV expression, but no sig-
nificant differences were detected in cDC2s and mature
DCs. Mo-DCs are believed to arise from monocytes in
the context of inflammation or infection and this sub-
population can induce T cell activation in various tumor
models.54,55 We found that LTR7Y were overexpressed in
mo-DCs derived from GBC tissues (Fig. 6e). Genes
presenting similar expression patterns with LTR7Y in
mo-DCs were mainly implicated in antiviral response and
T cell activation (Fig. 6f, Supplementary Figure S6d),
suggesting that the enhancement of mo-DCs’ antiviral
and inflammatory abilities may be regulated by LTR7Y.
What’s more, LTR7Y exhibited strong association with
gene MMP7 (Fig. 6g), which functions as an oncogenic
factor to mediate occurrence and progression of several
types of cancers.56 This association was also seen in ma-
lignant cells, proliferative T cells and macrophages,
which further supports the hypothesis that elevated
MMP7 level in these cells may be associated with the
activation of LTR7Y (Supplementary Figure S6e).

The significant increases in expression of HERVH
elements were also observed in other myeloid cells,
monocytes (HERVH-int, LTR7C and LTR7), macro-
phages (HERVH-int and LTR7Y) and neutrophils
(LTR7C) (Fig. 6h). Genes associated with HERVH ele-
ments in tumor-derived monocytes and macrophages
were mostly involved in immune cell activation and
differentiation (Supplementary Figure S6d). These bio-
logical processes play key roles in TME. Here, we
speculated that these profound perturbations occurred
in myeloid cells might be related to the abnormal tran-
scription of HERVH elements. Taken together, we
discovered that HERVH elements were upregulated in
almost all myeloid cell types and they may have similar
impacts on myeloid cell behavior and function.

MER65-int is activated in fibroblasts and has an
expressional correlation with ECM genes
Cancer-associated fibroblasts (CAFs) are one of the most
dominant components of the tumor stroma and have
heterogeneous phenotypes and functions. A large
number of studies support that CAFs can promote
www.thelancet.com Vol 85 November, 2022
tumor migration and invasion through various mecha-
nisms, such as remodelling the extracellular matrix
(ECM) and modulating the tumor immune system.57

Sub-clustering of fibroblasts revealed 2 main distinct
subtypes, including inflammatory CAFs (iCAFs;
FDGFRA) and myo-cancer-associated fibroblasts (myo-
CAFs; RGS5) (Fig. 7a and b, Supplementary Figure S7a
and b). In both GBC tissues and adjacent normal tis-
sues, iCAFs were the predominant cell type. Compared
to that in normal tissues, the proportion of myoCAFs in
GBC tissues was increased, whereas the level of iCAFs
was slightly decreased (Fig. 7c, Supplementary
Figure S7c).

Regarding the expression level of HERVs, both
iCAFs and myoCAFs in tumors presented significant
elevation (Fig. 7d). HERVs that were abnormally acti-
vated in GBC were screened (Fig. 7e, Supplementary
File 5). For iCAFs, MER65-int, MER4D0 and MER4-
int are the top upregulated HERVs. At the locus level,
MER65-int-dup5-chr19 (chr19:41729515-41730138) was
associated with its neighboring gene CEACAM5 in
iCAFs (Fig. 7f). CEACAM5, encoding carcinoembryonic
antigen (CEA), has been used as a tumor biomarker in
clinical detection.58 After checking their locations, we
found that part of the MER65-int-dup5-chr19 sequence
serves as the exon of CEACAM5. Besides, this associa-
tion was also observed in GBC-derived macrophages
(Fig. 6i). Whether the transcription of this MER65-int
element induces the high expression of CEACAM5 in
iCAFs and macrophages from GBC tissues deserves
further investigation. For myoCAFs, MER65-int specif-
ically activated in GBC-derived cells exhibited an asso-
ciation with genes related to ECM organization (Fig. 7g,
Supplementary Figure S7d). This suggests the possi-
bility that active MER65-int may be involved in dysre-
gulation of ECM genes.

In endothelial cells from GBC tissues, MER50,
LTR7C, LTR6A and MLT1A0 were upregulated
(Fig. 7h). However, how these HERV families affect
cellular functions is not clear.
Discussion
GBC might not be detected until it’s advanced and
catching the cancer early will benefit patient survival.
The prognosis of GBC is poor and only some patients
exhibited desired outcome. Therefore, the pursuit for
early diagnostic biomarkers and more effective treat-
ment strategies for GBC is ongoing. HERVs have
received a lot of attention because of their strong asso-
ciation with cancer development and immunotherapy.
In this study, we determined the cellular composition
and presented a comprehensive single-cell transcrip-
tional profile of HERVs for GBC tissues, highlighting
that HERVs were transcribed in a cell type-specific
manner. We found that HERVs, as enhancers, have
the potential to alter host gene expression and further
13
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Fig. 7: The activation of MER65-int in fibroblasts. a tSNE projection of fibroblasts, color-coded by cell type. b Violin plot displaying expression of canonical marker genes
for fibroblast subtypes. c Relative proportion of fibroblast subtypes in different tissue types (left). Dot plot showing the distribution of fibroblast subtypes in different
tissue types estimated by Ro/e (right). d Comparison of overall expression of HERVs between GBC and normal tissue cells for each fibroblast subtype. Statistical sig-
nificance was evaluated by two-sided Wilcoxon rank sum test. e HERV families upregulated in GBC-derived fibroblast subtypes (adjusted p-value < 0.05 and log2FC > 0.5).
f Scatter plot showing expression correlation between the indicated gene and HERV locus (top). Spearman correlation coefficient and two-tailed p-value were shown.
Violin plot displaying expression of the indicated gene in iCAFs (bottom). g Heatmaps depicting expression correlation between gene and HERV family in tumor-derived
myoCAFs (left, Spearman correlation coefficient was also shown) and relative expression of these correlating genes in all myoCAFs (right). h HERV families upregulated in
GBC-derived endothelial cells (adjusted p-value < 0.05 and log2FC > 0.5).
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change the characteristics of tumors. We also suggested
that HERVH may be a candidate for early GBC diag-
nosis and targeting HHLA2 might be an appealing
www.thelancet.com Vol 85 November, 2022
strategy for GBC treatment. Furthermore, for each cell
type, we explored which biological functions are poten-
tially affected by various HERV families. Our study
15
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could provide a framework for future discoveries of
functional HERVs as molecular and cellular therapeutic
targets for GBC.

Here, dual-luciferase reporter assay was applied to
demonstrate that some HERVs can act as enhancers.
HERVs also work as alternative promoters, resulting in
transcriptional initiation of host genes, including
cancer-related genes.59 In addition to acting as tran-
scriptional regulators, HERV generate noncoding RNA
(ncRNA) or protein product to modulate the gene reg-
ulatory network, as a perpetrator or protector in carci-
nogenesis.5,60 These functions were not explained in our
study, but deserve to be further explored. Within each
cell population, we identified biological functions that
may be biased by the aberrantly expressed HERVs, but
whether and by which mechanisms distinct HERVs
affect cellular behavior remain to be investigated.

The widespread reactivation of HERVs has been
linked to some malignancies, suggesting their potential
to help cancer screen.61 In our study, the expression of
HERVH was progressively elevated with malignant
transformation of epithelial cells and displayed the
highest significance compared to other HERV families,
leading us to speculate that HERVH may be an early
indicator of GBC. The role of HERVH as biomarker has
been discussed in several cancers, including colorectal
carcinoma, prostate cancer and lung cancer.62–64 Further
experiments, at the nucleic acid or protein level, are
needed to verify whether HERVH is an effective diag-
nostic biomarker. HHLA2, a newly discovered immune
checkpoint belonging to B7 family, is thought to be
derived by HERVH.48 The expression of HHLA2 was
detected in a subset of intermediate and malignant cells,
which is higher than that of some hot immune check-
points such as PD-L1. Considering the fact that there are
substantial differences in expression of immune
checkpoints among diverse cancers and even in the
same type of cancer, the expression profile of immune
checkpoints varies from patient to patient, although the
expression of HHLA2 was modest in our data, it might
be an ideal immunotherapeutic target for a specific
group of GBC patients. The family diversity of HERVs
contributes to their functional complexity in cells. The
discovery of the association of HHLA2 with HERVH
indicates that epigenetic agents specially tailored to
target HERVH should be a research priority in com-
bined epigenetic and immune therapy.

The fact that HERVs are present in multiple copies
within the human genome poses a challenge for quan-
tification.65 A common strategy used in routine analysis is
to keep only reads that uniquely map to the HERV loci.
The advantage of this approach is that the expressional
signal for each locus can be obtained, but the disadvan-
tage is that it tends to underestimate the transcript level
of HERVs, especially evolutionarily young HERVs.
Another approach, using the “multi-mapper” strategy,
largely preserves the HERV-derived reads, but the
transcriptional information of each HERV locus is
lost.66,67 A number of computational tools, such as
RepEnrich, TEtranscripts, REdiscoverTE and so on, are
produced to quantify transposable element (TE, HERV
belongs to TE) expression for bulk RNA-seq data and the
best choice of the strategy should be guided by the spe-
cific biological question.65,68–70 Nevertheless, current re-
sources available for TE quantification at single-cell
resolution are relatively limited, although scRNA-seq
technology opens the possibility to investigate TE tran-
scription variability among different cell populations,
factors driving such diversity and cellular phenotypes
influenced by TE derepression.24 Pioneering pipelines,
including scTE71 and a framework with assembled tran-
scripts,72 have been generated to report the TE expression
at single-cell resolution, but they both have certain limi-
tations to application, namely counting only at the family
level and counting only assembled transcripts respec-
tively. In this study, we considered using uniquely map-
ping reads to achieve TE quantification to ensure
mapping accuracy and obtain locus information. As the
biological significance of HERVs is becoming under-
stood, we believe that there will be a rapid advance in
scRNA-seq computational pipelines tailored for HERV to
be compatible with a wide variety of scRNA-seq protocols.

In summary, our work highlights the functional role
of HERVs in GBC and provides a new resource for
cancer diagnosis and management.
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