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Abstract
Medicinal applications of turmeric-derived curcumin have been known to mankind for long ages. Its potential in managing 
“cystic fibrosis” has also been evaluated. This autosomal recessive genetic disease is caused by mutations in the cystic fibrosis 
transmembrane conductance regulator (CFTR) which involves an impaired secretion of chloride ions and leads to hypersecre-
tion of thick and sticky mucus and serious complications including airway obstruction, chronic lung infection, and inflamma-
tory reactions. This narrative review aims to highlight the available evidence for the efficacy of curcumin nanoformulations 
in its potential treatment of cystic fibrosis. Recent research has shown that curcumin acts on the localized mutant CFTR ion 
channel at the plasma membrane. Preclinical studies have also shown that curcumin nanoformulations have promising effects 
in the treatment of cystic fibrosis. In this context, the purpose of this narrative review is to highlight the general bioactivity 
of curcumin, the types of formulations and related studies, thus opening new therapeutic perspectives for CF.
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Introduction

Cystic fibrosis (CF) is an autosomal recessive genetic dis-
ease, affecting today more than 70,000 people globally, 
whereas approximately 1000 new cases are diagnosed 
each year. More than 75% of the patients are diagnosed 
at the age of 2, while over half of the patients are age 
18 or older (Cystic Fibrosis Foundation, 2020) and the 
median survival age is 53 years (Stephenson et al. 2017). 
The disease is caused by the mutations in the gene located 
on chromosome 7 in the region of 7q31.2 that encodes the 
CF transmembrane conductance regulator (CFTR) pro-
tein (Trandafir et al. 2019; Lukacs and Verkman 2012). 
To date, more than 2000 mutations associated with CF 
have been identified. Amongst all the mutations, the most 
prevalent one affecting more than 70% of the patients is 
caused by deletion of a phenylalanine residue at position 
508 (ΔF508) of the CFTR protein (Villamizar et al. 2019).

CFTR protein predominantly functions as a chloride 
channel on the apical membrane of epithelial cells, and it 
is responsible for the regulation of the secretion of chlo-
ride ions and re-absorption of sodium ions. As a result 
of mutations on CFTR protein, the secretion of chloride 
ions is impaired and sodium ions are hyper-absorbed 
across epithelia, leading to hypersecretion of thick and 
sticky mucus (Saint-Criq and Gray 2017; Cristallini et al. 
2019). The over-production of the mucus secreted in the 
lungs, along with its altered appearance and composition, 
results in serious complications including airway obstruc-
tion, chronic lung infections with inflammatory reactions 
germs difficult to treat and resistant to antibiotics such as 
methicillin-resistant Staphylococcus aureus, Aspergillus 
or Pseudomonas aeruginosa (Taheri et al. 2021).

Although most severe symptoms related to CF occur 
in the lungs, patients also often suffer from several other 
diseases formed within other epithelial-lined organs such 
as small intestine bacterial overgrowth, pancreatic exo-
crine insufficiency, cirrhosis of the liver and progressive 
hepatic dysfunction, and infertility (Kelly and Buxbaum 
2015; Velino et al. 2019). Currently, there is no cure for 
CF; however, there have been significant advances being 
made in available treatments in recent years.

The use of natural compounds, in particular, curcumin 
has been proposed as a complementary and effective strat-
egy in the treatment of this disease (Yavarpour-Bali et al. 
2019).

Curcumin is the most active and major compound of 
turmeric discovered by Vogel and Pelletier 205 years ago 
(Vogel and Pelletier 1815). Many years later, it has been 
obtained as a pure compound in 1842 (Vogel 1842) and 
its chemical structure was described by Milobedeska et al. 
(1910). The synthesis of curcumin was described in 1913 

by Lampe and Milobedeska (1913). Curcumin is the main 
curcuminoid of turmeric rhizomes and presents between 
1.5 to 3% of turmeric, which is responsible for the extreme 
yellow colour of turmeric (Guo et al. 2020).

The medicinal use of this plant has been documented in 
Ayurveda, i.e., the Indian system of medicine, and tradi-
tional Chinese medicine, for at least 2500 years (Kocaadam 
and Sanlier 2017). From a global traditional perspective, 
turmeric was used as an important ingredient of dietary 
spices about 4,000 years ago in India (Li et al. 2020). While 
it might have reached China before 700 BCE, East Africa 
before 800 BCE, West Africa before 1200 BCE, and Jamaica 
in the eighteenth century (Prasad et al. 2014). In traditional 
medicine, turmeric is used for the treatment of rheumatoid 
arthritis, chronic anterior uveitis, conjunctivitis, skin cancer, 
smallpox, chickenpox, wound healing, urinary tract infec-
tions, liver ailments, strengthening the overall energy of the 
body, dispelling worms, regulating menstruation, dissolv-
ing gall stones, and for several digestive disorders, amongst 
other conditions (Quispe et al. 2022; Akaberi et al. 2021).

Many studies reported that curcumin, constituting 2–5% 
of turmeric (Kalaycioglu et al. 2017), possesses a wide range 
of important pharmacological activities including antioxi-
dants, antimicrobial, anti-inflammatory and anti-cancer 
effects (Alexa et al. 2020). Because curcumin has a low 
biodisponibility and absorption, various nanoformulations 
including liposomes, polymeric nanoparticles, solid lipid 
nanoparticles, micelles, nanogels, nanosuspensions, nanoe-
mulsions, complexes, and dendrimer/dimer are studied for 
the delivery of an active form of curcumin (Sun et al. 2012; 
Pinzaru et al. 2018). It has been reported that curcumin nan-
oparticles possess special efficacies both in vivo (Cartiera 
et al. 2010) and in vitro (Goncalves et al. 2017; Lababidi 
et al. 2019) for the treatment of CF.

In the light of these aspects, this updated review aims to 
highlight the available evidence on the effectiveness of cur-
cumin nanomedicine in the treatment of CF. In this context, 
the general bioactivity of curcumin, formulation types and 
related studies were discussed along with the current chal-
lenges and future perspectives.

Purpose and review methodology

A search was performed in the literature to highlight pub-
lished data on the potential effects of pharmacological 
effects of nano-curcumin in CF. The databases accessed 
were: PubMed, ScienceDirect, and Google Scholar using 
the following MeSH terms: "cystic fibrosis", "curcumin/
pharmacokinetics", "curcumin/therapeutic use", "nanopar-
ticles", "polyethylene glycols', "bioavailability", "diffusion", 
"hydrophobic and hydrophilic interactions", "nanomedi-
cine", drug carriers/administration", "molecular targeted 
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therapy", "humans". Data regarding the uses of nano-cur-
cumin as a complementary therapy for the treatment of 
CF were extracted from papers published in English that 
included in vitro/in vivo pharmacological studies highlight-
ing the molecular mechanisms of action. Exclusion criteria: 
papers without preclinical studies (in vivo) or cell lines (in 
vitro), or control group; articles which may include homoeo-
pathic preparations; duplicates, and articles are not written 
in English.

Curcumin as potential therapeutic agent 
for CF

CF is a progressive and ultimately fatal inherited disorder 
caused by a mutation in the gene encoding CFTR (Zeit-
lin, 2004), in this regard, Egan et al. (2004) evaluated the 
curative effects of curcumin on CF defects. They devel-
oped a weak and safe sarco/endoplasmic reticulum calcium 
ATPases inhibitor in a CF mouse model and the curcumin 
corrected the electrolyte abnormalities and prohibited intes-
tinal blockage.

Song et al. (2004) tried to re-investigate the preclinical 
data of Egan et al. (2004) through in vitro and in vivo stud-
ies and their results indicated that curcumin was not able to 
produce functional correction of ΔF508-CFTR processing 
in both studies (Fig. 1).

The effect of curcumin on cultured baby hamster kidney 
(BHK) cells transfected with ΔF508-CFTR and nasal epi-
thelial cell lines was evaluated by Dragomir et al. (2004). 
The compound curcumin showed a significant positive effect 
(small increase) on ΔF508-CFTR BHK cells or CFBE cells 
mediated chloride transport in airway epithelial cells (Drag-
omir et al. 2004).

The stimulating effect of curcumin on CFTR channel 
functioning was reported by Berger et  al. (2005). They 

observed and found that curcumin reduces the channel 
closing time and increased CFTR channel activity. In other 
words, curcumin displayed dose-dependent, reversible and 
better stimulating effects on channel activity compared to 
another well-known compound (Berger et al. 2005).

Sodium/potassium pumps are prominent examples of P2 
type superfamily. These pumps are involved in specialized 
tissue functions including trans-epithelial Na+ transport, 
muscle and nerve excitability, and secretory and signal trans-
duction processes (Li et al. 2021).

The modulatory effects of curcumin on Na, K-ATPase 
activity and kinetic properties were evaluated by Mahm-
moud (2005). Curcumin showed dose-dependent inhibitory 
Na, K-ATPase activity (K0.5 ῀14.6 µM) and partially blocks 
the K+ occlusion site. The intermediate filament cytoskel-
eton of all epithelial cells is made up of keratins (type I 
and II) and they are encoded by 54 evolutionarily conserved 
genes (28 types I, 26 types II) (Jacob et al. 2018).

Keratin 18 (K18) is a type 1 keratin and is directly asso-
ciated with ΔF508-CFTR trafficking. Lipecka et al. (2006) 
reported the effects of curcumin on ΔF508-CFTR localiza-
tion and the keratin 18 (K18) network. They performed a 
functional assay for the CFTR chloride channel in CFPAC-1 
cells and treated them with/without curcumin. The curcumin 
displayed an increase in a cAMP-dependent chloride efflux 
in treated ΔF508-CFTR expressing cells. The K18 network 
was analyzed using immunohistochemistry and immunob-
lotting assays. Curcumin treatment induced a considerable 
alteration/remodelling in the K18 network and significantly 
increased the K18 Ser52 phosphorylation. It is already estab-
lished that curcumin has been reported to correct CF brought 
about by ΔF508 mutation of the CFTR (Egan et al. 2004; 
Zeitlin, 2004) but its actual action or mechanism is still 
unclear (Fig. 1). Harada et al. (2007) described curcumin 
and its role in the down-regulation of endoplasmic reticulum 
chaperone calreticulin (CRT). The Chinese hamster ovary 

Fig. 1   Curcumin CF correction 
is initiated by CFTR mutation
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cells treated with curcumin displayed suppressing CRT 
expression and increased wild type CFTR without affect-
ing ΔF508 CFTR expression. CRT negatively regulates the 
CFTR cell surface expression and its activity. Wang and 
co-workers reported about the curcumin and its role as an 
important chelator of Fe3+. The compound inhibits channel 
dimerization and opening despite phosphorylation of the R 
domain (Wang, 2015). Curcumin also potentially activates 
ion channels mutated with G551D and W1282X mutations 
that cause impairment of ATP-modulated channel gating 
(Wang et al. 2007). It opens the Cl− ion channel independ-
ent of ATP binding. However, the influence of curcumin 
depends on the prior phosphorylation of the CFTR ion chan-
nel R-domain (Wang et al. 2007) (Fig. 2).

Cell migration is an essential process in skin wound 
healing and photodynamic therapy (PDT) enhances wound 
healing by photo-activating at a specific wavelength of 
light (Matei et al. 2021). In this context, Chiu et al. (2019) 
reported the CFTR and its involvement in indocyanine green 
(ICG)–mediated PDT regulated cell migration in skin wound 
healing. ICG–PDT conditioned medium activates CFTR and 
regulates other molecules in the focal adhesion (focal adhe-
sion kinase and paxillin). Curcumin treatment enhanced cell 
migration (dose-dependent manner) in a similar manner as 
5 J/cm2 ICG–PDT conditioned medium which is related to 
CFTR activation (p < 0.05). Chaudhary et al. (2019) reported 
curcumin and its role as an inhibitor of TLR2 expression in 
CF bronchial cell lines (CFBE410 cells). A strong suppres-
sion was displayed by curcumin treatment (40 µM) against 

TLR2 gene and protein expression in CFBE410 cells. Cur-
cumin treatment also decreased the expression of transcrip-
tion factors specificity protein 1, which is responsible for the 
increased basal TLR2 expression in the CF cell line.

Curcumin nanomedicines nanoformulation 
types and related studies

In vitro and in vivo studies

Numerous types of nanoparticles have been designed and 
evaluated for their efficacy in drug delivery in several dis-
eases (Docea et al. 2020). Cell line-based and animal model-
based studies have highlighted curcumin's effectiveness in 
treating CF. In the case of CF, the major barrier in deliv-
ering nanoparticles is the thick, sticky mucus membrane, 
characteristic of CF. This mucus layer brings hindrance to 
cilia movement and prevents the elimination of microbes 
that leads to infection. Mucus is mostly comprised of low-
viscosity fluid, made up of mucin fibres (70–80%) and mac-
romolecules. These mucin fibres create mesh architecture 
by cross-linking through hydrophobic interactions and 
disulfide bonds. The presence of macromolecules includ-
ing DNA and actin gives rise to electrostatic hindrance 
and hydrophobicity, thus, giving rise to a need to develop 
a delivery system that has less adhesive ability with mucus 
layers (Rubin, 2007; Bengtson et al. 2021; Sala et al. 2021). 
Small structures like nanoparticles hold great potential in 

Fig. 2   Summarized scheme with potential molecular mechanisms of 
curcumin nanomedicine formulations in CF. Abbreviations and sym-
bols: ↑increased, ↓decreased, CF transmembrane conductance regula-

tor (CFTR), Na+ sodium ion, Cl− chloride ion, endoplasmic reticulum 
chaperone calreticulin (CRT), toll-like receptor-2 (TLR2)
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crossing highly steric environments and enhancing the rate 
of drug delivery. Nanoparticles coated with inert mucus 
material might facilitate enhancing curcumin delivery to the 
target site. Polyethene glycol (PEG) has been identified as 
mucus inert material and has been analyzed for its efficiency 
in delivering numerous drugs to the lungs in CF. A gold 
standard therapy, recombinant human deoxyribonuclease I 
(rhDNase), for CF has recently been investigated for improv-
ing its delivery mechanism and half-life through PEGyla-
tion. The rhDNase1 PEGylation enhanced drug stability 
and hence, availability further ameliorated the need for the 
daily administration of the drug (Guichard et al. 2021, 2017, 
2018). Investigation in model animals further indicated that 
drug delivery once a week was enough to manifest its thera-
peutic influence (Guichard et al. 2021). Further, PEGylated 
rhDNase is reported to make thin viscous mucus (Guichard 
et al. 2018). Drug PEGylation did not have any cytotoxicity 
or adverse reaction in studied animals (Guichard et al. 2021).

PEG had been coated on mesoporous silica nanoparticles 
and gadolinium molybdate nanoparticles in previous studies 
and curcumin was loaded in these particles. PEG-coated cur-
cumin nanoparticles have been analyzed for their efficiency 
in different cancer cell lines and were demonstrated to have 
improved bioavailability, loading capacity, and efficiency 
(Ma'mani et al. 2014; Kuang et al. 2020; Ayubi et al. 2019; 
Lin et al. 2018).

PEG co-polymerized curcumin, created through chemo-
enzymatic methodology, in a study was reported to enhance 
curcumin bioavailability and water solubility in human 
bronchial epithelial cells (Pandey et al. 2011). Curcumin 
was attached to the hydroxyl group of PEG through EDC/
NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-
hydroxysuccinimide) activation reactions (Lin et al. 2018). 
Furthermore, dry powdered inhalers (DPI) of curcumin were 
also developed through methyl ether-PEG (5 kDa). In vitro 
analysis depicted sustained delivery of PEGylated curcumin-
DPI in the pulmonary system (Muralidharan et al. 2014; 
El-Sherbiny and Smyth, 2012).

Nano-spray-dried proliposomes were also employed 
for delivering curcumin to the lungs. Hydroxypropyl 
β-cyclodextrin was used as a carrier for proliposomes pro-
duction. Spray-dried proliposomes loaded with curcumin 
were reported to have superior properties of aerosolization 
that capacitated the drug to access deep regions of the lungs. 
Comparative to curcumin powder, proliposomal curcumin 
was reported to have high absorption and increased mean 
residence duration in lung tissues (Adel et al. 2021).

The bioavailability of curcumin was attempted to enhance 
by encapsulating it in PLGA nanoparticles. These nanopar-
ticles have a diameter of 77 ± 16 nm and a 7.6% (w/w) drug 
loading capacity. The study demonstrated that PLGA-encap-
sulated curcumin (PLGA-cur) was more readily bioavail-
able in comparison to non-encapsulated curcumin (Cartiera 

et al. 2010; Roointan et al. 2016). Further, the IC50 value 
of PLGA-cur was also determined to be lower than non-
encapsulated curcumin (Roointan et al. 2016).

PLGA-cur effectiveness was validated in mice models 
harbouring ΔF508 mutation. PLGA-cur oral administra-
tion enhanced the effectiveness of curcumin effect (Carti-
era et al. 2010). In another study, microfluid technology 
was employed to fabricate Pluronic (muco-penetrating 
stabilizer)-coated PLGA nanoparticles to penetrate the 
mucus layer in CF lungs. It is reported that pluronic-PLGA 
nanoparticles (size 40–160 nm) have a high capacity to 
encapsulate curcumin. Further, nanoparticles under 100 nm 
size have faster and more efficient penetration capability in 
pulmonary mucus (Lababidi et al. 2019).

Curcumin is known to negatively modulate the expression 
of pro-inflammatory toll-like receptor 2 (TLR2) that con-
tributes to exerting its anti-inflammatory influence (Chaud-
hary et al. 2019). Thus, nano-curcumin can be considered as 
being a potential nutritional strategy for treating CF (Talebi 
et al. 2021).

Chronic inflammation, massive infiltration of immune 
cells, tissue damage, and chronic infections are the charac-
teristics of CF (Tsoukalas et al. 2019). Lababidi et al. (2020) 
developed a micro-particle formulation using spray dry-
ing combining multiple drugs. Three antibiotics including 
tobramycin, ciprofloxacin or azithromycin, N-acetylcysteine 
(NAC), and curcumin were used in a synergistic mode. The 
antibacterial activity of three drugs and multidrug formu-
lations were tested against Pseudomonas aeruginosa and 
the combination of azithromycin and ciprofloxacin with 
NAC and curcumin did not show better antibacterial activ-
ity. Whereas NAC and the addition of curcumin-loaded 
poly(lactic-co-glycolic acid) (PLGA) nanoparticles dis-
played significant inhibitory activity against tumour necro-
sis factor (TNF)-α, interleukin (IL)-8, and IL-1β release. 
On the other hand, Cartiera et al. (2010) reported the oral 
administration of PLGA nanoparticles encapsulating cur-
cumin enhanced the effects of curcumin therapy in CF mice 
models.

In a recent investigation, curcumin was loaded on 
amphiphilic nanomicelles particles and activated through 
blue laser light. This synergistic approach was reported to 
be effective in inhibiting resistant P. aeruginosa species in 
eukaryotic HaCaT cells (Rupel et al. 2021). Antimicrobial 
PDT-coupled with curcumin nanomicelles approach seems 
to show promising outcomes against P. aeruginosa, however, 
independent research on analyzing these therapeutic strategy 
efficacies on P. aeruginosa in CF still needs to be done.

Nanotechnology is also being utilized to make curcumin 
bioavailable to remediate symptoms and morbidity associated 
with CF. P. aeruginosa is an opportunistic, Gram-negative 
bacteria that readily infects CF lungs and is responsible for 
chronic infection. The mutation rate in the bacteria is high 
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that has been reported to induce antibiotic resistance, render-
ing treatment strategies barely effective (Oliver et al. 2000; 
Talwalkar and Murray, 2016; Jennings et al. 2021).

Curcumin nanoparticle formulations have been evaluated 
for their potential to target this opportunistic microbe in CF 
patients. The study indicated that a concentration of 25 µg/mL 
of nano-curcumin affirmatively inhibited the biofilm formation 
of P. aeruginosa strain ATCC 10,145. Further, nano-curcumin, 
prepared through Planetary Ball Mill technology, has more 
resistance to enzyme-induced hydrolysis, along with improved 
tissue solubility (Sharifian et al. 2020). Spray-dried technology 
was used to co-administer curcumin-loaded PLGA nanoparti-
cles and NAC to evaluate their co-effect in inhibiting infection 
in the pulmonary system. Co-treatment of PLGA-curcumin 
and NAC elicited an anti-inflammatory response that high-
lighted its potential application as therapeutic for pulmonary 
infections (Lababidi et al. 2020).

Clinical studies

The effect of curcumin supplementation on children and 
their quality of life with CF was investigated by Rafeey 
et al. (2020). They performed a controlled, randomized clini-
cal study in 40 patients with CF (n = 20 in the intervention 
group, n = 20 control group, 5–18 years). Intervention group 
was treated with curcumin nanoparticles for up to 6 months 
(dose: 80 mg, three times). Height, weight, and quality of 
life were measured using the Pediatric Quality of Life Inven-
tory (PedsQL) 4.0 (CITE) before and after treatment. The 
curcumin-treated group showed a significant increase in the 
percentage of weight change (7.48 ± 4.68 kg) compared to 
the control group (4.15 ± 4.68) at p = 0.03. Curcumin-treated 
group also displayed an improvement in terms of percent-
age change in physical functioning (19.28 ± 31.65) and 
school functioning score (40.96 ± 42.93) compared to the 
control group (15.24 ± 47.14 at p = 0.08 and 23.90 ± 14.82 
at p = 0.06) (Rafeey et al. 2020).

A double-blind clinical trial conducted in Iran assessed 
the clinical significance and influence of nano-curcumin 
(Exir Nano Sina Drug Company, Iran) on the inflammatory 
markers of CF patients below 18. The study delineated that 
nano-curcumin has shorter liver metabolism and is more 
readily absorbed in the gastrointestinal tract. Furthermore, 
its use for 3 months elicited the anti-inflammatory response 
required to ameliorate pulmonary inflammation in CF 
(Talebi et al. 2021).

Limitations and prospects

Curcumin is a yellow-coloured hydrophobic polyphenol 
derived from the rhizomes of turmeric (Curcuma longa 
L.), a plant species belonging to the Zingiberaceae family. 

For a long time, curcumin has drawn the attention of 
researchers around the world in multidisciplinary fields 
related to therapeutic applications including antioxidant, 
anti-inflammatory, anti-arthritic, antimicrobial, cardio-
protective, antithrombotic, hepato-protective, hypogly-
cemic, wound healing, Alzheimer’s disease, Parkinson’s 
disease, multiple sclerosis, rheumatoid arthritis, diabetes, 
gastro-related disorders, pulmonary diseases, atherosclero-
sis, and different types of tumours such as colorectal can-
cer, lung cancer, pancreatic cancer, breast cancer, multiple 
myeloma, melanoma, and sarcoma. Curcumin molecule 
is considered “generally recognized as safe” (GRAS) by 
the United States Food and Drug Administration (FDA) 
as a food additive at levels up to 20 mg per serving (Nel-
son et al. 2017). Curcumin is capable of inhibiting the 
progression of CF through two different mechanisms of 
action. One mechanism suggests that it can control the 
signalling pathways initiated by several cytokines and 
chemokines that directly cause fibrosis, and second, it can 
act through the induction of apoptosis in stellate cells of 
affected organs (Flora et al. 2013).

As in the case of several other hydrophobic therapeutic 
small drug molecules, curcumin also has limitations in its 
effective clinical use to treat diseases. These limitations 
include:

	 (i)	 Low hydrophilicity and intrinsic dissolution rate(s),
	 (ii)	 Low physicochemical instability,
	 (iii)	 Poor pharmacokinetics and bioavailability,
	 (iv)	 Low bioactive absorption,
	 (v)	 Rapid metabolization,
	 (vi)	 Low penetration and targeting efficacy (Yallapu et al. 

2015).

In addition to these limitations, CF presents an addi-
tional challenge in the form of a thick mucus layer block-
ing access to diseased cells. To overcome these difficul-
ties and thus to provide the desired biological effects, 
several nanotechnology-based delivery approaches have 
been applied (Ong et al. 2019; Salehi et al. 2020). These 
nanotechnology-based approaches have many attractive 
properties including:

	 (i)	 Improved encapsulation or solubilization of thera-
peutic drugs for protective and targeted delivery,

	 (ii)	 High surface to volume ratio allowing modifications 
to surface functional groups to achieve extensive sta-
bilization and internalization,

	 (iii)	 Biocompatibility, superior pharmacokinetics, and 
minimal clearance from the body,

	 (iv)	 Controlled, stimuli-responsive, remote actuation, and 
on-demand drug release properties (Yallapu et al. 
2013).
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Its clinical implementation has been limited due to its 
poor aqueous solubility and lower bioavailability that con-
sequently, cause hindrance in its uptake by cells and lead 
to rapid clearance. Limitations in therapeutic applications 
of curcumin can be overcome by designing an effective 
delivery system that could improve its systematic bioavail-
ability, pharmacokinetics, and bioactivity. Applications of 
nanotechnology have been extended to encapsulate and load 
curcumin in several types of nanoformulations.

Overall conclusions

The potential of curcumin in treating CF has been deline-
ated through numerous scientific validations. Limitations 
that restrict its clinical implementations can be addressed 
by employing advancements in nanotechnology. Studies 
have been performed at cell-line and animal model levels to 
evaluate the efficacy of several curcumin nanoformulations 
in ameliorating the deleterious effect of ΔF508 mutation and 
pathogenicity linked with CF.

Outcomes of this research have validated the potential 
of nano-curcumin as a therapeutic drug at the clinical level. 
Curcumin is well-tolerated and reported to have insignificant 
toxicity even at higher doses. However, further investigations 
are necessary to enhance the efficacy of nano-curcumin. 
Moreover, co-treatment of nano-curcumin with antibiotics 
also holds great potential that should be probed in CF cell 
lines and model animal. Spray-dried curcumin nanoparticles 
have so far shown great capacity to reach deep portions of 
the lungs with enhanced half-life and null cytotoxicity, high-
lighting the essentiality of more investigations in the area to 
further improve the strategy for clinical purposes (Table 1). 
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