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ABSTRACT
◥

High-grade serous cancer (HGSC) is the most common subtype
of ovarian cancer. HGSC is highly aggressive with poor patient
outcomes, and a deeper understanding of HGSC tumorigenesis
could help guide future treatment development. To systematically
characterize the underlying pathologic mechanisms and intratu-
moral heterogeneity in humanHGSC, we used an optimized single-
cell multiomics sequencing technology to simultaneously analyze
somatic copy-number alterations (SCNA),DNAmethylation, chro-
matin accessibility, and transcriptome in individual cancer cells.
Genes associated with interferon signaling, metallothioneins, and
metabolism were commonly upregulated in ovarian cancer cells.
Integrated multiomics analyses revealed that upregulation of inter-
feron signaling and metallothioneins was influenced by both
demethylation of their promoters and hypomethylation of satellites
and LINE1, and potential key transcription factors regulating
glycolysis using chromatin accessibility data were uncovered. In

addition, gene expression and DNA methylation displayed similar
patterns in matched primary and abdominal metastatic tumor cells
of the same genetic lineage, suggesting that metastatic cells poten-
tially preexist in the subclones of primary tumors. Finally, the
lineages of cancer cells with higher residual DNA methylation
levels and upregulated expression of CCN1 and HSP90AA1 pre-
sented greater metastatic potential. This study characterizes the
critical genetic, epigenetic, and transcriptomic features and their
mutual regulatory relationships in ovarian cancer, providing valu-
able resources for identifying new molecular mechanisms and
potential therapeutic targets for HGSC.

Significance: Integrated analysis of multiomic changes and
epigenetic regulation in high-grade serous ovarian cancer provides
insights into the molecular characteristics of this disease, which
could help improve diagnosis and treatment.

Introduction
Ovarian cancer is one of the leading causes of gynecologic cancer

death (1), due in part to its high heterogeneity. High-grade serous
cancer (HGSC) is themost aggressive and common subtype of ovarian
cancer (comprising approximately 70% of all cases). HGSC is generally
diagnosed at an advanced stage, presenting with extensive metastases
and massive ascites. Despite an initial clinical response to the surgery
and chemotherapy, the majority of patients will relapse with fatal

outcomes.Hence, understanding the pathologicmechanisms ofHGSC
initiation, promotion, and progression will be of great value.

Intratumor heterogeneity (ITH) is one of the most challenging
obstacles to study HGSC (2). Previous studies have revealed the
heterogeneity of HGSC in single-nucleotide variations (SNV), somatic
copy-number alterations (SCNA), aberrant transcriptomic programs,
and tumor subtypes (3–5). However, these studies are usually based on
bulk sequencing, which permits only tissue-level resolution and has
limited ability to illustrate ITH. In addition, tumor development
involves not only alterations in the genome and transcriptome, but
also extensive epigenetic changes, which remain to be comprehen-
sively analyzed in HGSC.

Single-cell sequencing provides a powerful tool for the study of ITH.
Most studies have used single-cell RNA sequencing (scRNA-seq) to
characterize different phenotypic cell states of cancer cells (6–9).
However, to accurately explore the dynamic changes of tumor pro-
motion (i.e., the changes between normal tissues and primary tumors)
and progression (i.e., the changes between primary tumors and
metastases), reconstruction of the genetic lineages of cancer cells is
necessary. Naturally occurring genomic mutations, like SNVs and
SCNAs, leave the real signatures to trace evolutionary histories of
cancer cells, which can be detected by single-cell DNA sequencing.
Besides tracing the genetic lineages and revealing the phenotypic
changes during tumorigenesis, we also wondered the epigenetic altera-
tions and their regulation on phenotypes during tumor promotion and
progression. Thus, we improved single-cell multiomics sequencing
technology (scCOOL-seq; ref. 10) to simultaneously assess the SCNAs,
DNA methylome, chromatin accessibility, and transcriptome in the
same individual cells. Using improved scCOOL-seq, we reconstructed
the genetic lineages using SCNAs. Tracing the genetic lineages, we
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characterized the multiomics changes as well as the epigenetic regu-
lation of phenotypes from normal cells to primary tumor cells and
further tomatchedmetastatic cells. Our study offers deeper insights for
HGSC and provides a valuable resource for developing new thera-
peutic strategies.

Materials and Methods
Study approval

This study was approved by the ethics committee of the Peking
University People’s Hospital (License No. 2019HPB034-01) and was
conducted in accordance with the Declaration of Helsinki. All patients
provided the written informed consent before the surgery.

Clinical samples
No patient received any tumor-related treatment before surgery.

Fallopian tubes (FT) were obtained from patients who underwent
hysterectomy with bilateral salpingo-oophorectomy (BSO) for benign
and malignant gynecologic diseases (patient OC20, OC21, OC25,
OC26, and OC28) and risk-reducing salpingo-oophorectomy (RRSO)
surgery (patient OC22). Only epithelial cells obtained from patholog-
ically normal FT tissues and proved to have no SCNAs using improved
scCOOL-seq were considered as normal control cells.

Single cell preparation
The fresh specimens were digested into single-cell suspensions

using the MACS Tissue Dissociation Kit (Miltenyi Biotec, #130-
095-929). Epithelial cells of tumor tissues were isolated by magnetic
activated cell sorting (MACS; CD326 Microbeads, Miltenyi Biotec,
#130-061-101, RRID: AB_2832928). The live normal fallopian tube
epithelial (FTE) cells were sorted by FACS using the anti-human
CD326 antibody (BioLegend, #324208, RRID: AB_756082) and 7AAD
(BD Pharmingen, #559925).

Library construction of improved scCOOL-seq
The sorted single cells were first treated by the GpC methyltrans-

ferase (NEB, #M0227L). Next, each cell was incubated with prewashed
carboxylic acid dynabeads (Invitrogen, #65011) to separate the nuclei
from the RNA-containing cytoplasm according to the scTrio-seq2
protocol (11).

The supernatant containing mRNA was processed following the
modified STRT-seq protocol (12). The nuclear DNA fraction was
processed following a previously described method (13). Briefly, the
nuclei with magnetic Dynabeads were treated with bisulfite (Zymo
Research, #D5044) and were then amplified using random primers
with anchor sequence. After purification by AMPure XP beads, the
products were amplified by index primers for 16 cycles. The libraries
were finally sequenced on the Illumina HiSeq 4000 platform.

Gene knockout, gene overexpression, and cell viability assay
The human ovarian cancer cell line SKOV3 (RRID: CVCL_0532)

and ES2 (RRID: CVCL_3509) were purchased from ATCC. Cell lines
were authenticated by short tandem repeat (STR) analysis and were
mycoplasma negative. Cells within 20 passages were used in the
study. We used the clustered regularly interspaced short palindromic
repeats (CRISPR)-Cas9 to knockout CCN1. The guide RNA (gRNA)
sequences are as follows: gRNA1: CGCGCACTTGGGCGCCTCCA;
gRNA2: GCAGATCCCCTTCAGAGCGG. Overexpression ofHSPA6
was performed by transfecting the overexpression plasmid using
Lipofectamine 3000 Reagent (Invitrogen, #L3000150) as described
previously (14). The HSP90AA1 inhibitor TAS-116 was purchased

from Selleck Chemicals (#S7716). Cell viability was analyzed by the
CellTiter-Glo 2.0 Assay (Promega, #G9241).

Wound healing assay
When cells grew to full confluence, a wound was scratched using a

200-mLmicropipette tip. The cells werewashedwith PBS to remove the
cell debris and then grown in serum-free medium. The wound healing
results were recorded using a phase-contrast microscope (Leica), and
the migration areas were calculated using the ImageJ software.

Transwell assays
Transwell assays were performed with transwell chambers (Coring,

#3422) with or without coating with Matrigel (Corning, #356231) to
measure the invasion and migration ability, respectively. Cells were
harvested in serum-free medium and seeded into the upper chambers.
After 24-hour incubation, the cells in the lower chambers were fixed
and stained, and cells in the upper chambers were removed with a
cotton swab. The photographs were taken using a microscope and the
cell numbers were counted using ImageJ software.

Data availability
The raw data have been deposited in the Genome Sequence Archive

(GSA) under the accession number HRA000360 and are available
upon reasonable request. The processed data associated with SCNAs,
DNA methylome, chromatin accessibility, and transcriptome have
been submitted to the Gene Expression Omnibus (GEO) database
under the accession number GSE189955.

Code availability
Customized codes for data analysis are available at https://github.

com/hlxie.

Results
Single-cell multiomics sequencing reveals tumor heterogeneity
in HGSC

Here, using improved scCOOL-seq, we profiled normal fallopian
tubes, primary tumors, and matched metastases to unveil the molec-
ular characteristics associated with tumor development (Fig. 1A;
Supplementary Fig. S1A). To cover ITH as much as possible, the
tumor tissues were processed with a multiregional sampling strategy.
To avoid variations resulting from treatment effects and disease stages,
only patients who were treatment-na€�ve and had stage III or IV disease
were enrolled in our study (Supplementary Table S1).

We first sequenced the RNA compartment of single cells and obtained
single-cell transcriptomes for a total of 5,329 cells (Supplementary
Table S1). On average, 4,701 genes were detected per cell (Supplementary
Fig. S1B). We distinguished cancer cells and normal FTE cells from
stromal cells in three steps. First, according to clusteringanalysis andwell-
known cell type-specific marker gene expression, cells can be classified as
epithelial cells, T cells, macrophages, and fibroblasts (Fig. 1B; Supple-
mentary Fig. S1C). Second,we used the R package InferCNV (15) to infer
SCNAs based on averaged expression levels across chromosomal inter-
vals (Fig. 1C). Next, we sequenced the nuclear fractions for some of the
epithelial cells fromtumor tissueswith inferredSCNAsandepithelial cells
from FTswithout inferred SCNAs.We profiled the SCNApatterns using
theDNAmethylomedata of these selected cells (called “genomicSCNAs”
for short; Fig. 1D; Supplementary Figs. S1D and S1E; Supplementary
Fig. S2). Finally, we defined the epithelial cells with specific genomic
SCNAs as cancer cells and epithelial FT cells without genomic SCNAs as
normalFTEcells.Cancer cells display great interpatientheterogeneities as
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previously reported (6–9), whereas FTE cells and stromal cells exhibit low
interpatient heterogeneities (Fig. 1B).

Reconstruction of the genetic lineages of cancer cells
We reconstructed genetic lineages of cancer cells in the same patient

using the improved scCOOL-seq genome data. Diverse genetic altera-

tions in cancer cells provide hallmarks for lineage tracing, such as
SNVs and SCNAs. Considering that HGSC tumors frequently carry
extensive SCNAs, we used SCNAs to construct the genetic lineages.
SCNAs were classified into regional aberrations and focal aberra-
tions (16). Focal aberrations frequently occur within chromosome
arms and are generally considered irreversible (16, 17). Therefore, we
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Figure 1.

Identification of cancer cells and normal fallopian tube epithelial cells. A, The workflow diagram illustrates the sampling and analysis strategies. B, Uniformmanifold
approximation and projection (UMAP) plot of all single cellswe sequenced. Colors indicate cell types (left), patients (middle), and sampling regions (right). LN, lymph
node; RL, round ligament. C, Global SCNA patterns inferred from RNA data of single cells. Each row of the heatmap represents a single cell. The color bar on the left
represents the patient origin of each single cell. D, The global SCNA patterns profiled by DNA methylome data of single cells at 1-M resolution (top) and schematic
diagram of the evolutionary histories of genetic lineages during tumorigenesis (bottom) for OC09. Each row of the top panel represents a single cell. Each column
represents a chromosome. The representative focal aberrations within chromosome arms used to define genetic lineages are marked. The global SCNA patterns of
other patients were introduced in Supplementary Fig. S2.
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used the breakpoints of subchromosomal focal aberrations to recon-
struct the genetic lineages of cancer cells within the same patient
(Fig. 1D; Supplementary Fig. S2; ref. 11). Cells containing more than
three identical intra-chromosomal breakpoints were considered to
belong to the same genetic lineage (11). Our data show that though
HGSC carry extensive SCNAs, the composition of genetic lineages in
HGSC is relatively simple, compared with colorectal cancer (11). The
majority of HGSC patients (8/9) have only one or two lineages of
cancer cells (Fig. 1D; Supplementary Fig. S2). Especially for OC16,
more than 200 single cells collected from 10 sampling regions all
belonged to the same lineage (Supplementary Fig. S2; Supplementary
Table S1).

Dynamic changes of RNA expression from normal FTE cells to
primary tumor cells

In recent years, the notion thatHGSC originates from fallopian tube
epithelium has been supported by increasing amounts of evi-
dences (18). Thus, we used FTE cells as controls for the following
analyses. According to the genetic lineages, all cancer cells in a given
patient originated from the same ancestor cancer cell (Fig. 1D;
Supplementary Fig. S2). Thus, we compared all primary tumor cells
from the same patient with normal FTE cells to explore the phenotypic
changes associated with tumor promotion.

As shown in Fig. 2A, 187 genes were downregulated in primary
tumors. Gene ontology (GO) analysis shows that the pathways of
eukaryotic translation process and protein ubiquitin were enriched
(Fig. 2B), implying great alterations in protein levels. As an
important organ to produce and response to hormones, the expres-
sion of genes related to hormone responses was also aberrant in
cancer cells.

On the other hand, 361 genes were upregulated in primary tumors
(Fig. 2A). GO analysis revealed that these differentially expressed
genes (DEG) were mainly enriched in pathways associated with
VEGFA-VEGFR2 signaling (such asVEGFA, PGK1, andNRP2), metal
ion homeostasis (such as MT1E, MT1F, MT1G, MT1H, MT1X, and
MT2A), and regulation of viral process (such as ISG15, BST2, STAT1,
and IFI27; Fig. 2B). Of note, genes associated with both of oxidative
phosphorylation (OXPHOS; such as ATP5MC3, ATP5ME, and
ATP6AP1) and aerobic glycolysis (such asALDOA,ENO1, and LDHA)
were upregulated. To investigate whether this phenomenon is due to
the existence of two cell subtypes (one upregulated OXPHOS, and
the other one upregulated glycolysis), we calculated OXPHOS and
glycolysis scores for each cell (see Supplementary Materials and
Methods). The FTE cells and cancer cells could be clearly distinguish-
ed, whereas cancer cells could not be further separated into subtypes
and there were minute variations between patients, suggesting that
cancer cells simultaneously elevated the expression of both OXPHOS
and aerobic glycolytic genes compared with FTE cells (Fig. 2C–E).
Similarly, the patients of TCGA also cannot be divided into two groups
according to the expression of OXPHOS and glycolysis (Fig. 2F).

To further clarify the typical characteristics of HGSC, we also
compared HGSC with four non-HGSC tumors. We found that HGSC
tumors could be clearly separated from non-HGSC tumors by prin-
cipal component analysis (PCA), demonstrating that HGSC had very
distinct transcriptional patterns (Supplementary Figs. S3A and S3B).
Furthermore, the differential expression analysis shows that expres-
sion of metallothionein genes and interferon signaling pathway genes
were also increased in HGSCwhen compared with non-HGSC tumors
(Supplementary Figs. S3C and S3D). Moreover, we performed IHC
staining of ISG15 and BST2 to verify this result at protein levels
(Fig. 2G; Supplementary Figs. S3E and S3F).

The regulation of SCNAs and DNA methylation on gene
expression

HGSC frequently carried strong amplification on chromosome 8
(Chr8; ref. 4). We wondered whether the 361 DEGs upregulated in
primary tumors may be resulted from the amplification of Chr8. We
identified that 46 genes of these 361 genes were on Chr8, which is the
most significantly enriched chromosome for these DEGs (P ¼
2.7E�14, hypergeometric test; Fig. 3A). Interestingly, these 46 genes
were most enriched in the pathways associated with electron transport
chain and OXPHOS (Fig. 3B). We also found that the upregulation of
these 46 genes was associated with shorter overall survival time
(Fig. 3C). In addition, we also observed thatMYC (located on Chr8),
which regulated cell division, OXPHOS and aerobic glycolysis, was
upregulated in 10 out of the 12 patients with HGSC we analyzed
(Supplementary Fig. S4A). The results suggested that the amplification
of Chr8may contribute to tumorigenesis of HGSC through amplifying
themaster regulatorMYC and increasing the dosages of these 46 genes
related to OXPHOS.

DNA methylation is one of the most important epigenomic mod-
ifications, which undergoes extensive reprogramming during tumor-
igenesis and may impact gene expression (19, 20). We then analyzed
the potentially regulatory effects of repeat element methylation, pro-
moter methylation, and distal region methylation on gene expression.

We calculated the DNA methylation levels of whole genome and
different annotated genomic elements (Fig. 3D; Supplementary Figs.
S4B and S4C). For all patients, both satellites and long interspersed
nuclear element 1 (LINE1) exhibited the most dramatic DNA
demethylation (Fig. 3D), even for the cancer cells with global DNA
methylation levels comparable with FTE (OC04,OC08, and lineage A1
in OC05; Supplementary Fig. S4B), indicating that strong demethyl-
ation of satellites and LINE1 is a hallmark of ovarian cancer. Next, to
explore which DEGs were potentially regulated by DNA methylation
of these genomic elements, we calculated the correlations between
RNA expression and DNA methylation of these genomic elements
(Supplementary Table S2). RNA expression of 61DEGs upregulated in
cancer cells were negatively correlated with DNAmethylation levels of
both satellites and LINE1 (Fig. 3E). Interestingly, the higher expres-
sion of genes associated with metallothioneins bind metals and
interferon signaling, the two typical upregulated pathways in HGSC,
was potentially affected by demethylation of satellites and LINE1
(Fig. 3E and G). In addition, we found that the upregulation of these
61 genes was associated with poorer progression-free survival (PFS) in
HGSC (Fig. 3I). As for the DEGs downregulated in primary tumor
cells, we revealed that the genes associated with translation elongation
may result from demethylation of these two repetitive genomic ele-
ments (Fig. 3F andH); and the downregulation these genes predicted
shortened PFS (Fig. 3I).

DNA methylation of gene promoters is one of the most important
regulations of gene expression. Correlation and GO analysis show that
genes associated with metallothioneins bind metals and interferon
signaling are not only potentially regulated by satellite and LINE1
methylation, but also by their promoter methylation (Fig. 3J). Inter-
estingly, themetabolic pathway ofOXPHOSwas significantly enriched
but glycolysis was not (Fig. 3J), indicating that the expression of
different metabolic pathways was regulated by different mechanisms.

The DNA methylation of distal regulatory regions, such as enhan-
cers, may also be involved in gene expression regulation. Thus, we used
MICMIC (21) to identify methylation regulation networks of distal
regulatory regions.We totally detected 16,941 regulatory region-target
pairs (Supplementary Table S3). Of these pairs, 53.9% were antic-
orrelated with the expression of target genes. Most target genes were
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potentially regulated by DNA methylation of less than five regulatory
regions. These results demonstrate that some genes are not only
potentially regulated by the methylation of their promoters, but also
by methylation of distal regulatory regions. For example, the upre-
gulated gene IFI27 (Fig. 3K), whose expression was negatively corre-
lated with its promoter DNA methylation (Supplementary Table S3),
was also negatively correlated with methylation of a distal region
[�235 kb away from IFI27 transcriptional start site (TSS); correlation,
�0.26; P value, 4.8E�13]. In addition, this distal region is overlapped

with a known ovarian enhancer (Fig. 3K) and its flanking regions
exhibit higher chromatin accessibility in primary tumor cells com-
pared with FTE cells, highlighting its putative regulatory roles of IFI27
expression.

Chromatin accessibility and the key transcription factors in
HGSC

Binding of transcription factors (TF) to the cis-regulatory elements
of a gene is a fundamental mechanism of transcription regulation, and
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The regulation of SCNAs and DNA methylation on RNA expression. A, The enrichment of chromosomes using 361 DEGs upregulated in primary tumors.
B and C, GO enrichment (B) and survival analysis (C) using the 46 upregulated DEGs on chromosome 8. D, DNA methylation levels (1-kb tile) of satellites and
LINE1. E and F, Top, Venn plot showing the DEGs whose expression levels were correlated with the methylation levels of satellites and LINE1. E, Upregulated
DEGs whose expression levels were negatively correlated with the methylation levels of satellites and LINE1. F, Downregulated DEGs whose expression
levels were positively correlated with the methylation levels of satellites and LINE1. Bottom, the GO enrichment analysis of the genes that may be potentially
regulated by both of satellite and LINE1 methylation. G, Examples of genes derived from E. mRNA, the gene expression of the corresponding gene; WCG,
the DNA methylation levels of satellites or LINE1. H, Examples of genes derived from F. I, Survival analysis of gene sets derived from E and F. The mean
expression of selected genes from gene sets were used to group patients. J, The GO enrichment analysis of upregulated DEGs (left) and downregulated
DEGs (right) whose expression levels were negatively correlated with their promoter methylation. K, Genome browser view showing that a distal region
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locations. The right bottom boxplot shows the DNA methylation levels of WCG7649168. PT, primary tumor.
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TF access is often regulated by chromatin states. We found that the
global chromatin accessibility of cancer cells tended to be more open
than that of FTE cells (Fig. 4A), whereas the accessibility of regions
adjacent to TSSs was less open in cancer cells than that of FTE cells

(Fig. 4B). In addition, cancer cells had less and shorter nucleosome-
depleted regions (NDR) than FTE cells (Fig. 4C), indicating that the
cancer cells had less open chromatin states of focal open chromatin
regions. The results of different genomic elements show that the
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accessibility of CpG islands (CGI), promoters, and microsatellite
regions evidently decreased in cancer cells (Fig. 4D).

To explore potential key regulators in cancer cells, we performed TF
binding motif enrichment of NDRs using chromVAR (22). In total,
motifs of 107 TFs were more open in cancer cells, whereas 126 were
more closed (Fig. 4E). To further explore which TFs were more likely
to participate in DEG expression regulation, we used Lisa (23) to infer
the transcriptional regulators of the DEGs (Fig. 4F). Of note, NFE2L2
was the most significantly enriched TF predicted using DEGs and
simultaneously its binding motifs were more open in cancer cells than
FTE evaluated by NDRs. Previous studies have verified that NFE2L2
can promote ovarian cancer growth (24) and it is associated with
resistance to chemotherapy (25, 26). However, the expression level of
NFE2L2 has no difference between cancer cells and FTE cells. Of these
107 TFs, expression levels of four TFs in cancer cells are significantly
higher than that in FTE cells: FOXK1, TFAP2C, NR2F6, and DDIT3.
FOXK1 is an important regulator to induce aerobic glycolysis (27, 28),
which was previously proved to facilitate cell proliferation and metas-
tasis in ovarian cancer (27, 29). Considering that the glycolysis
pathway was upregulated in HGSC and the binding motifs of its
transcriptional regulator FOXK1 exhibited high accessibility, we sug-
gested that FOXK1 could be an attractive candidate therapeutic target
for HGSC. For the 126 TFs with more closed chromatin states, several
members of the GATA family were enriched. However, GATA1-5
were almost not expressed in cancer cells and FTE cells (Supplemen-
tary Fig. S5), whereas only GATA6 was expressed and its expression
levels were different between cancer cells and FTE cells. Therefore, we
considered that GATA6 played more important roles during tumor-
igenesis of HGSC among these GATAmembers. Previous studies had
shown that loss of GATA6 expression led to nuclear deformation in
ovarian cancer (30, 31). Here, we also illustrated that GATA6may also
regulate tumorigenesis process of HSGC through affecting the chro-
matin states of its target genes.

The gene expression profiles of abdominal metastases are
similar to their matched primary tumors

After describing several key differences between FTE and primary
tumors, we next explored the differences between primary tumors and
matched metastases. On the basis of genetic lineage analyses, we
compared the primary tumor cells and matched metastases within
the same genetic lineage in the same patient.

Results show that very few genes were differentially expressed for
the patients with abdominal metastases (Fig. 5A) and primary tumor
cells exhibited close relationships to its matched metastatic cancer
cells (Fig. 5B). These results propose that the microenvironment of
abdominal metastases did not strongly affect the global RNA expres-
sion patterns of cancer cells, although the cancer cells have invaded and
proliferated in a different organ, and imply that themetastatic capacity
was probably acquired at an early stage during tumorigenesis. In
contrast, previous studies based on bulk RNA profiling have reported
several differences between primary tumors and metastases (32–34).
Such contradictionmay be caused by different technologies used in the
researches. The DEGs between primary tumors and matched metas-
tases revealed by bulk profiling may reflect the differences of different
genetic lineages of cancer cells or different cell type compositions of the
primary tumors and metastases, but not the actual differences of
cancer cells from the same genetic lineage in the primary tumors and
matched metastases.

Although only a few DEGs between metastases and primary
tumors were shared by different patients (Fig. 5A), these genes may
provide some clues to identify critical genes promoting or suppres-

sing metastasis. For example, FN1 exhibited higher expression in
metastasis of 2 patients (Fig. 5A). Previous studies have proved that
FN1 can promote epithelial–mesenchymal transition and metastasis
in serous ovarian cancer (35, 36). We next tested the functions of
one of the five genes (HSPA6) downregulated in metastases shared
by 2 patients (Fig. 5A). The results showed that overexpression of
HSPA6 inhibited migration and invasion of the cancer cells, sug-
gesting that its downregulation promotes tumor metastasis of
HGSC (Fig. 5C–G).

Cancer cells maintained DNA methylation levels and patterns
during abdominal metastasis

We found that global DNA methylation levels of cancer cells are
stable during abdominal metastasis in most patients (Fig. 6A). Thus,
we speculated that cancer cells maintained the global methylation
characteristics of their genetic lineages during metastasis, so that the
DNA methylation patterns can be used to describe cancer lineage
histories. We then performed unsupervised hierarchical clustering of
DNA methylation (see Supplementary Materials and Methods), and
found that DNA methylation patterns produce similar lineage histo-
ries to those inferred by SCNAs (Fig. 6B; Supplementary Fig. S6). In
contrast, different genetic lineages of cancer cells in the same patient
could not be distinguished based on the clustering of the transcriptome
and chromatin accessibility (Supplementary Fig. S6).

Intratumor heterogeneities of primary tumors provide insights
into the metastasis process

Reconstruction of genetic lineages could unveil ITH and provide
precise routes of metastasis. Different lineages not only have different
SCNAs, DNA methylation levels, and RNA expression patterns but
may also have different metastatic potential. For example, both patient
OC09 and OC14 harbor two genetic lineages (lineage A1 and A2) of
cancer cells, and the lineage A1 had established secondary tumors, but
the other lineage (lineage A2) had not (Fig. 6A). Therefore, we
wondered what kind of primary tumor cells possess greater metastatic
potential. To explore the common upregulated genes in lineage A1 for
patient OC09 andOC14, we performed differential expression analysis
and revealed that CCN1 and HSP90AA1 were upregulated in the
metastasized lineage A1 for both OC09 and OC14 (Fig. 7A), which
prompted us to test if inhibition of CCN1 andHSP90AA1 can suppress
themetastasis of ovarian cancer cells.We knocked outCCN1 using the
CRISPR-Cas9 system in ovarian cancer cell line SKOV3 and ES2
(Fig. 7B; Supplementary Fig. S7B). Results showed that knockout of
CCN1 significantly restrained the migration and invasion of cancer
cells by wound healing assay and transwell assays (Fig. 7C and D;
Supplementary Figs. S7A and S7C). We inhibited HSP90AA1 using
the HSP90a inhibitor TAS-116. We revealed that TAS-116 can dose-
dependently inhibit ovarian cancer cell migration and invasion
(Fig. 7E–G; Supplementary Figs. S7D–S7F). In addition, TAS-116
could significantly suppress the growth of cancer cells in a time- and
dose-dependentmanner (Fig. 7H; Supplementary Fig. S7G). Together,
our results demonstrate that CCN1 andHSP90AA1may participate in
the metastasis of HGSC and may serve as potential therapeutic targets
for ovarian cancer.

To further unveil the shared upregulated pathways of the metas-
tasized lineage between OC09 and OC14, we performed gene set
enrichment analysis (GSEA; ref. 37). Using hallmark gene sets, we
observed hallmarks of interferon gamma and alpha responses were
significantly enriched in the metastasized lineage A1 (Fig. 8A–D).
Consistently, results based on ontology gene sets show that metasta-
sized lineage A1 exhibited higher expression associated with virus
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responses (Fig. 8E and F). In addition, lineage A1 also upregulated
genes involved in blood vessel morphogenesis (Fig. 8E and F). In
OC09, we further showed that the binding motifs of TFs associated
with interferon signaling were more open in lineage A1 than A2
(Fig. 8G).

With respect toDNAmethylation, we identified that, for bothOC09
and OC14, the lineage with lower residual DNA methylation levels
(lineage A2) did not metastasized. To further investigate which
genomic regions were demethylated in nonmetastasized lineage A2,
we performed enrichment analysis of the differentiallymethylated tiles
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Figure 5.

Dynamic changes of RNA expression from primary tumors to metastases. A, UpSet plot visualization of the DEGs between primary tumors and matched
metastases. Left, genes upregulated in metastases; right, genes downregulated in metastases. B, Shared nearest neighbor (SNN) clustering of cancer cells of
patients with metastases based on RNA expression. C and F, Western blot analysis to verify the overexpression of HSPA6 in SKOV3 cells (C) and ES2 cells (F).D and
G, The migration and invasion ability of SKOV3 cells (D) and ES2 cells (G) after HSPA6 overexpression was assessed by transwell assay. Scale bar, 100 mm. E, The
migration ability of SKOV3 cells after HSPA6 overexpression was assessed by wound healing assay. Scale bar, 200 mm. ��� , P < 0.001; ���� , P < 0.0001.
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between lineage A1 and A2. Results showed that the tiles with
decreased DNA methylation in lineage A2 were strongly enriched in
intergenic regions, satellites, and LTR (Fig. 8H).

Besides OC09 and OC14, primary tumors of four other patients
possessed at least two genetic lineages, all of which metastasized or did
not. Although these lineages present comparable metastatic potential,
differential gene expression analysis shows that the phenotypes of
these genetic lineages were distinct (Supplementary Figs. S8A–S8H).

Discussion
Here, we introduce an improved single-cell multiomics sequencing

method, and provide the first systematic exploration about inter- and
intratumor heterogeneities of SCNAs, DNA methylome, chromatin
accessibility, and the transcriptome of primary tumors and matched
metastases in HGSC at single-cell and single-base resolution.

Our single-cell multiomics sequencing technology exhibits several
advantages in studying tumor biology. First, cell identities can bemore
accurately determined by multiomics data. Most studies distinguished
malignant cells from nonmalignant cells using scRNA-seq data,
mainly based on the gene expression of cell type-specific markers and
RNA-inferred SCNAs (38, 39). In contrast, using the single-cell
multiomics sequencing, we can not only determine the cell identities
via RNA data but also profile higher resolution SCNA patterns by
DNA sequencing data. Second, we can explore the dynamic changes of
DNA methylome, chromatin states, and transcriptome during tumor
development after reconstructing the genetic trajectories of cancer
cells. Similarly, using the multiomics technology, Clark and colleagues
utilized RNA data to reconstruct developmental trajectories of mouse

embryonic stem cells and explored the epigenetic and transcriptomic
properties of different cell states along these trajectories (40). Third, we
can uncover potential inter-omic regulatory relationships, which are
very difficult to identify by bulk sequencing or separate single-cell
analyses of different molecular layers.

On the basis of genetic lineage analysis, we explored the dynamics of
the epigenome and transcriptome during tumor promotion. We
noticed that the metabolic pathways were highly reprogrammed in
HGSC (Fig. 2B). A century ago,Warburg and colleagues proposed that
tumors mainly metabolized glucose through glycolysis rather than
OXPHOS (41). However, we showed that both OXPHOS and glycol-
ysis were increased in ovarian cancer cells. Consistently, recent studies
based on cell lines and mouse models have reported that ovarian
cancer cells displayed higher rates of OXPHOS and glycolysis than
normal epithelial cells (42, 43). We further revealed that these two
pathwaysmay be regulated by differentmechanisms. The upregulation
of genes related to OXPHOS may be due to either the Chr8 ampli-
fication to increase their dosages, or upregulate their upstream reg-
ulators (e.g., MYC), or their promoter demethylation; while the
binding motif of the key TF involved in glycolysis, FOXK1, exhibited
high accessibility in HGSC and may upregulate the glycolysis-related
genes.

Taking advantage of single-cell multiomics sequencing technol-
ogy, we revealed the high ITH in HGSC. We show that most tumors
were composed of diverse lineages of cancer cells. These lineages
vary in DNA methylation levels, RNA expression levels, and
metastatic potential. The results of patient OC09 and OC14 show
that the lineage with a higher residual DNA methylation level
escaped from the primary tumor and invaded other tissues, whereas
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the other lineage, with a lower residual DNA methylation level, did
not (Fig. 6A). Furthermore, the metastasized and probably more
aggressive lineage exhibited upregulation of CCN1, HSP90AA1, and
genes associated with virus response and angiogenesis (such as

VEGFA). CCN1 has been proved to participate in cell proliferation,
inflammation, and angiogenesis, and its overexpression was asso-
ciated with poor prognosis of ovarian cancer (44, 45). Previous
studies have shown that inhibition of HSP90AA1 may potentate the
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Figure 7.

Intratumor heterogeneities of primary tumors reveal key genes involved in the metastasis. A, Venn plot showing the number of DEGs between lineage A1 and
lineage A2 for OC09 and OC14. Left, upregulated genes in lineage A1; right, upregulated genes in lineage A2. B,Western blot analysis to verify the knockout of
CCN1 in SKOV3 cells. C, The migration of SKOV3 cells knocked out of CCN1 was detected by wound healing assay, which was compared with the cells treated
with the nontarget gRNA. D, The migration and invasion of SKOV3 cells after CCN1 knockout were assessed by transwell assay. Scale bar, 100 mm. E, The
migration of SKOV3 cells treated with the indicated concentrations of TAS-116 was evaluated using wound healing assay. F and G, The migration and invasion
of SKOV3 cells treated with the indicated concentrations of TAS-116 were assessed by transwell assay. Scale bar, 100 mm. H, The cell viability of SKOV3 cells
treated with the indicated concentrations of TAS-116 for 24, 48, and 72 hours. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001.
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ability of chemotherapy (46–48). Here we revealed that CCN1 and
HSP90AA1 may also be involved in ovarian cancer metastasis.
While performing end point analysis to compare the primary
tumors and metastases is a common means to investigate the
mechanisms of metastasis, this approach cannot provide insights
into the early events leading to metastasis. In our study, we used
single-cell multiomics sequencing to compare primary tumor cells

with different metastatic potential, which provided a new strategy
for the study of the mechanisms of metastasis and help to better
understand the metastasis process.

Next, we inspected the epigenetic and transcriptomic changes
associated with tumor progression (Figs. 5 and 6). The results show
that the global DNA methylation levels were maintained during
metastasis. Unsupervised hierarchical clustering of DNA methylation
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Figure 8.

Intratumor heterogeneities of primary tumors reveal critical pathways involved in themetastasis.A andC,Heatmaps of DEGs between primary tumor cells of lineage
A1 and lineage A2 for OC14 (A) and OC09 (C). B and D, GSEA analysis for OC14 (B) and OC09 (D) showing the enriched pathways of lineage A1 using hallmark gene
sets. E and F,GSEA analysis for OC14 (E) andOC09 (F) showing the enriched pathways of lineage A1 using ontology gene sets.G,Heatmap showing that the binding
motifs of TFs involved in interferon responses is more open in lineage A1 than lineage A2 for OC09. H, Enrichment analysis of annotated genomic elements on
hypomethylated tiles in lineage A2 compared with lineage A1.
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shows that the DNA methylation patterns produce similar lineage
histories to those deduced from SCNA patterns. As a covalent mod-
ification of genome, DNAmethylation is relatively stable and involved
in establishment and maintenance of cell type- and tissue-specific
features during mitosis and development (49–51). Thus, despite the
changes in DNA methylation at a relatively early stage of tumorigen-
esis, ovarian cancer cells retained the majority of their lineage-specific
DNA methylation patterns during later tumor progression. The
convergent pattern of DNA methylation and SCNAs was also dem-
onstrated in prostate cancer (52). Another study has reported that
phyloepigenetic patterns could recapitulate the phylogenetic histories
reconstructed by SNVs (53). Therefore, the convergence of SCNAs,
SNVs, and DNAmethylome changes may exist in a variety of cancers.

In summary, using our single-cell multiomics sequencing, we
obtained high-resolution profiles of HGSC, dissected its extensive
inter- and intratumor heterogeneities, identified many potentially
important variations during tumorigenesis, and explored the regula-
tory networks in HGSC. Our study provides highly valuable resources
for understanding themolecular characteristics of HGSC, as well as for
improving the diagnosis and individualized therapy of this disease.
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