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Tiger sharks support the characterization
of the world’s largest seagrass ecosystem
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Seagrass conservation is critical for mitigating climate change due to the large
stocks of carbon they sequester in the seafloor. However, effective conserva-
tion and its potential to provide nature-based solutions to climate change is
hindered by major uncertainties regarding seagrass extent and distribution.
Here, we describe the characterization of the world’s largest seagrass eco-
system, located in The Bahamas. We integrate existing spatial estimates with
an updated empirical remote sensing product and perform extensive ground-
truthing of seafloor with 2,542 diver surveys across remote sensing tiles. We
also leverage seafloor assessments and movement data obtained from
instrument-equipped tiger sharks, which have strong fidelity to seagrass eco-
systems, to augment and further validate predictions. We report a consensus
area of at least 66,000 km? and up to 92,000 km? of seagrass habitat across
The Bahamas Banks. Sediment core analysis of stored organic carbon further
confirmed the global relevance of the blue carbon stock in this ecosystem.
Data from tiger sharks proved important in supporting mapping and ground-
truthing remote sensing estimates. This work provides evidence of major
knowledge gaps in the ocean ecosystem, the benefits in partnering with
marine animals to address these gaps, and underscores support for rapid
protection of oceanic carbon sinks.

Seagrass ecosystems play an increasingly recognized role in sup- contributing an estimated 17% of the total organic carbon annually
porting biological productivity’, carbon sequestration’’, ocean buried in marine sediments®. Rapid seagrass losses over previous
biodiversity* and fishery resources’. Seagrasses trap and perma- decades®” have reduced the sequestering capacity of seagrass eco-
nently store massive amounts of carbon in the sediment, systems, while also releasing large amounts of carbon to the
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atmosphere®. Hence, the conservation of seagrass ecosystems is of
critical global importance to manage greenhouse gas emissions while
safeguarding the many threatened species and seafood resources
supported by seagrass habitat’.

Conserving seagrass ecosystems requires, at a minimum, reliable
knowledge of their distribution and extent. Yet, they remain poorly
mapped across many regions, such that current uncertainty sur-
rounding estimates of global seagrass extent ranges 10-fold', from a
recently verified global area 0f 160,387 km?'" to a predicted area, using
niche models delineating suitable space, of 1,600,000 km?'>. The
global area of seagrass is the main driver of uncertainty on their global
carbon sequestration capacity and, thus, their value as blue carbon
resources*'®. This knowledge gap is a major reason why seagrass
ecosystems remain underrepresented in marine protected areas”, and
therefore, highlighting a clear a focus for the UN Decade of Ocean
Science.

The main roadblock to improving the estimation of seagrass area
stems from the difficulties associated with resolving them from remote
sensing products, because of the known optical overlap between
seagrass and overlaying phytoplankton and macroalgae, and in
lower-latitude areas, backscatter created from carbonate sediments”.
Dominant seagrass species, such as Halophila sp., typically produce a
sparse cover, whereby the canopy only protrudes one or several cen-
timeters above the sediment as it is often partially covered by oolitic
sand'. As a result, small seagrass ecosystems are still being discovered,
and it is likely that very large ones remain unmapped. For instance, the
largest known seagrass ecosystem occupies 40,000 km? in the lagoon
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between the Australian mainland and the Great Barrier Reef and is
dominated by small Halophila meadows. This seagrass ecosystem was
only discovered by SCUBA divers and towed cameras in 2009V,
despite the Great Barrier Reef being a world-renowned national park
since 1975 and arguably one of the most intensely studied marine
ecosystems in the world.

The Bahama Banks are large (>135,000 km?), expansive areas
defined by widespread carbonate sediments supporting high biodi-
versity of large, highly mobile consumers (sharks, turtles, dolphins,
manatees). They are composed of two separated large banks, the Great
Bahama and Little Bahama Banks, with a mean depth <10 m and steep
slopes at their boundaries (Fig. 1) and are overlaid by some of the
clearest waters in the ocean. The substrate, carbonate sand, warm
temperature regime, and ample light reaching to the seafloor are sui-
table conditions for seagrass, with the suitable plateau area of the
banks estimated here at 112,537 km?, thereby encompassing most
(83%) of the Bahama Banks. Hence, the Bahama Banks may well host
the largest seagrass ecosystem in the world. Yet, the current area of
seagrass in the Bahama Banks range 30-fold, from a documented area
of 2250 km*", -8500 km? predicted from a global seagrass niche
model?, and ~40,000 km* to 65,463 km? predicted from remote
sensing'®?°, These major discrepancies, likely driven by issues related
to lacking or limited ground-truthing, are not necessarily surprising,
considering the significant logistical challenges and massive financial
costs of using human divers to take photos over large marine areas,
resulting in existing ground-truthing limited to a specific section of the
Bahamas Banks comprising less than 5% of the total area”. However,
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Fig. 1| Estimates, based on remote sensing, of seagrass cover on The Bahama
Banks. Data from existing assessments'®2° and a new assessment derived here
(2022; bottom row). Gray regions (NA) indicate areas where no estimates were
derived from each remote sensing source (panels in bottom row). Top panels
represent aggregated estimates of seagrass coverage from the three sources
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through an ensemble votes system (see Supplementary Tables 1 and 2 for details)
on an open map (left; black indicates land) and satellite map (right). Yellow dots
represent empirical sediment cores which were collected and analyzed for quan-
tification of organic carbon stock.
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Table 1| Sediment C,,4 stocks in Bahamas seagrass ecosystems

Core depth (cm) No. cores Mean + 95% CI (Mg C,gha™) SD (Mg Corgha™) SE (Mg Corg ha™) Area (km?) Corg stock (Tg)
0-30 21 20.5+2.1 4.9 11 66,990 0.14-0.19
0-100 21 68.5+6.9 16.2 3.5 -92,524 0.46-0.63

Source data are provided as a Source Data file.

the resulting uncertainty in spatial estimates significantly limits our
understanding of the global distribution and conservation needs of
this potentially globally significant blue carbon ecosystem.

Recent innovations in the development and application of animal-
borne camera tags offer a unique opportunity for biologically relevant
ground truthing and classification of habitat that extends well beyond
human capacity”*. This is because highly mobile animals can move
great distances over short periods of time and are not limited by
human-based logistical constraints (e.g., boat and bottom time and
range, personnel, sea states, survey depth). Indeed, green turtles have
been shown to guide the discovery of seagrass ecosystems?. Likewise,
the suite of highly mobile fishes utilizing shallow seagrass habitats
around the world could serve as critical allies in guiding the discovery
of novel seagrass ecosystems, and, more importantly, aiding in
ground-truthing established approaches for estimating seagrass spa-
tial extent, such as remote sensing images obtained from Earth-
orbiting satellites. Tiger sharks are wide-ranging, apex predators that
exhibit high consistent associations with seagrass ecosystems across
the globe. All life stages of this species are found widely throughout
the expansive marine ecosystem of The Bahamas®, with large adults
migrating long distances over the banks and forming concentrated
aggregations at seasonal hotspots. Previous monitoring efforts of tiger
sharks in The Bahamas demonstrated strong habitat selection for
seagrass habitats®. Therefore, tiger sharks may serve as useful
research tools for guiding and refining the mapping of seagrass
throughout its range.

Here we utilized instrument-equipped tiger sharks (Galeocerdo
cuvier) to collect seafloor imagery and validate the characterization of
expansive seagrass ecosystems on the Bahama Banks. Combined with
additional human observations, we expand existing ground-truthing
efforts for seagrass mapping by 10-fold to generate a relevant estimate
of seagrass area from Landsat 8 images. To buffer against the limita-
tions of individual remote sensing estimates and methods, we inte-
grated our empirical estimate with previous data on seagrass coverage
on the banks to yield a composite, consensus area. Using this infor-
mation, we demonstrate that The Bahama Banks is the world’s largest
seagrass ecosystem, with an estimated area of at least 66,900 km?
(Fig. 1). This extends the documented seagrass area by 41% relative to
current estimates, reaching 227,287 km?, underscoring the importance
of this region as a globally relevant blue carbon ecosystem (Table 1).

Results

We conducted 2542 individual surveys assessing the presence of sea-
grass across the Bahama Banks, where 42% contained dense seagrass
meadows, 36% sparse seagrass cover, and 22% did not contain seagrass
(Supplementary Fig. 1). Dense meadows were dominated by Thalassia
testudinum, the largest and climax species, with Halodule wrightii and
Syringodium filiforme in the understory, while sparse meadows con-
sisted of Halophila decipiens and Halodule wrightii scattered around
carbonate sediment (Fig. 2). Empirical explorations of the organic car-
bon stock of these seagrass ecosystems, based on extensive sediment
coring on both Bahama Banks ecosystems containing monospecific
meadows of either T. testudinum or S. filiforme (15 sites comprising
21 sediment cores), delivered the following average total organic car-
bon contents: T. testudinum (n=17 cores/145 sliced samples) =0.006
+0.002 g Corg cm™ (mean = SD), range = 0.001-0.014 cm; S. filiforme
(n=4 cores/32 sliced samples)=0.008+0.002g Cozcm™ (mean =
SD), range =0.005-0.014 g Cor, cm™>; both species combined (n=21

Fig. 2 | Seagrass meadows on The Bahamas Banks, as surveyed by humans and
tiger sharks. A, B Dense meadow of Thalassia testudinum photographed in the
southern Great Bahama Bank showing natural erosion scarp exposing the -1 meter
thick root rhizosphere (both images credit: Cristina Mittermeier). C Mature tiger
shark swimming over Syringodium filiforme on the Little Bahama Bank (image
credit: Austin Gallagher). D POV from camera-mounted tiger shark swimming over
dense area of Thalassia testudinum on the northern Great Bahama Bank (image
credit: Tiger Shark from study).

cores/177 sliced samples)=0.007+0.002g Cogcm™ (meanzSD),
range = 0.001-0.014 g Corg cm™.

We also tagged and tracked individual, free-swimming tiger
sharks on the Great Bahama Bank and Little Bahama Bank (n=15
total), with a combination of archival pop-up satellite tags to estimate
geolocation and vertical habitat preferences (n=8 tiger sharks
equipped with satellite tags only), as well as biologging camera
packages to confirm benthic habitat type (n =7 tiger sharks equipped
with camera tags only), including the first-ever deployment of a 360-
degree camera borne by a marine animal®. Satellite-tagged tiger
sharks traversed 4177 km on both regions of The Bahama Banks, up
to 11.3 km/day, with a total of 20.6 km surveyed by sharks fitted with
cameras (Fig. 3). Individual tiger shark home ranges displayed their
expansive yet concentrated spatial coverage of seagrass habitat on
both bank systems, as highlighted by the 95 and 50% KUDs, respec-
tively (Supplementary Fig. 2). The average (+ SE) cover of seagrass
retrieved from the videos on the shark-mounted cameras was
71.5 + 8.9%, which confirmed the strong fidelity of tiger sharks in the
Bahama Banks to seagrass ecosystems®. Therefore, it could be
assumed that the eight tagged animals not equipped with cameras
spent over 70% of their time over seagrass ecosystems when they
swam across shallow banks. Importantly, tiger sharks were able to
scout deeper areas than those surveyed by humans (mean depth of
surveys 5.4+0.1m and 16.2+0.1m for human and tiger sharks,
respectively; Supplementary Figs. 4 and 5), with tiger sharks
extending well below the depth limit of seagrass (maximum depth
reached by tiger sharks 608 m) and further into the interior of the
vast Great Bahama Bank, covering areas that were not logistically
possible for human access. The greater depth reach of tiger sharks is
relevant as the very clear waters on the Bahama Banks allow seagrass
to grow well below normal depths accessible to SCUBA divers, with
the deepest record for seagrass growth in the world reported for the
neighboring Dry Tortugas (90 m)®.
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Fig. 3 | Tiger shark survey coverage on The Bahama Banks. Tracking locations
from camera tags (left); Votes indicates the percentage of votes from seagrass

estimates (see Supplementary Tables 1 and 2 for details) from the release location
for the camera tag, and Time indicates the percentage of time the camera-tagged
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shark spent over seagrass. Right, locations of satellite-tagged shark tracks in
proximity to the Bahama Bank, with insets highlighting highly tortuous movements
in areas of dense seagrass coverage. Tag ID corresponds to individual tiger sharks.

Our prediction of the presence of seagrass across the Bahama
Banks based on ground-truthed, Landsat 8 imagery generated a kernel
of likelihood for seagrass presence that predicted 25,961 km? of sea-
grass area. This estimate is conservative since we could not obtain
cloud-free Landsat images in portions of the Little and Great Bahama
Banks, including the entire Cay Sal Bank (Fig. 1). By integrating our
prediction with existing estimates'®', as well as the predicted seagrass
area extracted from the recently released Allen Coral Atlas® through
an ensemble weighted voting system (Supplementary Tables 1 and 2),
we determined that 1+ vote from all sources estimates seagrass cov-
erage of 92,524 km? 2+ votes 55,348 km?, and 3+ votes 23,486 km*
(Fig. 1). However, each estimate source spanned different areas of the
banks, limiting the number of potential votes in certain regions (Fig. 1).
Examining the percentage of votes from the total available in each
location, >25% of votes indicate a conservative seagrass coverage of
66,990 km?, with an upper estimate of 92,524 km? (area =1 vote; Sup-
plementary Table 2). Post hoc analysis of model accuracy was per-
formed, using an additional 126,696 seafloor images obtained via diver
tows, spanning a large area of ~67 km in The Bahamas. We compared
these ground-truth classifications across the predicted classifications
over 120 cells from the ensemble model and found an 80% match for
habitat predicted to be “seagrass” (Supplementary Fig. 3), confirming
model accuracy and offering strong empirical support to our com-
bined model integrating decades of data.

With a large range in potential seagrass values generated from
each estimate source, greater insights may be gained from examining
consistency with ground-truthed data. In human-measured data, >75%
of sampled locations with >25% of seagrass votes contained seagrass
(Supplementary Fig. 1 and Supplementary Tables 1 and 2). As another
independent reference data source, camera-tagged tiger sharks spent
an average of 72% of time post-release over seagrasses. In general,
these areas were often predicted to contain seagrass (Fig. 3). However,
in two cases there were zero votes for seagrass coverage, but sharks

spent >70% of their time over seagrass, and another where there was
one vote (17%) for seagrass coverage, and the shark spent 69% of its
time over seagrass (Fig. 2). Hence, tiger shark habitat use signaled a
consistent underestimation of seagrass area by all existing remote
sensing products.

Discussion

Our assessment of the extent of the Bahamas seagrass ecosystem
builds on several data streams, including independent remote sen-
sing products, existing and empirical, and ground-truthing sup-
ported by human observers and tiger sharks. There are two elements
of innovation in our study enabling the assessment of The Bahamas
seagrass ecosystem. First, the use of an ensemble voting approach
allowed us to integrate estimates derived from different data
streams. The second, and most innovative element, is the use of tiger
sharks to extend the ground-truthing supporting the assessments.
Tiger sharks, the largest apex predator in tropical seas, collected
innovative data on benthic habitat in our study, serving as a unique
survey partner and tool to assess seagrass extent*** and habitat
configuration (sparse seagrass vs. dense seagrass). The data they
derived significantly extended the scale of groundtruthing in our
study area, therefore helping to overcome the challenges around
ground truthing which thus far had prevented the robust assessment
of the extent of the seagrass ecosystem across the Bahamas Banks.
Despite the fact that we provided here the largest volume of human-
based survey data for any seagrass ecosystem in the ocean, ground-
truthing supported by human observers remained confined to a
relatively small area and narrow depth range. Pooling tiger shark and
human efforts, we assembled one of the largest and most innovative
seagrass survey efforts undertaken to date, with robust ground
truthing supporting the designation of The Bahamas Bank as the
largest seagrass ecosystem on Earth. These findings have broad
implications for estimates of global carbon storage, while
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highlighting the role of highly mobile animals as powerful surveyors
of expansive ocean habitats.

The innovative use of tiger sharks to characterize benthic com-
munities allowed our survey to categorize areas of habitat beyond
traditional capabilities of human-based survey techniques. We found
that tiger sharks surveyed a much greater depth range of seagrasses
compared to humans (Supplementary Figs. 4 and 5) and covered
transects averaging extrapolated distances of 51.6 km per day, com-
pared to a few hundred meters covered by humans per day. Tiger
sharks also demonstrated that remote sensing underestimated the
presence of sparse seagrass areas. This was expected because much of
the banks are covered by very sparse Halophila decipiens and Halodule
wrightii, as detected from camera-equipped tiger sharks (Supple-
mentary Movie 1), which are partially covered by carbonate particles
and remain remarkably difficult to retrieve from remotely sensed
ocean color. Further, evidence from shark and human-based surveys
suggest that the actual seagrass coverage is likely toward the higher
end of our estimates, suggesting that 66,990 km? (>25% of votes) is a
conservative estimate, with an upper estimate of 92,524 km? yet
enough to declare with confidence the Bahamas Banks the largest
seagrass ecosystem on Earth. We infer that <30% of this area is covered
by denser meadows of Thalassia testidinum and Syringodium filiforme,
while most of the area is covered by the sparse H. decipiens and H.
wrightii, much of which was previously undetected from remote sen-
sing efforts alone. The research effort required to intercept and tag
free-roaming tiger sharks—26 h of sampling over 10 days—was also
considerably lower than the extensive time needed for human divers
to perform photogrammetry transects (250 h over 30 days), for a
much smaller surveyed area, demonstrating the time and cost effi-
ciency of tiger shark surveying relative to humans. Lastly, tiger sharks
proved to be better surveyors than humans, covering more linear
distance per day, with the potential to cover critical seagrass areas
which overlap with their home range.

The vast seagrass ecosystem of the Bahamas Banks may play a
major role as a blue carbon resource (Fig. 1). Our preliminary findings
from sediment coring throughout the Bahamas banks suggest carbon
stocks comparable to other tropical seagrass ecosystems
(0.007£0.002g Cogcm™ for Bahamas sediments compared to
0.0067 g Corg cm™ for tropical seagrass sediments, recalculated from
ref. 26). Extrapolated down to 1m soil depth over the likely
(66,990 km?) and maximum (92,524 km?) area, we estimate the Baha-
mas seagrass ecosystem contains 0.46 to 0.63 Pg Cog. This estimate
represents a first order estimate of the carbon stock that may be
associated with the Bahamas seagrass ecosystem. Further research is
needed to better quantify and qualify this, but, relative to global sea-
grass carbon stock estimates”, our results indicate that the Bahamas
seagrass may contain 19.2-26.3% of the carbon buried in seagrass
sediments globally. Because the carbonate in the banks is ancient,
seagrass dissolution of sediment carbon from acids and CO, released
by the roots and microbial respiration could potentially release
important amounts of alkalinity?**’. Carbonate dissolution rates, and
thus alkalinity release rates, have been reported to increase linearly
with seagrass density in the Bahama Banks, at average rates of
7.9 mmol Cm™2 day™*, equivalent to 2.32 Tg C per year over the
66,990 km? of seagrass in the Bahama Banks. Hence, carbonate dis-
solution in these seagrass ecosystems may greatly amplify the carbon
removal potential of the Bahama Banks through alkalinity enhance-
ment. The consensus estimates of 57,337 km? of seagrass in the
Bahama Banks is, however, conservative, as we note that there is a
likelihood that the area may be as large as 92,524 km?* (1+ [<10%]) votes
from available estimates). Progress to reduce uncertainty is unlikely to
come from remote sensing products alone unsupported by significant
parallel ground-truthing efforts, and would require a scaling-up of the
animal-borne assessments used here, expanding the tagging program
to sea turtles and sharks to discover putative seagrass habitat, as well

as using long-range autonomous unmanned vehicles, as the area is too
vast to be surveyed by divers.

Remote sensing of seagrass is a challenging endeavor; the sensor
we used for our own estimate was selected for its robust temporal
resolution forcing us to trade-off with a slightly lower spatial resolution,
balanced by also using the estimates derived from the Allen Coral Atlas
which employs the highest precision (pixel size 3.125m) yet used to
resolve seagrass from space. Further to this point, we also realize that
the time periods covered by the integration of remote sensing estimates
could result in changes in seagrass position or density, which may
underline some of the differences between estimates derived using
remote sensing images acquired in different years. However, Caribbean
seagrass ecosystems are tolerant of hurricanes and the extensive car-
bonate bank habitat where they reside functions to dissipate and dis-
tribute wave energy from storms®. As a result, surveys have suggested
that seagrasses in The Bahamas are relatively stable, seeing negligible
changes in the last 10-20 years. Indeed, provided the vast extent of The
Bahamas seagrass ecosystem resolved here (57,337-92,524 km?), and
the challenges to accurately resolve the extent and condition of
deeper seagrass components through remote sensing or human sur-
veys, we contend that instrumented tiger sharks remain an essential
approach to monitoring this vast ecosystem.

Large, highly mobile marine megafauna should be viewed as
important collaborators in future research and conservation efforts
surrounding the discovery and protection of key blue carbon hotspots
in the ocean, including monitoring the dynamics of The Bahamas
seagrass ecosystem. Through critical ground-truthing of seagrass
extent by camera-equipped tiger sharks, we were able to designate The
Bahama Banks as the largest seagrass ecosystem on the planet. This
region is likely to be a globally relevant sink for atmospheric carbon,
and likely plays a key role in protecting the shallow carbonate bank, the
islands, and the beaches (that support much of Bahamas tourism
income) from erosion under the increasing cyclones impacting the
region. The Bahama Banks seagrass ecosystem also supports impor-
tant fisheries, which target commercial species such as the Nassau
grouper Epinephalus striatus, Queen conch Lobatus gigas, Caribbean
spiny lobster Panulirus argus and other commercial species that reside
in seagrass ecosystems during part of their life history®. Protecting this
seagrass ecosystem and taking action to remove pressures is, there-
fore, imperative and could be the basis for an important blue carbon
strategy for The Bahamas to contribute to climate action and eco-
nomic resilience. Aragonite mining, under a moratorium for the past
40 years, and dredging for coastal infrastructure and development
may be the most significant threats to this seagrass ecosystem. The
long-term protection offered to tiger sharks in The Bahamas has likely
played a role in keeping seagrass habitat and herbivores in an ancient
and natural balance, while also facilitating their support as allies to
explore and monitor this expansive ecosystem.

Methods

Ground-truth surveys of seagrass habitat

To obtain georeferenced field data on benthic cover levels from
habitats of the Bahama Banks, we employed two similar, in-water
survey and image approaches: (1) swimmer-based photo-transects;
and (2) tow board photo transects (Supplementary Fig. 6), resulting in
a total of 2542 surveys.

For (1), free-divers swam over the bottom of the seafloor at a fixed
height with a digital camera (Canon 5D mlV, GoPro Hero) set to capture
images manually. Photographs were captured using automatic settings
in a 1.0 m x 1.0 m footprint, 1.5 m above the seafloor following [39]. A
center console vessel was used to run the transects at distances of
5-7 km, whereby the free-diver would capture successive photos at a
horizontal distance of between 400-800 m, and the location was
logged using either a handheld GPS (Garmin GPS 73) or a boat-
mounted GPS with a depth sounder (Garmin EchoMap DV). Transect
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locations were chosen based on a priori local expert knowledge of
varying benthic cover in the region. Surveyed areas included: southern
New Providence (24.948862°, -77.387834°), southeast of New Provi-
dence (24.980265°, —77.229168°), south of Rose Island (25.066268°,
-77.160063°), the middle Great Bahama Bank (24.735355°,
=77.212998°), and the northern Exumas (24.729973°, -76.889488°).
For (2), snorkeling observers were pulled from a research vessel on tow
boards affixed with underwater action cameras (GoPro Hero 3+) tra-
veling at -1 m/s. The start and end of a tow were delineated with either
a handheld GPS (Garmin eTrex 30) or a boat mounted GPS with depth-
finder (Garmin EchoMap DV), and tows proceeded in a straight line
recorded by the GPS. Cameras recorded images at 0.5 Hz throughout
the tow, starting in conjunction with creating a waypoint. Samples (i.e.,
paired image and geolocated point) were sub-selected from the tow
once movement began, at the midpoint of a tow, and immediately
before movement stopped. Images were manually quality controlled
such that if a selected image contained obstructions or was out of
focus, the nearest clear image was selected to replace it. If no images
within 10 s were clear (i.e., 10 m maximum spatial error), the sample
was discarded. If the GPS track contained gaps or segments larger than
10 m, only images/point pairs at the start and end waypoints were
sampled.

Surveys focused on historical fishing grounds for queen conch
(Lobatus gigas) between 2015 and 2018 following the sampling design
and methods of ref. 32. A stratified random design was used to allocate
6000 m? of observation effort into each cell of a 1’ by 1’ grid placed
over each fishing ground. This effort was split into multiple tows
between 200 and 1000 m in length, thus images were separated by at
least 100 m.

Fishing grounds extended from the edge of a deepwater sound to
between 7 and 10 km up the bank and were limited to the depths used
by freediving fishers. Surveyed fishing grounds included: the Exumas
(24.382207°, -76.631058°), the southwestern Berry Islands
(25.455529°, -78.014214°), south of Bimini (25.375592°, -79.187609°),
the Grassy Cays (23.666864°, -77.383547°), the Joulter Cays
(25.321297°, -78.109251°) and the southeast tip of the Tongue of the
Ocean (23.376417°, -=76.621943°). For details on image processing, see
section on remote sensing below.

Sediment coring

To gather the sediment cores analyzed for organic carbon content on
the Bahama Banks, we collected samples from various benthic habitats
that included varying densities of seagrass habitat (Thalassia testidinum
and Syringodium filiforme). We percussed, via SCUBA, an acrylic cylin-
der tube perpendicular to the seafloor into marine sediment until
rejection at various penetration depths up to 30 cm. The sample was
then extracted vertically from the marine sediment and capped at the
bottom to avoid loss of material. This sample was then transported
vertically through the water column to a research vessel where it was
removed from the coring device and immediately capped on top with
an air-tight cap. Compression rates were negligible (-5 cm) across the
first 5 cores, and as such were not subsequently measured. The samples
were then labeled, photographed, geotagged, and the first 30 cen-
timeters of each core was extruded. To complete the extrusion process,
we placed each sample on top of a capped piston device in the same
orientation as collection (deepest portion of collected sediment still on
the bottom). The bottom cap was removed to thread the acrylic
cylinder tube onto the piston device and then was lowered to various
measured lengths to collect corresponding depth sections of the
sediment core. These sections were sliced (every 1-5 centimeters),
labeled, and placed into whirl pack bags to collect the wet weight of
each sample. All samples were then frozen and stored for future
laboratory analyses. All samples were dried in a laboratory oven at 55 °C
for 48 h until constant dry weights were reached. The samples were
then weighed to collect their corresponding dry weights. The dry bulk

density (DBD) was calculated by diving the sample dry weight (g) by the
sample volume (cm?). The samples were then further ground with a
mortar and pestle until a homogeneous fine grain size was achieved.
Sediment samples collected from the Exuma Cays (142 samples from 16
cores) were analyzed for Corg content. Sediment samples were
weighed accurately into silver capsules and acidified with 4% HCI until
no effervescence was detected in two consecutive cycles. The samples
were then dried in a 60 °C oven overnight, encapsulated into tin cap-
sules and analyzed using an Organic Elemental Analyzer Flash 2000
(Thermo Fisher Scientific, Massachusetts, USA). We then conducted a
standard loss on ignition (LOI) methodology at our laboratory facility
(Braintree, Massachusetts, USA) for all the samples. Each sample was
subsequently sub sampled with 5-15 grams of representative material
and placed into a ceramic crucible to collect its mass. The crucibles
were then loaded into a separate muffle laboratory oven and heated at
550 °C for 6 h. Upon completion of this muffle, the crucibles were then
immediately weighed to collect the LOI of organic material from each
sample, defined as the weight lost in the muffle (g) divided by the
subsample dry weight (g). A fitted regression between the Corg and LOI
from the Exuma Cays cores was generated (Supplementary Fig. 7), and
then used to predict the sediment Corg contents from LOI measure-
ments in the Grand Bahama cores. Sediment Corg stocks were quan-
tified by multiplying Corg and DBD data by soil depth increment
(1-5cm) of the sampled soil cores. The cores from the Exuma Cays
(15cm) and Grand Bahama (30 cm) were collected with different
depths, we therefore fitted a regression between Corg stock in 15 cm-
depth and Corg stock in 30 cm-depth for the Grand Bahama cores
(Supplementary Fig. 8) and used this regression to extrapolate Corg
stock of the Exuma Cays cores into 30 cm-depth. Moreover, to allow
direct comparison among other studies”, the Corg stock per unit area
was standardized to 1 m-thick deposits by multiplying 100/30.

Tiger shark tagging

The research and protocols conducted in this study complies with
relevant ethical regulations as approved by the Carleton University
Animal Care Committee. The shark data used in this paper were col-
lected as part of a multi-year, long-term research program evaluating
the interannual behavior and physiology of large sharks throughout
the coastal waters of The Commonwealth of The Bahamas?®. All sharks
were captured using standardized circle-hook drumlines® on the Great
and Little Bahama Banks throughout the country, focusing efforts in
three primary locations: off New Providence Island, the Exuma Cays,
and off West End, Grand Bahama, from 2011-2019. All sharks were
secured alongside center console research vessels and local dive boats,
where their sex, morphometric measurements, and blood samples
were taken. A mark-recapture identification tag was applied to the
shark at the base of the dorsal fin. Some of the sharks sampled in the
present study were also tagged with a coded acoustic transmitter
which was surgically implanted ventrally into the peritoneal cavity and
then sutured, as part of a concurrent study on shark habitat use and
residency within the region®.

Pop-off archival satellite tags were affixed to eight tiger sharks
(seven female, one male; 298 + 28 cm total length; mean + SD) in The
Bahamas from 2011-2019, permitting measurements of swimming
depth and water temperature recorded at either 4-min (Sea-Tag
MODS, Desert Star Systems LCC, USA) or 10-s intervals (miniPAT tags,
Wildlife Computers, USA). Pop-off satellite tags were inserted into the
dorsal musculature of the sharks using stainless steel anchors and
tethers. All pop-off satellite tags were either recovered manually,
permitting access to the full time-series, or popped-off and trans-
mitted their data to an Earth-orbiting Argos satellite, resulting in a
subset of the full time-series (transmission frequencies: 2.5min
[miniPAT], 10 min [PSATGEO], daily average [Sea-Tag MOD]). Tiger
shark positions were estimated from the satellite data using tag-
specific proprietary state space algorithms from Wildlife Computers
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(GPE3; based on ref. 34) and Desert Star Systems®. With miniPAT tags,
positions were further filtered to remove the least reliable positions
(<0.1 observation score). Tracking durations with reliable positioning
estimates were variable (mean=144 days; 44 to 376 day range).
Descriptive statistics of depths experienced by sharks (n=176,206)
were generated and depth use patterns were plotted for the periods
where reliable positioning data were available (Supplementary Figs. 4
and 5). Shark satellite positions were filtered to include just the posi-
tions located on the Bahamas Banks. Kernal utilization distributions
(KUD) were calculated using the adehabitatHR package®, from which
95 and 50% KUD polygons were extracted. This was conducted with
satellite tracking data from 5 sharks for which there were sufficient
datapoints for this analysis.

Camera tag biologger packages were affixed to a subset of 7
mature tiger sharks on the Great and Little Bahama Banks from
2016-2020, using two methods: (1) capture and release using hook and
line, following the same methods as above; and (2) in-water placement
on free-swimming tiger sharks. In (1), we built custom camera-tag
packages using a positively buoyant material (Diab Syntactic © non-
compressible foam). All cameras used were forward-facing, and uni-
idirectional, with the exception of one unit which was a 360-degree
camera®. Two asset recovery tags were secured to the center of the
biologger payload using clear silicone: a satellite tag (SPOT-386A,
Wildlife Computers, Redmond, WA, USA) and a VHF radio tag (F1840B,
Advanced Telemetry Systems, Isanti, MN, USA). Two stainless steel
nuts were added to the package to provide forward-facing ballast to
reduce the buoyancy from the camera housing, thus allowing the tag
to float on the surface in a manner which maintained the vertical
orientation of the satellite and radio tag antennae in air. The entire
biologger package was attached to the left side of the shark’s dorsal fin
by drilling two small holes and threading two connected, biodegrad-
able cable ties through and around the package. The heads of the cable
ties were then joined together via the eyes of a dissolvable galvanic
timed-release swivel (A2 model, Neptune Marine Products, Port
Townsend, WA, USA), which would eventually corrode in seawater
after an estimated period of ~24 h (swivel was pre-dissolved to permit a
short-term deployment), thereby allowing the positive buoyancy of
the package to cause it to naturally release and come off the animal.
Once attached, the camera was activated for recording and the shark
was released. The entire time to collect all animal data, apply tags and
attach the biologger was 12 min. In (2), small action cameras (GoPro
Session) were inserted into custom float packages attached to
stainless-steel clamps and were placed firmly on the dorsal fins of free-
swimming tiger sharks. Dissolvable galvanic swivels were used as
above, programmed to corrode after ~6-12 h. A single VHF transmitter
tag as above was included in the package to aid in asset recovery.

Collectively, camera tag deployments ranged from
55.43-117.06 min of recorded footage, with a mean of 80.81 + 11.65 min
(Additional Supplementary Information). All camera tags were ulti-
mately recovered by traveling to the most recent ping from the
satellite tag while actively using a VHF radio to locate the pings from
the VHF transmitter. Swimming speed estimates were obtained from
the camera tag-packages by visual inspection of the footage and con-
version from tailbeat frequency (TBF). Footage was played back at 1.5x
speed, with the sharks’ head in the lower center of the screen. To
estimate TBF, an observer manually tallied the number of times the
shark moved its head from the right-hand side of the screen to the left-
hand side and back to the right-hand side, counting this as one tailbeat.
The total number of tailbeats per minute was recorded. Speed (S; ms™)
was estimated as S = SL*TL*TBF, where SL is average stride length, 0.36
body lengths/tail beat, which was digitized and interpolated from a
previous study on tiger sharks”, and 7L is total length in m. This was
also used to calculate the total distance traveled by each shark. Clas-
sification of time spent over seagrass habitat was determined by
counting the cumulative duration (minutes) when each tiger shark was

seen swimming over any type of seagrass habitat, regardless of species
or density. Total percentage of time over seagrass was then calculated
for each shark by dividing time by the total track length (minutes), and
the geolocation where each animal was tagged and released was used
for spatial reference.

Empirical remote sensing

Remote sensing was used to map benthic seafloor habitat extent
across the large spatial scales as seen in the study area®™*°. Seven
Landsat 8 (OLI) tiles (path/row, see Supplementary Table 3) covering
study sites around The Bahamas were used in this study. Landsat 8 was
chosen as it has among the best potential to facilitate large-scale sea-
grass density mapping due to its strong temporal resolution and
algorithms for water-based corrections. Landsat has equivalent spec-
tral characteristics to many other sensors (e.g., Sentinel-2, Hyperion,
SPOT, ASTER, CBERS). We recognize Landsat has slightly lower spatial
resolution than Sentinel-2. Images from 2019 and 2020 which had
minimal to no cloud over near shore areas, which fell within the depth
range of seagrass species, were chosen from web server of the United
States Geological Survey (USGS; https://earthexplorer.usgs.gov/).
More tiles would have been obtained; however, quality cloud-free
images were not available for certain areas, such as the southern
Bahamas. It was assumed that there were no significant changes
between image acquisition years (less than two; Supplementary
Table 3) and file data collection periods. Earth Resources Observation
and Science ortho-rectified and terrain corrected (L1T) all Landsat
imagery (https://www.usgs.gov/core-science-systems/nli/landsat/
landsat-levels-processing). The visible (red, green and blue) and
near-infrared bands, with 30 m spatial resolution of OLI data, were
involved in cloud detection and land mask, while only water pene-
trating visible bands were used for seagrass mapping. Prior to seagrass
mapping, the Fmask cloud detection algorithm* was used for masking
clouds, shadows, and land cover from each Landsat tile. Next, all raw
OLI images (visible bands) were converted into top-of-water reflec-
tance for radiometric correction following standard procedure sug-
gested by the USGS (https://www.usgs.gov/core-science-systems/nli/
landsat/using-usgs-landsat-level-1-data-product). For this study, the
simple Dark Object Substract 1 (DOS1) atmospheric correction method
plugin**** was implemented in the QGIS (v. 3.18). A water column
correction** was applied to radiometric and atmospheric corrected
imagery. The depth invariant bottom index retrieved from the bi-plot
of the reflectance of visible band-pairs®”, for blue-red, red-green and
green-blue, were layer stacked. Finally, all tiles were joined in a mosaic
and cropped a subset of 170,388 km? prior to seagrass classification.
Excluding cloud, shadows, and land, about 88,000 km? of ocean area
were used for seagrass cover mapping.

A total of 2542 georeferenced, in situ field photos were collected
uniformly along the bank of the Bahamas. The dominant benthic
vegetation species belonging to the field photo were identified by
expert knowledge. Seagrass cover percent for each photo was pre-
cisely estimated using image thresholding technique available in
ImageJ (v. 1.53e)*, a java-based image processing software (https://
imagej.nih.gov/ij/). All color (RGB) photos were converted into 8-bit
grayscale prior to thresholding. Sand cover can easily be determined
through automatic thresholding technique, from where fraction sea-
grass and non-seagrass cover can easily be determined through sub-
struction of sand cover from total area of each photo. All field data thus
were divided into four seagrass cover-types (I represents <25%, Il
represents <50%, lll represents <75%, and IV represents <100% seagrass
cover), non-seagrass and submerged sand substrates (Supplementary
Table 4). Half of field data were used for training OLI data and half for
accuracy assessment. Whereas the 1 m x1m ground-truthing images
were much smaller than the 30 m x30 m pixel size of the remote
sensing product, we found that adjacent pixels tended to be homo-
geneous as spatial variability in seagrass configuration is small along

Nature Communications | (2022)13:6328


https://earthexplorer.usgs.gov/
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-levels-processing
https://www.usgs.gov/core-science-systems/nli/landsat/landsat-levels-processing
https://www.usgs.gov/core-science-systems/nli/landsat/using-usgs-landsat-level-1-data-product
https://www.usgs.gov/core-science-systems/nli/landsat/using-usgs-landsat-level-1-data-product
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/

Article

https://doi.org/10.1038/s41467-022-33926-1

the Bahamas Banks where environmental gradients shaping seagrass
ecosystems are smooth (Supplementary Fig. 6).

We then used machine learning neural network (NN)
algorithms***’ for seagrass classification, which was carried out in ENVI
(v. 5.3). For the NN algorithm, the key parameters optimum for clas-
sification of seagrass cover classes were: training threshold contribu-
tion (0.8), training rate (0.1), momentum (0.9), and number of hidden
layers (1 for non-linear). A confusion matrix was calculated using
ground truthed ROIs" to assess the accuracy of NN parameters. The
accuracy measures®® were expressed in terms of overall accuracy,
producer’s and user’s accuracies, and kappa coefficient. The accuracy
of classified Landsat 8 images produced by using NN analysis showed
evidence for misclassification between individual seagrass density
classes, thus yielding a relatively acceptable (70.2%) overall accuracy;
however, “seagrass” was correctly mapped (Supplementary Table 5).
Consequently, the Kappa value was also found to be low (0.6, i.e.,
<0.8), which was expected for mapping a large region like The Baha-
mas, at the spatial resolution of Landsat (30 m). Lower user’s (40%) and
producer’s (56%) accuracies were achieved for the discrimination of
sparse “Sg-I” class (<25% cover). Higher accuracies were recorded for
medium density “Sg-Il and lll” classes, compared to the highest density
“Sg-IV” class. The NN classifier can be considered effective since a
lower number of predicted seagrass class pixels were assigned as
either non-seagrass or sand pixels (Supplementary Table 6), resulting
in an acceptable seagrass cover class map without over- or under-
estimating seagrass cover areas for The Bahamas.

Comparison of remote sensing products

The current mapping efforts were integrated with several previous
seagrass estimates'®?° to generate an integrated, composite range of
estimates of seagrass coverage on The Bahamas Banks. This approach
did two key things: (1) compared overlaps from each remote sensing
product, to generate estimates of agreement on seagrass habitat; and
(2) generated composite maps and calculated the spatial extent pre-
dicted from each category. This resulted in a range of estimates, from
high to low probability. Seagrass shapefiles from ref. 20 were down-
loaded from the Allen Coral Atlas website (https://allencoralatlas.org/
atlas/#5.39/24.3807/-76.0918). This product reported good accuracy
for Caribbean seagrass (up to 67% match between observed and pre-
dicted), although it used ground-truthed sample images from The
Dominican Republic and US Virgin Islands for their Bahamas predic-
tions, which is not authentically representative. From empirical
products®*’, seagrass estimates were derived from images (Fig. 1).
Images were georeferenced using raster georeferencer in QGIS (Ver-
sion 3.12.3). The remainder of analyses were conducted with R* via
RStudio®®. Color bands were used to extract the seagrass estimates
from each image ([19]—greyscale values 80-120 were assigned to
seagrass; [19]—green values<170 dense seagrass [>70%], red
bands < 145 sparse seagrass [<70%]). Bands were determined by visual
inspections for consistency with existing images.

To generate an overall weighted estimate of seagrass distribution,
estimates from current mapping'®® were integrated into a standar-
dized raster grid. The grid was generated across the entirety of the
banks with a resolution of 0.01° lat/lon, producing cell sizes of
1.23km% The resulting products had similar estimated seagrass
extents to those reported in empirical research ([18]= 65,436 km?,
estimated = 63,841 km? [19]=37,000 km?, estimated = 33,952 km?).
Estimates from the three sources were used to generate an ensemble
seagrass distribution estimate via a weighting scheme, where dense
seagrass from current estimates (>50% seagrass) and dense seagrass
from [18] (>70%) were given two votes, and low density estimates from
these sources, as well as seagrass (density unspecified) from [19] were
assigned one vote (Supplementary Table 2). Estimates from each
source spanned varied regions of the banks; therefore, for each raster
cell, the percent votes from the total available were calculated

(Supplementary Table 2). Various cutoff percentage points were used
to estimate the potential seagrass coverage on the banks based on the
weight of evidence.

Post hoc analysis of ensemble model accuracy

Classifying linear habitat tows: Image streams of the benthos were
collected by action cameras mounted beneath tow boards operated
by skin diving observers in search of queen conch in The Bahamas.
Images were taken at a frequency of 2 Hz. Boards were dragged at
between 0.5 and 1.5 m/s depending on sea surface conditions and at a
relatively constant speed chosen by the observer at the start of each
tow. The start and end locations of each tow were marked via GPS
with a resolution of ~2 m. The continuous nature of the image stream
which included shifts in visibility and depth and caused a constantly
fluctuating view of the benthos made categorical assignments qua-
litative. The dominant habitat type and approximate coverages were
estimated from an initial view of the benthos, and then major habitat
transitions were noted in subsequent images. Here we define a
transition as a notable shift in habitat type (i.e., seagrass to sand) or
coverage (i.e., 25 to 75% seagrass coverage) that persisted for more
than 10 images (-5 m of bottom). At each transition, the sequence of
the image was noted along with the new habitat type(s) and cov-
erage(s). We used the same seagrass categories as those used in our
remote sensing satellite imagery model: SG-I (>0 and <25%), SG-II
(<50%), SG-Ill (<75%) and SG-IV (=75%). We further divided the NSg
category into C-l (<25% hard substrate with living coral), C-1l (>25%
hard substrate with living coral), MA-l (<25% macroalgae), MA-II
(>25% macroalgae), G-1 (<25% gorgonian plain), G-Il (>25% gorgonian
plain) and included a hardbottom category for pavement. Only living
benthic coverage was classified (i.e., random seagrass blades that
were not rooted were not counted toward coverage). The same
observer (A. Kough) classified all the habitat, had been a participant
in collecting tow data at all sites and was familiar with how the ben-
thos appeared both on camera and in person.

Comparing linear ground-truth data to integrated, ensemble
model: Tows proceeded linearly at an approximately constant velocity
thus position could be inferred from image order in between two
geolocated points. For example, on a tow with 1200 images, image 300
corresponded with a location 25% between the start point and the end
point. Points for each transition were calculated via image order and
lines containing the habitat classes were created as shapefiles in Arc-
GIS. The rasterized ensemble estimate, which integrated four remote
sensing estimates (including our own empirical estimate), was trans-
formed into a polygon layer and then a georeferenced intersect was
calculated between the Ensemble polygons and the habitat tow lines in
ArcGlIS. Benthic classes from the tow data were reassigned into sea-
grass (SG) or not seagrass (NSG) to correspond with the Ensemble’s
predictions.

We chose a random subset of 197 tows covering 69 km from
available data in the Berry Islands, Grassy Cays, Exuma Cays, Bimini and
Jolter Cays to classify for ground-truthing. This resulted in an analysis
0f 126,969 additional benthic images, which fell into 97 cells within the
ensemble model, with a mean of 2.5 tows/cell. Ultimately, we obtained
909 segments of the benthos along the tows and split by the Ensemble
cells. Each cell was assigned the class of the Ensemble prediction, as
our goal was to verify the voted classification. If part of a ground-
truthing tow fell within a cell and contained any of the habitat type that
matched the Ensemble prediction, it was considered a plausible ver-
ification of the classification. In addition, we calculated the ratio of the
amount of towed distance that matched the Ensemble’s prediction
against the total towed distance within each cell as a measure of
agreement. Results suggested that the Ensemble’s predictions were
verified by ground-truthing in most cells (-80%, Supplementary Fig. 3).
For example, 83 of the Ensembile cells containing tow data for ground-
truthing were classified as SG. Tow data verified that 65 of these cells
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contained areas dominated by seagrass. Further, in 50 of these cells
most habitat encountered in the tows was seagrass.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All empirical data and derived estimates used in the analyses are
accessible through DRYAD®.. The tiger shark tracking data and camera
tag results from this study have been deposited in the DRYAD®' data
repository. The seagrass mapping data, processed seagrass estimates
and ground-truth seafloor photogrammetry information from this
study are available DRYAD* data repository. The Allen Coral Atlas
mapping data were downloaded from: https://allencoralatlas.org/
atlas/#5.39/24.3807/-76.0918. Source data are provided with
this paper.

Code availability

All code can be accessed in the DRYAD® data repository listed above,
or can be made available by contacting the authors directly, where
deemed appropriate.
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