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Individual slow wave events give rise to macroscopic
fMRI signatures and drive the strength of the BOLD
signal in human resting-state EEG-fMRI recordings
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The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs).
Recently, the relationship between SWEs and blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI)
signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic
signature corresponds to these specific neurophysiological events in the human brain. Therefore, we analyzed simultaneous
electroencephalographic (EEG)-fMRI data during human non-REM sleep. SWEs individually detected in the EEG data were used as
predictors in event-related fMRI analyses to examine the relationship between SWEs and fMRI signals. For all 10 subjects we identified
significant changes in BOLD activity associated with SWEs covering substantial parts of the gray matter. As demonstrated in rodents,
we observed a direct relation of a neurophysiological event to specific BOLD activation patterns. We found a correlation between the
number of SWEs and the spatial extent of these BOLD activation patterns and discovered that the amplitude of the BOLD response
strongly depends on the SWE amplitude. As altered SWE propagation has recently been found in neuropsychiatric diseases, it is critical
to reveal the brain’s physiological slow wave state networks to potentially establish early imaging biomarkers for various diseases
long before disease onset.
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Introduction
Slow wave activity (SWA) is a very well-characterized and
intensively investigated multiscale activity state of the
brain observable throughout various recording modali-
ties, from multiunit activity in anesthetized mice (MUA)
(Ruiz-Mejias et al. 2011) up to high density surface elec-
troencephalography (EEG) in sleeping humans (Murphy
et al. 2011; Siclari et al. 2018). During SWA, the membrane
potentials of neurons alternate between depolarized Up
and hyperpolarized Down states resulting in neuronal
silence or a rather stereotypical bout of activity (Steriade
et al. 1993). In the case of a synchronized transition from
Down to Up state throughout a larger neuronal popu-
lation, distinct slow wave events (SWEs) are detectable
in the EEG. SWEs typically emerge when the cortex is
functionally disconnected from the environment, and
they are considered to represent the default activity pat-
tern of the cortex and beyond (Sanchez-Vives and Mattia
2014). Importantly, the SWEs appear in a nonoscillatory
fashion with the initiation and subsequent propagation

of each SWE depending on the current local excitability
(Sancristóbal et al. 2016). The SWEs occur with varying
interevent intervals (IEI) during natural sleep (Riedner
et al. 2007; Murphy et al. 2011) but tend to temporally
cluster (Mölle et al. 2011); they can be induced by various
anesthetic regimens (Seamari et al. 2007; Sakata and
Harris 2009; Chen et al. 2013) and can even be recorded
in cortical slabs (Timofeev et al. 2000). Although SWEs
under different conditions might be phenomenologically
similar, they might not share the underlying mechanisms
in terms of SWE induction, particularly when comparing
natural sleep with anesthesia (Akeju and Brown 2017;
Reimann and Niendorf 2020). Moreover, SWEs can be
found in diverse vertebrates, from birds to humans (Ste-
riade et al. 2001; Riedner et al. 2007; Mascetti 2016)
and are believed to be critical for memory consolida-
tion (Diekelmann and Born 2010; Rasch and Born 2013;
Tononi and Cirelli 2014; Timofeev and Chauvette 2017;
Crunelli et al. 2018) and synaptic homeostasis (Tononi
and Cirelli 2014) when occurring in natural sleep. The
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large-scale synchronization of SWEs as well as their local
and widespread recruitment are highly sensitive to local
and global excitability changes (Sancristóbal et al. 2016)
and are also highly affected by cholinergic neuromod-
ulation (Steriade 2004; Eggermann et al. 2014; Nghiem
et al. 2020). This renders SWEs as a unifying functional
network event which may allow using SWEs to study the
network pathophysiology of neuropsychiatric disorders
(Sanchez-Vives and Mattia 2014).

SWEs are not stationary events but propagate as
traveling waves of activity from an initiation point
(Massimini et al. 2004; Menicucci et al. 2009; Murphy
et al. 2009). Spontaneous activity within the cor-
tex itself, mainly in layer 5 is capable of initiating
SWEs, even after thalamo-cortical deafferentation
(Sanchez-Vives and McCormick 2000; Timofeev et al.
2000; Stroh et al. 2013). Under physiological condi-
tions like sleep, spontaneous SWEs are predominantly
generated locally in medial prefrontal, orbitofrontal,
and insular regions (Massimini et al. 2004; Menicucci
et al. 2009; Murphy et al. 2009). The propagation of
slow wave events is critically dependent on the local
excitability, that is, the excitability state of a limited
number of neurons, or a local ensemble. Early stages of
neurodegenerative and neuroimmunological disorders
(Busche et al. 2015; Arnoux et al. 2018; Ellwardt et al.
2018) are marked by ensembles of hyperactive neurons
and seem to prevent the propagation of SWEs (Busche et
al. 2015). Although at later stages of these disorders neu-
rodegeneration and neural hypofunction occur, early on,
presumably due to maladaptive processes, a plasticity-
driven hyperexcitability predominates (Sperling et al.
2009; O’Brien et al. 2010; Quiroz et al. 2010). These early
shifts toward hyperactivity are quite subtle and have not
yet been identified in human brain-wide imaging data. It
is unclear how the blood oxygen level–dependent (BOLD)
functional magnetic resonance imaging (fMRI) signal
is related to the occurrence of individual SWEs during
natural sleep in healthy humans. Resolving distinct
BOLD fMRI patterns of SWEs in sleeping healthy humans
is a critical prerequisite for any study examining SWE
alterations reflecting early network disturbances caused
by pathological conditions in humans. In rats, we have
pioneered the combination of task-free, resting-state
fMRI measurements and optical calcium recordings
of spontaneous neural activity under anesthesia. We
created a regressor based on individual SWEs for an
event-related fMRI analysis and observed a cortex-
wide BOLD pattern directly related to SWEs (Schwalm
et al. 2017). Very recently, we could demonstrate that
individual SWEs themselves drive a distinct fMRI activity
signature (Aedo-Jury et al. 2020). In humans, Dang-
Vu and colleagues examined BOLD signal changes
related to neural events during sleep, including SWEs
(Dang-Vu et al. 2008). In a group-based analysis, they
observed significant BOLD signal increases in the pontine
tegmentum, midbrain, cerebellum, parahippocampal
gyrus, inferior frontal gyrus, middle frontal gyrus,

precuneus, and posterior cingulate cortex (Dang-Vu et
al. 2008) but not in areas critically involved in SWE
recruitment, in particular other neocortical areas and the
thalamus. We decided to perform our analyses primarily
at a single-subject, single-session level and focused on
individually detected SWEs, thus allowing the capture of
interindividual and intraindividual differences without
sacrificing information to group-level averaging. This is,
in part, motivated by our aim to observe early neural
network changes in neuropsychiatric disorders on an
individual level. It also enables us to assess whether
the amplitude and number of SWEs are quantitatively
related to BOLD signal changes with single-subject
resolution. The BOLD signal is related to subthreshold
and suprathreshold neuronal activity via mechanisms
of neurovascular coupling (Logothetis et al. 2010). It is
yet to be shown whether the amplitude and quantity of
a rather uniform neurophysiological event, in this case
SWEs, translate to a proportional BOLD signal change.

Here, we introduce a translational approach: Inspired
by our recent findings in rodents, we implement an
event-related design using a clearly defined neurophysi-
ological event as a regressor in task-free, resting-state
fMRI recordings. We analyzed a combined EEG-fMRI
dataset of 10 healthy human subjects (Bergmann et al.
2012), comprising two sessions of undisturbed night sleep
per subject, and present single-subject, single-session
brain activity patterns related to individual SWEs.

Methods and Materials
Origin and Characteristics of Source Data
The data used for this study are a subset of a previ-
ously published sleep study (Bergmann et al. 2012) that
examined sleep spindle-related reactivation of category-
specific cortical regions after learning face–scene associ-
ations.

These EEG-fMRI data were acquired by Til Ole Bergmann
as part of the Project A6 “Neocortical processing modes
of the sleeping brain as a neuronal substrate for mem-
ory consolidation in humans” (principal investigators:
Hartwig R. Siebner, Lisa Marshall, Matthias Mölle) as
part of the Collaborative Research Center SFB 654
“Plasticity & Sleep” at the Department of Neuroradiology,
Neurozentrum, Christian-Albrechts University of Kiel,
Germany.

The participants had no history of neurological or
psychiatric disease and were not on medications. The
experimental procedures were approved by the Ethics
Committee of the University of Kiel, and all participants
gave written informed consent prior to participation.
For detailed information on the study protocol, please
see Bergmann et al. (2012). A 32-channel EEG was
acquired with an MR-compatible EEG cap (BrainCap
MR, Easy-Cap, Munich, Germany) according to the 10–
20 system. FCz was used as the reference electrode and
the ground electrode was located at approximately 1 cm
below the Oz position. Skin–electrode impedances were
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maintained below 5 kΩ throughout the recording (+5 kΩ

safety resistors). Placing additional electrodes below and
above the right eye, the outer canthi, the chin, and on
the backbone allowed obtaining bipolar recordings of
vertical and horizontal electrooculogram, electromyo-
gram, and electrocardiogram. The data were recorded
using BrainAmp MR plus DC and bipolar BrainAmp
ExG MR amplifiers and the BrainVision Recorder V.1.10
software (BrainProducts, Munich, Germany) with a
resolution of 0.5 μV/bit at 5 kHz and filtered between
0.016 and 250 Hz. The fMRI data were acquired on a
3 Tesla MR scanner (Philips Achieva; Philips Medical
Systems, Best, The Netherlands). High-resolution T1-
weighted anatomical images were collected using a
standard MPRAGE sequence (TR = 7.7 ms, TE = 3.6 ms,
flip angle = 8◦, 170 sagittal slices, 1 × 1 × 1 mm voxel
size, field of view = 224 × 224 mm). For sleep-fMRI, echo
planar imaging (EPI) sequence was used (TR = 2240 ms,
TE = 30 ms, flip angle = 90◦, FOV = 216 × 216 mm, 38
transversal slices, slice thickness = 3 mm, gap = 10%, in
plane voxel size = 3.38 × 3.38 mm, continuous bottom-up
slice acquisition order).

To maintain a homogenous data structure throughout
the sample, we studied the amount of time subjects
spent in wakefulness (M ± SEM, 17.4 ± 4.2 min), in
sleep stage N1 (M ± SEM, 2.4 ± 0.4 min), N2 (M ± SEM,
50.0 + 4 min), and N3 (M ± SEM, 38.6 + 3 min)
(Supplementary Fig. 1). From the data of 11 participants
at hand, we excluded one participant including their
two sessions due to strong deviations in the amount
of time spent in wakefulness (M = 67.1 min) and in
sleep stage N2 (M = 9.6 min) from the sample mean.
Ultimately, we examined data from 10 healthy, right-
handed participants with two distinct sessions of night
sleep per individual with a duration ranging from 53.8 to
149.2 min (M ± SEM, 107 ± 5.1 min).

Data Analysis
EEG Preprocessing

The EEG data were preprocessed by MATLAB 9.6.0
(R2019a) (The Mathworks Inc.) and the EEGLAB v2019.0
toolbox (Delorme and Makeig 2004). Firstly, scanner
gradient artifacts were removed using the “realignment
parameter-informed” algorithm implemented in the
Bergen toolbox in EEGLAB (Moosmann et al. 2009). This
procedure is based on the moving average algorithm
(Allen et al. 2000) and additionally takes head movement
parameters from the fMRI signal into account to
improve the estimation of artifact templates. Then, those
artifact templates are subtracted from the distorted EEG
signal. Next, EEG data are low-pass filtered at 200 Hz,
downsampled to 200 Hz, and re-referenced to linked
mastoids (i.e., TP9 and TP10). The EEGLAB plug-in FMRIB
version 1.2 (Niazy et al. 2005) was used to remove
electrocardiographic artifacts. To form the artifact
template, we chose the optimal basis set (OBS) method
and defined the number of principal components to
be used as three. Finally, an independent component

analysis (ICA) was performed to remove ocular, muscular,
and the remaining electrocardiographic artifacts.

SWE Detection

SWEs were detected using a slow wave detection toolbox
previously published by Mensen et al. (2016). The toolbox
is based on an algorithm calculating the negative enve-
lope of all electrodes. This approach can be imagined as
creating a butterfly plot by overlaying all electrodes and
then tracing the negative contour (Mensen et al. 2016).
First, the negative-going signal envelope is calculated by
selecting and averaging the three most negative samples
across a set of 30 electrodes. Next, the resulting neg-
ative signal envelope is band-pass filtered between 0.5
and 4 Hz and baseline corrected (zero mean-centered).
Finally, SWE is detected on the negative signal envelope
by applying a validated procedure based on the detection
of negative half-waves (Mölle et al. 2002; Massimini et al.
2004; Riedner et al. 2007; Nir et al. 2011; Siclari et al. 2014;
Mensen et al. 2016; Bernardi et al. 2018; Siclari et al. 2018;
Avvenuti et al. 2020; Betta et al. 2021). Here, negative
half-waves with a duration of 250–1000 ms and passing
the minimum amplitude threshold of 60 μV were consid-
ered SWEs. The onsets (timing of the first zero-crossing)
and durations (from positive-to-negative zero-crossing to
negative-to-positive zero-crossing) of each individually
detected SWE were extracted to construct SWE vectors
including the precise timing of the events. These event
arrays were then used to analyze the simultaneously
recorded resting-state fMRI data. For additional analyses,
the peak amplitude (absolute value of the negative peak
of the wave in the negative signal envelope in μV), the
peak-to-peak amplitude (absolute value from the nega-
tive to positive peak of the wave in the negative signal
envelope in μV), and the globality index (percentage
of channels involved in each SWE) of each SWE were
extracted.

The maximum propagation speed (m/s) of individual
SWEs was determined by dividing the longest distance
traveled by the maximum delay.

fMRI Preprocessing

The fMRI data were preprocessed and analyzed using
statistical parametric mapping (SPM12, Wellcome Trust
Centre for Neuroimaging, London, UK, http://www.fil.
ion.ucl.ac.uk/) running on MATLAB 2019a (MathWorks,
Natick, Massachusetts, USA). Due to equilibrium effects,
the first four volumes of each scan were discarded.
EPI volumes were slice-time corrected (with reference
to the first slice of each volume) and realigned to the
mean image (fourth order b-spline interpolation). Then,
individual T1-weighted images were coregistered to the
mean EPI, segmented, and transformed to Montreal
Neurological Institute (MNI) space based on SPM’s tissue
probability maps. Functional data were then normalized
with the same spatial transformation and smoothed
using a 6 mm full-width at half-maximum Gaussian
smoothing kernel.

http://www.fil.ion.ucl.ac.uk/
http://www.fil.ion.ucl.ac.uk/
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Event-Related fMRI Analyses

General linear models (GLM) were modeled comprising
the SWE vector convolved with the canonical hemody-
namic response function (HRF) as well as its derivatives
in time and dispersion, six movement parameters (trans-
lations in x, y, and z directions and rotations around x,
y, and z axes) and a constant term. We constructed an
individual GLM for each subject and session as SWEs are
highly variable with respect to the time of appearance
and duration. To assess the BOLD response patterns
associated with SWEs, we examined the main effect
of SWEs relative to the implicit baseline. For that, we
employed F-contrasts to draw inferences about the BOLD
responses captured by the canonical HRF and the addi-
tional variability captured by its derivatives. Using F-
contrasts allowed us to examine the overall BOLD signal
changes related to SWEs. Results were considered signif-
icant for Puncorr < 0.001 with a cluster extent threshold
of 50 voxels at the voxel level and for PFWEcorr < 0.05
at the cluster level. For further analyses, we calculated
mean F-values for each individual BOLD response pat-
tern comprising the F-values of all its voxels showing
significant BOLD signal changes. To examine significant
BOLD activity changes upon SWE occurrence in the cor-
tex and thalamus separately, we generated ROI masks
with WFU PickAtlas (Maldjian et al. 2003) and extracted
the number of activated voxels and mean F-values within
those regions.

The specificity of the SWE-related BOLD responses was
tested by temporally mirroring the SWE vectors within
the same recording sessions. The mirrored vectors con-
tained the same number of events, the same distribution
of event durations, and interevent intervals and only dif-
fered in the event onset. The mirrored SWE vectors were
convolved with the canonical HRF and its temporal and
dispersion derivative for event-related fMRI analyses.

Correlational Analyses

For correlational analyses, the number of SWEs and the
mean SWE peak amplitude were determined for each
subject and session. Both parameters were then cor-
related either with the number of activated voxels or
the mean F-value derived from the results of the event-
related fMRI analyses for the total brain, cortex, and
thalamus, respectively.

As an additional parameter to use in correlational
analyses, the percentage of high amplitude SWEs
detected in each single session was defined. SWEs with
a peak amplitude ≥124 μV (equals 1 SD above the mean
amplitude across all sessions) were classified as “high-
amplitude SWEs.” The number of SWEs surpassing this
threshold (≥124 μV) were extracted and divided by
the number of total SWEs detected in the individual
sessions, and their extent of occurrence was described
in percentages. This parameter was also then correlated
to the number of activated voxels or the mean F-
value derived from the results of the event-related
fMRI analyses for the total brain, cortex, and thalamus,

respectively (Supplementary Figs 2 and 3). Furthermore,
the threshold for high-amplitude SWEs was varied to
examine the consistency of the correlation indices. The
variations included the following thresholds for SWEs to
be considered a high-amplitude SWE: ≥100 μV, ≥140 μV
and ≥160 μV (Supplementary Figs 2 and 3). Bivariate
correlation analyses were performed on MATLAB 9.6.0
(R2019a) (The Mathworks Inc.). Results were considered
significant for P < 0.05.

Examination of Interevent Intervals

To calculate the duration of intervals between two con-
secutive SWEs, here called interevent intervals (IEIs), the
offset time of a SWE was subtracted from the onset time
of a successive SWE. To produce the box-whisker plot, the
IEIs of all SWEs detected throughout the whole sample
were included (Fig. 2B). For the dot plot on the other hand,
the individual median IEIs for each session were com-
puted (Fig. 2C). Values outside 1.5 times the interquartile
range (IQR) above the upper quartile (Q3) and below the
lower quartile (Q1) were considered outliers and are not
shown in the box-whisker plot and the dot plot depicted
in Figure 2.

Results
Pipeline for Event-Related Analyses
in Resting-State EEG-fMRI Recordings
Firstly, we employed optic fiber–based calcium record-
ings alongside resting-state fMRI recordings to identify
the brain-wide BOLD-signal correlate of SWE in anes-
thetized rats (Fig. 1A–C). We have already demonstrated
(Stroh et al. 2013; Schwalm et al. 2017) that electrical
recordings of population activity and optical popula-
tion recordings of action potential–related intracellular
calcium elevations capture identical SWEs (Fig. 1B). The
individually detected slow calcium waves were used as
regressors in event-related fMRI analyses (Fig. 1C; Friston
et al. 1998). Using event-related fMRI analyses, we previ-
ously observed a cortex-wide BOLD signal correlated with
individually detected slow calcium waves (Schwalm et al.
2017; Aedo-Jury et al. 2020).

For the translation of the abovementioned approach of
using neurophysiological events as regressors in event-
related fMRI analyses, in the present study, we analyzed
human sleep EEG-fMRI data as SWEs typically emerge
during natural sleep. (Fig. 1D–F). We examined data from
10 healthy participants with two distinct sessions of
night sleep per individual. Data had been acquired and
published in a previous study by Bergmann et al. (2012).

In analogy to the slow calcium waves optically
recorded in anesthetized rodents, 32-channel EEG
recordings were used to identify individual SWEs based
on their EEG signature (Fig. 1E). SWEs were detected using
a published slow wave detection toolbox (Mensen et al.
2016). For the detection of SWEs, first, a canonical signal,
that is, the negative-going signal envelope across all
EEG channels was calculated. Next, SWEs were detected
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Figure 1. Translational approach for SWE-related fMRI analyses in humans. (A) Scheme of opto-fMRI setup enabling simultaneous fiber-based calcium
and fMRI recordings in anesthetized rodents. (B) Traces of simultaneous optical calcium and local field potential (LFP) recordings implying a correlation
of slow calcium waves with electrically recorded SWEs under isoflurane anesthesia. (C) Upper part: Scheme of the data analysis procedure. Slow calcium
wave events were converted to SWE vectors that were included in subsequent event-related fMRI analyses. Lower part: BOLD activation pattern upon
event-related fMRI analysis in the rat brain. Panels A, B, and C are adapted by courtesy of Schwalm et al. (2017). (D) Scheme of simultaneous EEG-
fMRI setup in sleeping humans. (E) Excerpts of EEG traces to illustrate successful detection of individual SWEs in the present EEG data. (F) Upper part:
Scheme of data analysis procedure in the present study—Analogous to animal data analysis procedure. Individually detected SWEs were converted to
SWE vectors including the precise timing of the events. Lower part: Depiction of an exemplary fMRI design matrix containing among others the SWE
vector convolved with the canonical HRF and its temporal and dispersion derivative.

in the negative signal envelope by the application of a
procedure based on the detection of negative half-waves
(Mölle et al. 2002; Riedner et al. 2007). Negative half-
waves having a duration between 250 and 1000 ms and
passing the minimum amplitude threshold of 60 μV
were considered SWEs. In general, the procedure to
identify SWEs based on the detection of negative half-
waves can be applied to a variety of canonical signals.
A canonical signal can be obtained, for example, by
calculating the mean activity over a single circular region
of the electrode array. Instead, multiple canonical waves
can be computed by taking the mean activity of, for
example, four regions equidistant around the center as
previously applied by Massimini et al. (2004). Regional
signal averaging approaches have some disadvantages,
such as the canonical wave will not take local SWEs
outside the specified regions into account. Thus, they
cannot be detected. In contrast, regions specified too
large might result in a mean activity which is no longer
representative for that area. Again, SWEs could be
missed. Choosing the negative signal envelope as a
canonical signal, as done in the present work, solves
the abovementioned potential issues and holds several
advantages. The most negative samples can originate
from any channel in the data and are not limited to
a specific region. In addition, one canonical signal is
representative of the whole dataset. Furthermore, having

no regional restrictions allows the identification of both
local and widespread SWEs with a precise time reference
across all channels (Mensen et al. 2016).

The traces of the individual electrodes displayed
temporal dynamics typical for slow wave activity: SWEs
did not occur at a fixed frequency as, for example, delta
oscillations (Walter 1937) but in rather temporally broad
interevent intervals (Fig. 2A–C, Supplementary Fig. 4).
Here, the interquartile range of the interevent intervals
of all SWEs was from 1.5 to 17 s (0.7–0.06 Hz), well below
the frequency of delta oscillations which rather appear
in the range between 1 and 4 Hz (Steriade 2006).

SWEs are not limited to distinct sleep stages and
can even occur albeit locally in the awake condition
(Vyazovskiy et al. 2011). We did not differentiate our
analysis based on these stages but included all vigilance
stages. Even in rather brief periods of wakefulness, we
could detect SWEs. Characteristics like event duration
(ms) and peak amplitude (μV) of SWEs occurring
throughout different vigilance stages were in similar
ranges (Fig. 2D,E, Supplementary Fig. 5). The peak ampli-
tudes of SWEs occurring in sleep stage N2 were slightly
higher than those of N3 SWEs and the durations of awake
and N1 SWEs were longer than the durations of N2 and
N3 SWEs.

The simultaneous recording of SWE dynamics by 32
EEG electrodes allowed for the identification of temporal
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Figure 2. SWEs are characterized by varying IEIs both on intra- and interindividual level. (A) Three different exemplary EEG data segments of a single
subject illustrate the variety of IEIs of SWEs. The rows show epochs (≈ 18 s) of artifact-corrected EEG signal of channel Fz. (B) Box-whisker plot shows
the distribution of IEIs of all SWEs detected in this study. (C) Depiction of median IEIs of n = 17 individual sessions. (D) Box-whisker plots illustrate the
distribution of peak amplitudes (μV) of all SWEs occurring in wakefulness, in sleep stage N1, in sleep stage N2, and in sleep stage N3, respectively.
Mann–Whitney U tests indicated that peak amplitudes of awake SWEs (Mdn = 81.2 μV) did not significantly differ from the peak amplitudes of N1 SWEs
(Mdn = 81.2 μV) (U = 2093, P = 0.85), of N2 SWEs (Mdn = 84.6 μV) (U = 174 773, P = 0.19), and N3 SWEs (Mdn = 78.1 μV) (U = 349 908, P = 0.08). Furthermore,
peak amplitudes of N1 SWEs did not significantly differ from the peak amplitudes of N2 SWEs (U = 20 037, P = 0.74) and N3 SWEs (U = 32 900, P = 0.4).
However, the peak amplitudes of N2 SWEs and N3 SWEs significantly differed from each other (U = 2 753 639, P < 0.001). (E) Box-whisker plots show the
distribution of durations (ms) of all SWEs appearing in wakefulness, in sleep stage N1, in sleep stage N2, and in sleep stage N3, respectively. Although
the durations of SWEs occurring in wakefulness (Mdn = 620 ms) did not significantly differ from the durations of N1 SWEs (Mdn = 765 ms) (U = 1870,
P = 0.85), they were significantly longer than the durations of N2 SWEs (Mdn = 540 ms) (U = 157 876, P < 0.001) and N3 SWEs (Mdn = 525 ms) (U = 269 824,
P < 0.001). Likewise, the durations of N1 SWEs were significantly longer than the durations of N2 SWEs (U = 14 927, P = 0.02) and N3 SWEs (U = 25 404,
P = 0.01). There was no significant difference between the durations of N2 and N3 SWEs (U = 3 084 885, P = 0.09).
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Figure 3. SWE-related hemodynamic changes at the single-subject, single-session level. (A) Scheme of the fMRI data analysis procedure. From left
to right: Individually detected SWEs were converted to SWE vectors including the precise timing of the events. These SWE vectors were convolved
with the canonical HRF and its temporal and dispersion derivative for event-related fMRI analyses. An exemplary design matrix shows the individual
GLM which contains the SWE vector convolved with the canonical HRF and its derivatives in time and dispersion, six movement parameters, and a
constant term. (B) BOLD activation maps showing significant changes upon SWE appearance (voxel-level: clusters >50 voxels at Puncorr < 0.001; cluster-
level: PFWEcorr < 0.05) for sessions A and B of all subjects, respectively. Color bars indicate F-values. Of note, intrasubject variability can be appreciated
comparing between sessions, for example, sub-04 session A versus sub-04 session B.

delays with regard to the onset of the individual SWEs.
We found a subset of SWE temporal delays with SWE
propagation (Supplementary Fig. 6). The median propa-
gation speed of 2.4 m/s is well within the range of earlier
studies (Massimini et al. 2004; Avvenuti et al. 2020).

For the analysis of the simultaneously recorded
task-free fMRI recordings, the onset and duration of
each individually detected SWE were extracted and
vectors including the precise timing of the SWEs were
constructed.
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Table 1. BOLD signal changes in SWE-related brain activity

Session A Session B

Cluster level Peak level Cluster level Peak level

ID pFWE-corr kE x y z F-value pFWE-corr kE x y z F-value

sub-01 <0.001 14 391 54 −67 29 24.69 <0.001 34 236 −6 −76 −34 58.20
sub-02 <0.001 3838 −9 −79 38 25.82 <0.001 12 198 9 −79 −22 30.60
sub-03 <0.001 12 273 −42 −31 11 30.96 <0.001 1100 −39 −73 −37 17.14
sub-04 <0.001 23 119 33 20 −4 33.68 <0.001 10 267 9 −91 −10 37.08
sub-05 <0.001 8778 9 −70 35 24.78 <0.001 1176 3 −79 −22 21.60
sub-06 <0.001 44 500 −33 −67 −28 98.04 <0.001 20 432 6 −73 −25 51.65
sub-07 <0.001 53 061 0 2 2 209.83 <0.001 29 525 −51 −61 −34 50.21
sub-08 <0.001 49 391 −27 −61 −28 217.39 <0.001 8466 −30 −61 −28 45.53
sub-09 <0.001 8261 −45 −82 8 25.67 <0.001 13 309 30 −40 −31 27.41
sub-10 <0.001 17 432 0 −70 −22 44.40 <0.001 62 −33 −40 62 8.98

Notes: The table shows MNI coordinates (x, y, z) and F-values for clusters (kE) holding peak BOLD signal changes for each individual subject and session
significant at Puncorr < 0.001 (cluster size >50 voxels) at voxel level and PFWEcorr < 0.05 at cluster level.

Macroscopic BOLD Signature of SWEs
Based on the SWE vectors, we modeled individual GLMs
(see Figs 1F and 3A). For that, we convolved the SWE
vector with the canonical HRF and its derivatives in time
and dispersion and included six movement parameters
and a constant term. We examined the main effect of
SWEs relative to the baseline to see if there is a specific
BOLD signature in response to SWEs.

Overall, 5459 (M ± SEM, 273 ± 53.1) SWEs per session
per participant were identified in the present analy-
sis. Employing the aforementioned approach using a
regression vector derived from these SWEs resulted in
distinct BOLD activation maps in 20 out of 20 recording
sessions (sub-01 to sub-10, sessions A and B, Fig. 3B and
Table 1). In seven sessions, we found large, spatially
connected significant clusters exceeding 20 000 voxels
(sub-01-B, sub-04-A, sub-06-A, sub-06-B, sub-07-A, sub-
07-B, and sub-08-A). These connected clusters covered
large sections of the cortex typically including the
occipital, parietal, temporal, and frontal lobes. These
spatial activation patterns are reminiscent of cortex-
wide activations in rodent models (Schwalm et al.
2017; Aedo-Jury et al. 2020). In 12 further sessions,
the number of voxels showing significant BOLD signal
changes upon SWE occurrence ranged between 4161
and 17 519 voxels (sub-01-A, sub-02-A, sub-02-B, sub-
03-A, sub-03-B, sub-04-B, sub-05-A, sub-05-B, sub-08-
B, sub-09-A, sub-09-B, and sub-10-A). However, for one
session, a single localized significant cluster showing
BOLD signal changes in 62 voxels was identified (sub-10-
B).

The approach to employ neurophysiological events as
regressors as in classical event-related fMRI analyses
enabled us to identify differential BOLD signatures of
SWEs both in cortical and subcortical structures.

Most prominently, the strongest BOLD signal changes
within the individual sessions were revealed in the cere-
bellum (sub-01-B, sub-02-B, sub-03-B, sub-05-B, sub-06-
A, sub-06-B, sub-07-B, sub-08-A, sub-08-B, sub-09-B, and

sub-10-A). Furthermore, areas with peak BOLD signal
changes included the parietal lobe (sub-01-A, sub-02-A,
sub-05-A, and sub-10-B) and the occipital lobe (sub-04-B
and sub-09-A). For three further sessions, the peak BOLD
signal changes were in either the temporal lobe (sub-03-
A), the frontal lobe (sub-04-A), or the thalamus (sub-07-A)
(Table 1).

Notably, upon SWE appearance significant BOLD sig-
nal changes in the thalamus were found in 17 record-
ing sessions (Table 2). The occurrence of BOLD signal
changes in relation to SWEs in the thalamus are in line
with earlier studies demonstrating a strong involvement
of the thalamic circuit in SWE dynamics (Steriade et al.
1993; Timofeev et al. 2001; Stroh et al. 2013; Sheroziya
and Timofeev 2014).

To further test for the specificity of the SWE vec-
tors to the related BOLD responses, a control pro-
cedure was conducted. SWE vectors were tempo-
rally mirrored and resulted in no BOLD responses for
15 out of 20 recording sessions. For the remaining
five sessions (sub-03-A, sub-04-B, sub-05-B, sub-06-
B, and sub-10-B), there were random localized BOLD
responses with F-values substantially differing from
the responses obtained by the original SWE vectors
(Supplementary Fig. 7).

Amplitude and Number of SWEs
Significantly Correlate to the Spatial
Extent of the BOLD Patterns
Although we could identify in individual subjects a
widespread BOLD activation upon SWE occurrence, in
other subjects and sessions we observed rather small
clusters. The number of SWEs varied dramatically
between sessions, ranging from 9 up to 960 SWEs
(M ± SEM, 273 ± 53.1). We therefore asked whether
the spatial extent of the BOLD responses depend on
the number of SWEs. We indeed found a significant
correlation between the number of activated voxels
and the number of SWEs (r = 0.78, P < 0.001) (Fig. 4A,C).
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Table 2. Thalamic BOLD signal changes upon SWE occurrence.

Session A Session B

Left thalamus Right thalamus Left thalamus Right thalamus

ID x y z Voxels x y z Voxels x y z Voxels x y z Voxels

sub-01 - - - - 3 −19 11 63 −6 −16 11 227 12 −10 2 285
sub-02 - - - - - - - - 3 −16 8 83 −3 −19 8 62
sub-03 −3 −19 8 57 - - - - - - - - - - - -
sub-04 −15 −19 11 159 9 −19 5 134 −6 −19 5 190 6 −19 2 110
sub-05 9 −19 2 68 −9 −19 11 103 −6 −13 8 66 6 −10 5 94
sub-06 9 −31 5 305 −3 −16 8 296 9 −31 8 234 −3 −19 11 225
sub-07 3 −22 8 299 −3 −16 11 287 −6 −4 5 164 3 −22 8 190
sub-08 3 −4 5 286 −3 −7 5 286 −3 −7 5 123 3 −7 5 88
sub-09 21 −34 2 106 −12 −25 11 59 - - - - 6 −19 −1 51
sub-10 3 −10 11 201 −3 −16 8 202 - - - - - - - -

Notes: The table provides the number of activated voxels within the right and left thalamus and MNI coordinates (x, y, z) for peak BOLD signal changes within
these regions for each individual subject and session, respectively.

More SWEs lead to larger spatially connected clusters
showing BOLD signal changes. Note that as SWEs are
detected in the canonical wave, the number of SWEs is
independent from the number of EEG electrodes involved
in SWEs across a session. The correlation between
number of SWEs and the number of activated voxels
of SWE-related BOLD responses is therefore independent
from the SWE globality. Additional analyses showed no
significant correlation between mean globality indices
and the number of activated voxels (r = 0.19, P = 0.43,
Supplementary Fig. 8).

Furthermore, the average SWE peak amplitude across
all detected SWEs within a session significantly cor-
related with the number of activated voxels (r = 0.83,
P < 0.001), which might point to the strength of the
local recruitment of the respective neuronal ensemble
to the SWE (Fig. 4B,C). In particular, the high ampli-
tude SWEs (peak amplitude ≥124 μV) seem to drive
the spatial extent of the BOLD activation patterns
(Supplementary Figs 2 and 9).

These findings strengthen the notion of a specific
spatial BOLD signature of SWEs. As the cortex and the
thalamus are critical for the initiation and recruitment
of SWEs (Crunelli and Hughes 2010; Stroh et al. 2013;
Crunelli et al. 2015), we examined cortical and thalamic
BOLD signal changes upon SWE occurrence separately.
The correlation between the number of activated voxels
within those regions and the number of SWEs remained
highly significant for the cortex (r = 0.79, P < 0.001)
(Fig. 5A,C) as well as the thalamus (r = 0.67, P < 0.01)
(Fig. 5D,F). Similarly, a higher average peak amplitude
of SWEs leads to more activated voxels in the cortex
(r = 0.81, P < 0.001) (Fig. 5B,C) and the thalamus (r = 0.78,
P < 0.001) (Fig. 5E,F). Furthermore, the spatial extent of a
cortical activation significantly correlates to the spatial
extent of the thalamic activation (r = 0.85, P < 0.001)
(Supplementary Table 1). The same correlation could be
found for the amplitude, that is, the mean F-value of the
cortical and thalamic BOLD response (r = 0.92, P < 0.001)
(Supplementary Table 1).

Direct Relation Between the Amplitude of a
Neuronal Event and the Amplitude of the Related
BOLD Response
The identification of singular, but uniform, SWEs using
a negative envelope detection method and their fMRI
modeling as individual events allows the assessment of
the potential coupling of the amplitude of the SWEs and
the amplitude of the BOLD signal. Notably, we revealed
a significant correlation between the average amplitude
of the SWEs and the normalized BOLD response, that
is, the mean F-value (r = 0.79, P < 0.001) (Fig. 6). Subjects
with a higher-than-average SWE amplitude and higher-
than-average number of SWEs displayed a significantly
stronger BOLD response. Here again, especially the
high amplitude SWEs (peak amplitude ≥124 μV) had
a substantial effect on the magnitude of the F-values
(Supplementary Figs 3 and 9). Importantly, we found a
linear correlation between the variables SWE amplitude,
SWE number, and the amplitude of the BOLD signal
(Fig. 6).

Discussion
Neurophysiologically well-defined SWEs can be found in
mice and humans, and their main features seem to be
highly preserved across species. SWEs may function as
initiators of local and brain-wide neural synchronization
allowing information transfer between distant brain
regions and likely being involved in processes like
memory consolidation (Tononi and Cirelli 2014; Timofeev
and Chauvette 2017; Crunelli et al. 2018) and synaptic
homeostasis (Tononi and Cirelli 2014). SWE occurrence
and propagation are highly susceptible to excitability
changes and states of their network (Huber et al. 2004;
Huber et al. 2006; Stroh et al. 2013; Busche et al. 2015;
Sanchez-Vives et al. 2017). This susceptibility makes
SWEs an ideal target for studying brain (dys-)function
across species and across diseases. Even though the
original characterization of slow oscillations by Mircea
Steriade and collaborators date back to the early 1990s
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Figure 4. The spatial extent of BOLD signal changes significantly corre-
lates with the number and amplitude of SWEs. (A) Correlation between
the number of activated voxels upon SWE occurrence and the number
of SWEs. (B) Correlation between the number of activated voxels upon
SWE occurrence and the mean peak amplitude of the SWEs. (C) Panels A
and B displayed in a 3D scatter plot. ∗∗∗The correlations are significant at
P < 0.001.

(Steriade et al. 1993), the potential of SWEs as a central
marker of network state has not been fully exploited
in human and translational research yet. SWEs occur
over multiple scales, from single neurons—here termed
Up-Down state transitions—to large-scale EEG—here

termed slow oscillations. SWEs transgress individual
fields of neuroscience, and therefore yield different
termini for a unifying event. In particular, in the field
of human neuroimaging, there had not been a clear
focus on studying SWEs. Here, we started our analyses
by thoroughly defining SWEs in combined EEG-fMRI
measures in healthy human subjects. We did not spa-
tially bias the SWE detection procedure by applying it on
averaged region of interest (ROI) signals over predefined
regions. Performing the SWE detection procedure on the
negative signal envelope of all EEG channels allowed
capturing SWEs appearing in any channel without being
limited to a specific region. Furthermore, dispensing
regional restrictions facilitates the identification of both
local and widespread SWEs. Each SWE detected was
used to construct a SWE vector to identify the brain-
wide signature of SWEs in human neuroimaging data.
Moreover, this approach allows for a post-hoc analysis of
the specific signatures of local versus widespread SWEs.

A Framework for Defining SWEs
in EEG-fMRI Data
It is important to note, that in our view, the term “slow
oscillations,” still widely used in the field, misrepresents
key features of SWEs, chiefly the fact, that these events
do not carry a fixed frequency and are not governed
by a pacemaker. Each SWE is an event in its own right,
depending on the buildup of local state of excitability,
either due to spontaneous activity or due to afferent
input (Crunelli and Hughes 2010; Crunelli et al. 2015;
Pachitariu et al. 2015; Schwalm et al. 2017). We previ-
ously demonstrated that SWEs can be evoked by the
stimulation of less than 50 neurons in layer 5 mouse
cortex (Vyazovskiy et al. 2009; Stroh et al. 2013). Sub-
cortical structures, mainly thalamic nuclei, are involved
in SWE initiation (Crunelli and Hughes 2010; Stroh et al.
2013; Sheroziya and Timofeev 2014; Crunelli et al. 2015),
but, again, not in the sense of a rigid pacemaker. This
clearly separates the SWEs from true oscillations, such as
delta oscillations. The hallmark of SWEs is their varying
interevent intervals. Delta oscillations, on the other hand,
can be easily identified in the FFT as distinct peaks,
normally at around 1–4 Hz (Steriade 2006).

There are various approaches to detect SWEs in EEG
data as there is neither a standard SWE detection method
nor consensus on the detection parameters (Mensen
et al. 2016). Picot et al. (2012) proposed a detection
method for SWEs in EEG recordings by a matching
pursuit algorithm using Gabor functions reproducing
the main targeted waveform characteristics. Moreover,
the “fMRI artifact rejection and sleep scoring” toolbox
offers the option to detect SWEs in EEG recordings
(Leclercq et al. 2011). The detection is performed on
averaged ROI signals (i.e., over four averaged signals)
and based on criteria such as amplitude, slope, and
wave duration (Massimini et al. 2004). In our previous
related work, we employed an algorithm put forward
by Maria V. Sanchez-Vives’ group (Seamari et al. 2007)
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Figure 5. Correlation between SWEs and BOLD is present in two regions critical for SWE initiation and recruitment. (A) Correlation between the number
of activated voxels within the cortex and the number SWEs. (B) Relation between the number of activated cortical voxels and the mean peak amplitude
of SWEs. (C) A 3D scatter plot illustrates both correlations for cortical activation. (D) Correlation between the number of activated voxels within the
thalamus and the number of SWEs. (E) Relation between the number of activated thalamic voxels and the amplitude of SWEs. (F) Both correlations for
thalamic activation displayed in a 3D scatter plot. ∗∗∗The correlations are significant at P < 0.001. ∗∗The correlation is significant at P < 0.01.

and adapted it for the identification of SWE-associated
calcium waves (Schwalm et al. 2017; Aedo-Jury et al.
2020). The algorithm separates slow oscillatory activity
and periods of network quiescence based on exponential
moving average (EMA) filters. Here, we used the “swa-
matlab” toolbox put forward by Giulio Tononi’s group
as it holds numerous advantageous features and it is

an attempt to standardize SWE detection for reliable
comparisons of results across studies (Mensen et al.
2016). Of note, the SWE detection algorithm is not able
to differentiate between SWEs and K-complexes. For
that, simultaneous recordings of multiunit activity (MUA)
and electrophysiology would be necessary as conducted
in Cash et al. (2009). The open-source MATLAB-based
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Figure 6. Amplitude of the SWEs drives the amplitude of the BOLD signal. (A) Illustration shows that higher numbers of SWEs and higher mean peak
amplitudes of SWEs give rise to stronger mean F-values in the BOLD signal. (B) 3D scatter plot displays the correlation between mean F-values and the
mean peak amplitude of SWEs (r = 0.79, P < 0.001) and between mean F-values and the number of SWEs (r = 0.85, P < 0.001). Individual dots marked with
letters correspond to the examples in panel A.

toolbox (The Mathworks Inc) provides a user-friendly
interface allowing the detection and analysis of a variety
of properties of individual SWEs, such as amplitude,
slopes, topographic location, and globality. In particular,
the detection algorithm based on the calculation of the
negative signal envelope is a highly suitable tool in the
context of our research as it has enhanced sensitivity to
detect widespread SWEs as opposed to, for example, the
calculation of the mean activity of a specified region.
Here, 95% of the SWEs detected were of widespread
nature (>50% of electrodes recruited by a SWE). This
feature is of high value for future examinations of
early network dysregulations in slow wave activity in
neurological disorders as particularly the widespread
SWEs are impeded, for example, due to local ensembles
of hyperactivity (Busche et al. 2015).

Signature of SWE in Human Neuroimaging Data
Particularly for the long-standing question “to which
extent resting-state fMRI signature corresponds to
neurophysiological events or other physiological or non-
physiological sources”, slowly fluctuating signals in EEG
were correlated to fMRI BOLD contributing to our current
understanding that at least a substantial component of
the resting-state fMRI signal reflects changes in neuronal
activity (Pan et al. 2013; Thompson et al. 2014). We
focused our efforts in converting the task-free, resting-
state fMRI data post hoc into an event-related fMRI
design. We did not correlate these two signals, EEG on the
one hand and fMRI on the other hand, but constructed

regression vectors of the SWEs detected via the EEG to
perform an event-related fMRI analysis. We pioneered
this approach in rodents with simultaneous optic fiber–
based identification of SWE-associated slow calcium
waves and fMRI, back-to-back with Markus Rudin’s group
(Schlegel et al. 2018). We did not attempt to identify
all sources of the fMRI BOLD signal fluctuations but
extracted the component which is directly related to the
occurrence of individual SWEs. In this study, we took a
decisive next step and implemented an analysis on the
correlation between both the number of SWEs and the
strength of the local recruitment, that is, the amplitude
of SWEs. Particularly the SWE analysis toolbox used
here enables a quantitative and robust measure of SWE
amplitudes and SWE globality.

A seminal previous study in humans reported slow
waves to be predominantly local in nature (Nir et al.
2011). The authors analyzed simultaneously recorded
scalp EEG, intracerebral EEG, and unit firing in multi-
ple brain regions of neurosurgical patients. This pro-
vided them with maximum high temporal but somewhat
limited spatial resolution as intracerebral EEG and unit
firings were almost exclusively recorded in the cortical
and subcortical structures. Compared to Nir and col-
leagues, our simultaneous EEG-fMRI approach is surely
limited by the comparably poor temporal resolution of
the BOLD fMRI response. However, by selecting singu-
lar SWEs often being separated by seconds rather than
continuous (rhythmic) slow wave activity (as in Nir et al.
2011), we may have picked different phenomena in the
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two studies. The selection of singular, temporally spaced
SWEs also lessens the problem of the temporally ill-
defined BOLD response as the temporal occurrence of the
SWEs is in the range of the BOLD response and perfectly
fits event-related fMRI designs. In addition, whole brain
fMRI prevents the spatial bias which is inherent to intrac-
erebral EEG and unit firing recordings and may therefore
pick up more spatially distributed activity. However, high
temporal relation of scalp EEG to intracerebral EEG and
unit firing may for sure imply causal relation of intra-
and extra-cerebral electrical activity whereas EEG-fMRI
is by far more correlational. In sum, both studies provide
rather complementary than contradictory results con-
cerning the nature of sleep-related slow waves and SWEs,
respectively.

At this point, it is important to make use of the syn-
ergistic information provided by simultaneous EEG-fMRI
recordings. Although EEG exhibits a high temporal res-
olution it lacks the spatial precision to resolve subcorti-
cal structures. In contrast, fMRI mainly lacks temporal
resolution but can provide valuable information on the
spatial signature of SWEs and particularly on the involve-
ment of subcortical structures, such as the thalamus.

Neurophysiologically Defined SWEs Drive the
Spatial Extent and Amplitude of the BOLD Signal
Deciphering the principles of neurovascular coupling
represents a vivid field of research; it is very likely that
multiple mechanisms are involved (Uhlirova et al. 2016;
Iadecola 2017; Mishra 2017). Our current understanding
is that the BOLD response is mainly driven by synaptic
activity (Logothetis et al. 2010). However, quantitative
interpretations of the amplitude of a BOLD signal to
the underlying output, that is, spiking activity of a given
region remains inconsistent. The SWE as measured via
EEG reflects the population equivalent of the transition
of neurons from Down to Up state. These transitions
govern both subthreshold, synaptic activity, and spiking
activity as both are drastically reduced in the Down
state. While the individual contributions of sub- versus
suprathreshold activity to the BOLD signal can still not
be quantified, it is clear that the onset of a SWE at a
given location of a network signifies a drastic change in
local excitability (Bergmann et al. 2012). For this signal,
that is, the SWEs, we do find a linear relation between
not only the number of SWEs but also the amplitude of
the local event to the amplitude of the BOLD signal. This
particular SWE—BOLD relation may pave the way for
quantitative analyses in central nervous system (CNS)
disorders, in which the propagation and the recruitment
of these events are perturbed.

SWE Centered Analysis of Human Neuroimaging
Data: Is it a New Translational Tool for Capturing
Early Network Dysregulations in
Neurodegeneration?
SWEs constitute a synchronized transition of a local
population of neurons from the hyperpolarized Down

state to the depolarized Up state. Indeed, most excita-
tory and inhibitory neurons fire exclusively during Up
state (Steriade et al. 1993; Sanchez-Vives and McCormick
2000). The resulting increase in action potential rate
during the SWE can be captured by single cell recordings,
optical population recordings, or by EEG. These SWEs are
not stationary but propagate from a local origin—like a
stone thrown into a quiet lake—and recruit also distant
brain regions. But this can only occur if the neurons at
the propagation front can smoothly transition to the Up
state. To relate back to the metaphor of throwing a stone
into a lake, on a windy day with various spontaneous
waves in between, a widespread propagation of the single
event will not be possible. And indeed, this seems to be
the case in early stages of neurodegeneration, in which
local hyperexcitability occurs: The propagation of SWEs
is highly distorted (Busche et al. 2015). The notion of an
early hyperactivity across disease gained momentum in
the recent years, from diseases as distinct as multiple
sclerosis (Ellwardt et al. 2018) to Alzheimer’s disease (AD)
(Busche et al. 2015) and Huntington’s disease (Arnoux
et al. 2018). These early hyperactivities might contribute
to the impairment of memory consolidation, via the
distortion of SWE propagation as observed in the AD
disease model in mice (Busche et al. 2015). Based on these
observations (Busche et al. 2015), the framework put for-
ward in this study might enable generating a biomarker
for (early) network changes in human neuropsychiatric
disorders.

Focusing on single-subject analyses is an effective
way to assess the unique functional fingerprint of
early network dysregulations, which significantly varies
between individuals and cannot be preserved in group
analysis. Using, for example, cross-correlations of
distant brain areas (Busche et al. 2015) in relation to
functional coupling analyses of SWEs could constitute
a functionally significant, secondary biomarker of early
network alterations way before classical neuroimaging
markers of functional and structural change may be
detectable (Busche et al. 2015). Hence, the logical next
step is to develop further indices of SWE propagation
in human imaging data and test their validity to detect
hampered SWE propagation and to test their predictive
value concerning the development of future disease.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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Crunelli V, David F, Lőrincz ML, Hughes SW. 2015. The thalamocor-
tical network as a single slow wave-generating unit. Curr Opin
Neurobiol. 31:72–80.

Crunelli V, Hughes SW. 2010. The slow (<1 Hz) rhythm of non-REM
sleep: a dialogue between three cardinal oscillators. Nat Neurosci.
13(1):9–17.
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