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INTRODUCTION
Myeloblasts, initially described in 1900 by Otto Naegeli, 

have long been regarded as the neoplastic cell and hallmark 
feature of acute myeloid leukemia (AML). These cells are path-
ologically defined by a large round nucleus composed of fine 
nonaggregated chromatin with a small basophilic cytoplasm. 
Myeloblasts are immunophenotypically characterized by the 
surface expression of CD34, although some CD34-negative, 
CD117-positive myeloblast populations have been reported 
(1, 2). The expansion of myeloblasts within the bone marrow 
and peripheral blood is uniformly associated with disease 

progression across all chronic myeloid neoplasms and defines 
transformation to AML when myeloblasts meet or exceed 20% 
(3). Myeloblasts are thought to represent hematopoietic stem 
and progenitor cells (HSPC) but are not generally resolved 
into stem and progenitor subpopulations during clinical 
evaluation. Therefore, how the malignant expansion of mye-
loblasts reshapes the HSPC compartment and its impact 
on clinical outcomes remains undefined. Understanding the 
composition of HSPC compartments could establish the dif-
ferentiation trajectories most relevant to disease progression 
and provide insights into the mechanisms that promote these 
adverse hematopoietic states.

To address this question, we transcriptionally and immu-
nophenotypically mapped the CD34+ hematopoietic com-
partment of 55 unique chronic myelomonocytic leukemia 
(CMML) patients with comparable clinical baseline charac-
teristics at single-cell resolution (Supplementary Table  S1; 
Supplementary Fig.  S1). CMML is a lethal myeloid neo-
plasm hallmarked by the expansion of classic monocytes in 
the peripheral blood with no therapies that improve over-
all survival. Given its uniform hematopoietic output and 
that increases in myeloblast percentage are associated with 
prognostically relevant subtypes (CMML-0/1/2) and infe-
rior survival (4), CMML is an excellent model to evaluate 
the composition of HSPC and its clinical consequence in 
myeloid neoplasms.

In this study, we investigated the transcriptome, muta-
tional landscape, and spectrum of cytokine receptors in 
CD34+ CMML patient samples. Single-cell RNA sequencing 
(scRNA-seq) was used to evaluate HSPC transitional cellular 
states, and high-parameter flow cytometry was utilized to 
evaluate previously defined immunophenotypic HSPC states 
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ranging from hematopoietic stem cells (HSC) to myeloid pro-
genitors. This combined approach provided a comprehensive 
map of HSPC subpopulations at various stages of CMML 
disease progression. We identify aberrations in HSC fate and 
lineage determination and an inflammatory granulocyte– 
macrophage progenitor (GMP)–like state with increased 
cytokine receptor diversity. Moreover, these aberrations were 
associated with adverse clinical outcomes that may present 
putative targets of prognostic and therapeutic relevance.

RESULTS
CMML HSPC Are Characterized by Three 
Hematopoietic Trajectories

Until recently, hematopoiesis has been modeled as a hier-
archical branching process with distinct stages defined by the 
expression of surface proteins (5). However, murine and human 
scRNA-seq data sets of bone marrow cells suggest that hemat-
opoiesis occurs in a probabilistic manner with gradients of 
differentiation defined by transcriptional expression (6). To 
evaluate this modern framework of hematopoiesis in CMML, 
we sequenced 137,578 high-quality CD34+ single cells from 
39 patient samples [median age: 72 years, WHO classifica-
tion: CMML-0 (51.72%), CMML-1 (20.68%), CMML-2 (20.68%), 
AML (3.4%); more details described in Supplementary Table S1] 
using the 10X Genomics platform (Fig.  1A). Additionally, we 
integrated eight publicly available samples (6–8) contain-
ing 63,672 additional high-quality cells from normal CD34+ 
enriched HSPC (Fig. 1B). To avoid effects due to nonbiological 
differences such as lab protocols and sequencing targets, batch 
correction was performed with the Harmony algorithm (9).

Following batch correction, we estimated the differentia-
tion trajectories of CD34+ cells using Palantir (6), leveraging 
previously published normal CD34+ samples (6) by projecting 
each CMML patient’s CD34+ single-cell data onto a reference 
differentiation trajectory, as visualized in Fig. 1C. This map-
ping provided a probability that any given CD34+ cell would 
differentiate into one of six lineages: lymphoid (CLP), mono-
cytic (Mono), erythroid (Ery), classic dendritic cells (cDC), 
plasmacytoid dendritic cells (pDC), or megakaryocyte (Mk). 
Based on the differentiation probabilities, Palantir also com-
putes a differentiation potential as a measure of pluripotency. 
We visualized differences in differentiation trajectories by 

plotting cellular density relative to the normal reference used 
for projection (6), revealing areas with higher or lower than 
expected densities across trajectories in a pseudotime map, as 
shown in Fig. 1D for all treatment-naïve samples.

CMML patients could be classified into three distinct 
trajectory biases using this visualization. Eight of 25 (32%) 
patient samples were “monocytic-biased,” showing a dis-
proportionate number of cells mapping to a monocytic 
differentiation probability as expected in CMML. However, 
8 of the 25 (32%) patient samples had a disproportionate 
number of cells mapping to megakaryocytic and erythroid 
differentiation probabilities, termed “MEP-biased,” and 9 of 
25 (36%) patients mapped to a third group with cell densi-
ties of similar proportions to that of the normal samples, 
termed “normal-like.”

The robustness of our classification was tested in two ways. 
First, we analyzed the CMML scRNA-seq data as a pseudo-
bulk data set. This was accomplished by using the arithmetic 
mean for the scaled expression values of the top 2,000 genes 
(ranked by expression variability) and computing an averaged 
matrix consisting of unique samples and these representa-
tive genes. The resultant matrix was used to perform Uni-
form Manifold Approximation and Projection for Dimension 
Reduction (UMAP; ref. 10) to visualize the distances between 
patient samples and Ward hierarchical clustering to group 
samples. The pseudo-bulk UMAP and Ward hierarchical clus-
tering structure preserved the initial classification, suggesting 
that these three differentiation trajectories were robust, as 
highlighted in Supplementary Fig. S2A–S2E.

Further, we validated the bias assignment by comparing 
averaged RNA expression in granulocyte-GMP, megakaryo-
cytic erythroid progenitors, and HSC gene signatures (11). As 
expected, monocytic-biased CMML was highly enriched for 
genes upregulated in GMPs, MEP-biased CMML was enriched 
for genes upregulated in MEPs, and normal-like showed no 
distinct bias (Fig. 1E). These lineage skewing trajectories were 
also observed when CMML samples were mapped onto a single-
cell proteo-genomic reference map of normal hematopoiesis 
(11), whose cells had pseudotime analysis previously charac-
terized by Slingshot (ref. 12; Supplementary Fig. S3).

Last, we evaluated whether there were clinicopathologic 
differences between the groups that could substantiate the 
clinical relevance of our classification and provide insight 

Figure 1.  CMML HSPC are characterized by three hematopoietic trajectories. A, Excess bone marrow and aspirate specimens not utilized for 
pathologic evaluation were collected from CMML patients at clinically scheduled time points and enriched for CD34+ cells. Single cells [CD34 cells 
enriched from patient bone marrrow mononuclear cells (BMMNC)] were encapsulated for scRNA-seq via DropSeq with the 10X Chromium controller 
and sequenced on an Illumina NovaSeq. Data from CD34+ cells enriched from BMNNCs of 8 healthy individuals available from publicly available data 
sets were integrated with the 39 CMML patient samples for downstream analysis. B, UMAP visualization of the 201,250 cells with normal CD34+ cells 
represented in red and CMML CD34+ cells represented in gray. C, CMML single cells were projected onto a reference Normal CD34+ (6), and branch prob-
abilities and differentiation potentials were inferred using a nearest-neighbor approach to reveal (D) three distinct hematopoietic trajectories in CMML: 
monocytic-biased, MEP-biased, and normal-like. Monocytic-biased samples had overdensities (as indicated in red) in the monocytic branch, MEP-biased 
samples had overdensities in the erythroid/megakaryocytic (Ery/Mega) branch, and normal-like samples showed neither overdensity in monocytic and 
erythroid branches and cell densities of similar proportion to that of the normal samples. These trajectories were classified based on the overdensities 
compared with the reference hematopoietic, gene signature analysis, and hierarchical clustering (in Supplementary Fig. S2). E, These trajectory biases 
were confirmed using previously published gene-expression profiles of HSCs, MEPs, and GMPs. Monocytic-biased patients were highly enriched for 
genes upregulated in GMPs, and MEP-biased patients were highly enriched for genes upregulated in MEPs. F, Hemoglobin was significantly elevated in 
the MEP-biased group (P = 0.037; Mann–Whitney test). G, Kaplan–Meier (KM) survival analysis of CMML patients stratified on progenitor trajectory in 
treatment-naïve samples treatment-naïve (n = 25; log-rank P = 0.0349). H, LDH levels obtained from clinical evaluation at the time of tissue sampling 
(n = 38; Fisher exact test P: 0.0378). I and J, There was a significant depletion in the fraction of cells identified as CLP across treatment-naïve samples 
(I; P = 0.0004; Mann–Whitney test) and in all three differentiation trajectories identified in CMML (J; Mann–Whitney comparisons; between normal and 
monocytic-biased, P = 0.0207; normal and MEP-bias, P = 0.0030; normal and normal-like, P = 0.0031). CLP cell-type assignment was calculated from the 
SingleR consensus (see Supplementary Methods).
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into the basis for these disparate differentiation trajectories. 
We abstracted a total of 33 clinicopathologic features from 
each patient and observed that MEP-biased CMML was 
associated with higher hemoglobin levels (median 12.20 
g/dL in MEP-biased compared with 9.7 g/dL, P: 0.0037, 
Mann–Whitney test; Fig.  1F) consistent with the assigned 
bias. Although there was no association between monocytic-
biased CMML and leukocytosis or monocytosis (Supple-
mentary Fig.  S4), monocytic-biased CMML was associated 
with an inferior survival (median survival of monocytic-
biased patients was 39 months compared with 51 months; 
P: 0.0349, log rank; Fig. 1G) and elevated lactate dehydroge-
nase level, which is a common clinical indicator of inflam-
mation (P = 0.0378, Fisher exact test; Fig. 1H). Further, the 
majority of differentiation projections from patient samples 
displayed depletion of the lymphoid (CLP) lineage inde-
pendent of trajectory bias as expected in CMML (P: 0.0004, 
Mann–Whitney test; Fig. 1I and J).

HSC Depletion Is Associated with Myeloblast 
Expansion in Monocytic-Biased CMML

We also observed a decrease in the HSC compartment, 
defined as those cells assigned as transcriptionally pluri-
potent by Palantir, that was most pronounced in patient 
samples defined as “monocytic-biased” CMML (P: 0.0004, 

Mann–Whitney test; Supplementary Fig.  S5; Fig.  1D and 
E). This was validated by quantifying the relative expression 
of genes across a variety of published HSC gene signatures 
(13–17) at single-cell resolution for each sample (Supplemen-
tary Fig. S6). We further validated HSC depletion by profiling  
well-defined, flow cytometry–based, HSC immunopheno-
types that included Lin−CD34+CD38−CD45RA−CD90+CD49f+  
(triple-positive HSCs); Lin−CD34+CD38−CD45RA−CD90+ 
(double-positive HSCs); and Lin−CD34+CD38− (single-positive 
HSCs; Supplementary Fig. S7) in a separate cohort of CD34+ 
enriched CMML bone marrow mononuclear cell samples 
from 20 individuals across all WHO-defined subtypes (3).

When analyzing the triple-positive HSC immunopheno-
type (TP HSC), defined as Lin−CD34+CD38−CD45RA−CD90+ 
CD49f+, a significant and progressive reduction in the fre-
quency of HSCs was observed as the WHO subtype increased, 
suggesting that HSC depletion is associated with CMML 
disease progression. For example, CMML-2 cases had sig-
nificantly reduced frequency of TP HSC cells compared with 
CMML-0 and controls (CMML-2 with 212 per million vs. 
CMML-0 with 2,827 per million, P = 0.02; vs. controls with 
3,689 per million, P = 0.03, Mann–Whitney test; Fig. 2A). We 
observed a similar reduction in HSC frequency across WHO 
subtypes using the double-positive HSC immunophenotype 
(DP HSC), defined as Lin−CD34+CD38−CD45RA−CD90+ 

Figure 2.  Monocytic-biased HSPC are characterized by HSC depletion. A, Comparison of HSC frequency between controls and WHO-classified 
CMML stages using flow cytometry showed HSC depletion with disease progression in triple-positive HSCs, n = 20 patient cases and five control cases. 
B, Evaluation of bone marrow blast content between low HSC and high HSC groups of patients showed that blast content was inversely correlated with 
HSC numbers in triple-positive HSCs, n = 20 patient cases. Data were analyzed using nonparametric Mann–Whitney test (C) KM survival analysis showed 
inferior survival in patients with low HSC content compared with patients with high HSC content using triple-positive HSC immunophenotype, n = 26 
patient cases (log-rank P = 0.01). D, Patients with low numbers of triple-positive HSCs showed thrombocytopenia (P = 0.005), (E) were at higher risk per 
MDACC (P = 0.0003), and (F) Mayo (P = 0.02) prognostic scoring systems. G, Patients who underwent HMA therapy had significantly lower triple-positive 
HSC content than treatment-naïve patients, n = 26 patient cases. Data were analyzed using nonparametric Mann–Whitney test; P value significance 
represented by *, < 0.05; **, < 0.01, ***, < 0.001.
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(CMML-2 with 1,116 per million vs. controls with 42,248 
per million, P  =  0.007; vs. CMML-0 with 26,450 per mil-
lion, P = 0.01, Mann–Whitney test; Supplementary Fig. S8A). 
Lastly, we observed a reduction in the frequency of HSCs in 
CMML-2 cases as compared with controls in single-positive 
HSCs (SP HSC), defined as Lin−CD34+CD38− (CMML-2 with 
17,506 per million vs. controls with 105,135 per million, 
P = 0.007, Mann–Whitney test; Supplementary Fig. S8B), but 
did not find a reduction in HSC content between CMML-
0/1/2 cases, likely because this immunophenotype also cap-
tures non-HSC myeloid progenitors and hence can also be 
considered as HSPC.

Since the WHO classification of CMML (CMML-0/1/2) is 
exclusively based on myeloblast expansion within the periph-
eral blood and bone marrow, we compared HSC numbers to 
pathologically observed myeloblast content. Patients were 
classified as high or low HSC content based on HSC immu-
nophenotype using the median number of HSCs across all 
patients as a cutoff point. In the triple- and double-positive 
HSC immunophenotypes, a significant inverse association 
between myeloblast and HSC content was observed (TP HSC: 
8.5% blasts-low HSC group vs. 1.5% blasts-high HSC group; 
P  =  0.004; DP HSC: 8.5% blasts vs. 1.85% blasts; P  =  0.01, 
Mann–Whitney test; Fig.  2B; Supplementary Fig.  S8C). We 
observed a similar trend between high and low HSC groups 
using the HSPC immunophenotype, but the difference was 
not statistically significant (Supplementary Fig. S8D).

Consistent with the notion that HSC depletion is an 
adverse clinical feature, we observed that patients with low 
HSC content were associated with significantly inferior sur-
vival (low HSC: 10 months vs. high HSC: 33 months; P = 0.01, 
log-rank; Fig.  2C), thrombocytopenia (low HSC: 44 k/μL 
vs. high HSC: 104 K/μL; P  =  0.005, Mann–Whitney test; 
Fig. 2D), and higher risk disease based on the MD Anderson 
Cancer Center (MDACC; P  =  0.0003, Mann–Whitney test; 
Fig. 2E) and Mayo Clinic CMML prognostic scoring systems 
(P  =  0.02, Mann–Whitney test; Fig.  2F). We also observed 
that patients treated with hypomethylating agents (HMA) at 
the time of sampling had significantly lower HSC content as 
compared with treatment-naïve patients (HMA: 777.8/1 × 106 
vs. treatment-naïve: 13,9201 × 106; P = 0.003, Mann–Whitney 
test; Fig.  2G), suggesting that HMA therapy may influence 
HSPC states (18).

Monocytic-Biased CMML Is Associated with 
Expansion of Inflammatory GMP-like Cells

Given the adverse clinical features and HSC depletion 
seen in monocytic-biased CMML, we sought to define the 
cellular origin and mechanisms that could potentiate this 
abnormal HSPC state. We implemented a pipeline for 
scRNA-seq analysis in Seurat (19) that performed dimen-
sion reduction [principal component analysis (PCA) and 
UMAP (10)] and clustering (Louvain algorithm) detailed 
in Methods (Fig.  3A). We observed that monocytic-biased 
samples were significantly enriched for cluster 2 (Clus2) 
cells, suggesting that the fraction of cells in Clus2 is the 
major driver for monocytic-biased assignment (monocytic-
biased: median 51.3% cells in Clus2; other: 3.9%, P < 0.0001; 
Fig. 3B). Further, normal samples had very few cells assigned 
to Clus2 (median 0.4%), suggesting that expansion of this 

population is a feature unique to monocytic-biased CMML 
(Supplementary Fig. S9).

Next, we implemented singleR (20), an R package that 
assigns cell type using RNA-seq data from flow cytome-
try–sorted references. Figure 3C shows the singleR cell-type 
assignment for all cells, using flow-sorted reference data from 
four distinct sources (21). Virtually all (98.8%) of the cells 
within Clus2 were identified as GMP, which was addition-
ally corroborated by scoring cells based on other published 
GMP signatures (ref. 13; Supplementary Fig. S10). Although 
most Clus2 cells were GMP-like, GMP-like cells (56.6%) were 
also assigned to cluster 0. These non-Clus2 GMPs were 
clearly distinct in UMAP (Supplementary Tables  S2 and 
S3), motivating us to explore whether Clus2 may represent 
a recently described GMP subtype (22). Indeed, Clus2 cells 
were associated with upregulation of CTNNB1 (Supplemen-
tary Fig.  S11A) and low IRF8 expression (Supplementary 
Fig.  S11B), as well as upregulation of WNT signaling tran-
scription (Supplementary Fig. S11C) and Fc gamma receptors 
(FCGR) upregulation (Supplementary Fig.  S12A–S12F) con-
sistent with self-renewing so-called cluster GMPs observed to 
be expanded in murine models of leukemia and emergency 
granulopoiesis (22, 23).

To validate the cellular identity of Clus2 cells by flow 
cytometry, we implemented COMET (24), an established 
tool that approximates flow cytometry markers that can 
be used to identify clusters of cells from scRNA-seq data. 
This analysis identified ten putative markers (Fig. 3D) with 
a true negative rate above 98% (average, 98.9%), an aver-
age log base 2 fold change of 5.08 in the single genes from 
Clus2 compared with the rest of the cells, average true 
positive rate of 37.5%, including TNFRSF1B, which encodes 
the surface receptor CD120b, as the most promising recep-
tor for approximating Clus2 cells in flow cytometry data 
sets (Fig.  3E; true negative 98.8%, true positive 46.4%). We 
then profiled CD120b expression by flow cytometry across 
progenitors and observed that CD120b expression was sig-
nificantly higher in GMPs of patients as compared with stem 
and other progenitor populations [HSCs, common myeloid 
progenitors (CMP), and MEPs], consistent with the proposed 
Clus2 cell identity from our scRNA-seq analysis (Supplemen-
tary Fig. S13). Next, CD120b+ median fluorescent intensity 
(MFI) was calculated for each patient sample, and samples 
were classified as high CD120b+ or low CD120b+ based on 
whether their MFI was above or below the median. Using 
this cutoff point, patients with high CD120b+ expression in 
GMPs had significantly inferior survival as compared with 
patients with low CD120b+ (high CD120b+: 8 months vs. low 
CD120b+: 33 months, P  =  0.007, log-rank; Fig.  3F and was 
also merged with the scRNA-seq cohort to increase power 
the log-rank P = 0.001 and hazard ratio of 2.76; Supplemen-
tary Fig.  S14). Patients with high CD120b+ expression also 
had significantly higher WBCs (high CD120b+: 13.90 × 106 
cells/L vs. low CD120b+: 5.49 × 106 cells/L; P = 0.007, Mann–
Whitney test), absolute monocytosis (high CD120b+: 5.34 vs. 
low CD120b+: 0.81; P = 0.004, Mann–Whitney test), and neu-
trophils (high CD120b+: 5.7 vs. low CD120b+: 2.36; P = 0.04, 
Mann–Whitney test; Fig. 3G–I). CD120b+ high GMP samples 
were also associated with patients who were myeloprolifera-
tive (P =  0.04, Mann–Whitney test), had undergone disease 
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progression by WHO classification (P = 0.02, Mann–Whitney  
test), and were at significantly higher risk by both the 
MDACC (P  =  0.005, Mann–Whitney test) and Mayo clinic 
prognostic scoring systems (P  =  0.03, Mann–Whitney test) 
consistent with monocytic-biased CMML (Fig. 3J–M). Other 
putative markers by COMET analysis that could be analyzed 
with our flow cytometry panel included TLR4, which encodes 
the surface receptor CD284 (Supplementary Fig.  S15A). 
Flow cytometry–based investigation revealed that CD284 
expression was significantly higher in GMPs of patients as 
compared with stem and other progenitor populations (Sup-
plementary Fig.  S15B). Patients with high CD284 expres-
sion also had significantly inferior survival as compared 
with patients with low CD284 expression (high CD284+: 10 
months vs. low CD284+: undefined, P = 0.007, log-rank; Sup-
plementary Fig. S15C). Collectively, these data suggest that 
the monocytic-biased CMML HSPC state is characterized 
by enrichment of GMP-like cells that may have self-renewal 
capacity and can be approximated by flow cytometry markers 
such as CD120b and CD284.

Clus2 Cells Are Not Clonally Distinct and Have 
Clinically Relevant Temporal Dynamics

We next sought to explore the clonal origin and temporal 
dynamics of Clus2 cells. Given the excellent coverage of mito-
chondrial variants in scRNA-seq data derived from the 10X 
platform, we first used mitoClone (25), a tool that enables 
the detection of clonal populations based on mitochondrial 
variants, to determine whether the clonal composition of 
Clus2 cells was distinct from other clusters. We identified 
1 to 25 clones (mean clone number 9.31) per sample and 
mapped these clusters onto both UMAP and pseudotime 
differentiation trajectories in a patient-specific manner. This 
analysis identified no statistical enrichment of mitochondrial 
variant-defined clones in Clus2 cells across all HSPC-biased 
subtypes (representative clonal mappings shown in Fig. 4A–C, 
all mappings shown in Supplementary Fig.  S16). We next 
performed multiomic scDNA-seq coupled with immunophe-
notyping using a pool of 45 oligo-conjugated antibody panels 
in a representative nonmonocytic-biased (Fig.  4D–G) and 
monocytic-biased (Fig.  4H–K) CD34+ enriched BMMNC 
patient specimen.

We visualized the multiomic data by plotting the pro-
tein expression of markers relevant to HSC (Fig.  4D–E and 
Fig.  4H–I) and putative Clus2 cell (Fig.  4F and J) iden-
tity for each mutationally defined clone. Because CD120b 
and CD284 were not available in this multiomic platform, 

putative Clus2 cells were defined by CD163 expression, origi-
nally noted in COMET analysis (Fig. 3D). This enabled us to 
observe that HSC and putative Clus2 cell identity was not 
enriched in a specific clone, consistent with our mitoClone 
analysis. Indeed, CMML clones appeared to have protein 
expression phenotypes that were far more similar between 
each other than compared with patient-specific wild-type 
cells. Moreover, clustering based on a lager panel of protein 
expression identified no clonal subtypes (Fig. 4G and K) that 
could be resolved, suggesting that the hematopoietic archi-
tecture of these representative cases is not driven by a clonally 
distinct population.

To explore the temporal dynamics of Clus2 cells, we per-
formed scRNA-seq on eight sequential samples before and 
after treatment. Although treatment with ruxolitinib did not 
affect Clus2 cells, we observed a marked decrease in the frac-
tion of cells in Clus2 in all HMA-treated cases (n = 4), which 
was most pronounced in monocytic-biased patients (n = 2). 
Further, clonal tracing using mitochondrial variants (25) in 
these cases demonstrated that although the fraction of Clus2 
cells was decreased, the clonal composition was unaffected, 
consistent with previous work (ref.  26; clonal dynamics in 
Fig.  4L–S, cluster dynamics in Fig.  5A–H) and suggesting 
that HMA therapy can redirect the monocytic-biased dif-
ferentiation trajectories (27). This was also evident in UMAP 
space where all unique patient samples, including sequential 
samples, were plotted and grouped by their hematopoietic 
trajectory. The arrows in this analysis denote the change 
in hematopoietic trajectory observed after treatment, most 
strikingly observed in HMA-treated cases (Fig. 5I).

Clus2 Cells Are Enriched for Inflammatory 
Transcriptional and Proteomic Programs

To explore the unique molecular features of Clus2 cells, we 
performed pathway analysis [Enricher (28) and PANTHER 
(29) pathways] on differentially expressed genes elevated in 
Clus2 and identified enrichment in inflammatory pathways 
to include cytokine receptor signaling as shown in Fig.  6A. 
We validated this inflammatory transcriptional profile by 
broadly profiling cytokine receptor protein expression in 
CMML HSPC using high-parameter flow cytometry in immu-
nophenotypically well-defined hematopoietic populations 
at single-cell resolution. To build this high-parameter flow 
cytometry panel, we used bulk RNA-seq data from publicly 
available CD34+ CMML (30–34) and healthy data sets and 
prioritized 51 receptors as differentially expressed in CMML 
(Fig. 6B; Supplementary Table S4).

Figure 3.  Monocytic-biased CMML is associated with the expansion of an inflammatory GMP-like HSPC population. A, Graph-based clustering of the 
CD34+ cohort identified 13 distinct clusters across the 201,250 single cells. B, Samples in the monocytic-biased group were enriched in Clus2. C, SingleR 
was used to determine cell-type assignment using previously published paired references of bulk RNA-seq of flow cytometry–sorted cells. Clus2 
was enriched for GMP cell-type assignment. D, COMET was used to identify differential gene-expression markers well-suited for validation with flow 
cytometry, and the top-ranked markers had an average log base 2-fold change of 4.50 in the single genes from Clus2 compared with the rest of the cells, 
average true positive rate of 36.7%, and average true negative rate of 98.0%. E, COMET identified TNFRSF1B (encoded cell-surface marker CD120b) as 
the best single marker for identifying Clus2 cells with a true positive performance of 46% and true negative performance of 99%. F, The predictive power 
of CD120b was validated in the complementary flow cytometry data set, where individuals with high CD120+ expression had inferior survival (n = 26; log-
rank P = 0.007). Clinicopathologic variables were compared in CD120+ high vs. low patients and individuals with CD120+ high expression had (G) increased 
white blood cell (WBC) counts (P = 0.007), (H) increased absolute monocytosis (P = 0.004), and (I) increased absolute neutrophil count (ANC; P: 0.04). 
Patients with high CD120b GMPs were (J) myeloproliferative (P = 0.04), (K) associated with disease progression (P = 0.02), and (L) were categorized as 
high risk per MDACC (P = 0.005) and (M) Mayo prognostic scoring systems (P = 0.03), n = 26 patient cases. Nonparametric Mann–Whitney tests were used 
to compare two group data. P value significance represented by *, < 0.05; **, < 0.01; ***, < 0.001.
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We mapped the previously unknown relative expression 
intensities and frequency of our prioritized receptors in HSPC, 
using phycoerythrin (PE)-conjugated antibodies for all 51 
receptors in an array-based format enabling relative compari-
son of expression and frequency in CMML and normal pooled 
CD34+ samples (n = 4 patients, 15 healthy subjects) as described 
in Methods (Fig. 6B). We further prioritized receptors by com-
paring their expression based on  ≥10 positive cells for each 
respective receptor;  ≥10% of Lin−CD34+CD38− population; 
and ≥5 MFI ratio of CMML to normal. Based on these criteria, 
we identified 22 receptors with cognate ligands differentially 
expressed in CMML versus normal (Fig.  6B). We optimized 
a final 30-parameter flow panel considering each receptor’s 
expression, frequency, and spillover spreading error (35) that 
includes all 22 cytokine receptors and six markers to define 
HSPC (Supplementary Fig.  S17A–S17F). We acquired data 
from bone marrow–derived CD34+ cells of 26 patients and five 
controls, performing dimensionality reduction (UMAP; ref. 10) 
and clustering (Phenograph; ref. 36) in stem and myeloid pro-
genitor populations (Supplementary Fig. S17G). Lastly, to gen-
erate a summary metric that considered the entire 22 cytokine 
receptor panel, we calculated the Shannon index to compare 
cytokine receptor diversity (CRD) across all the patient samples 
and normal controls gated for respective stem and myeloid pro-
genitor cell types (HSCs, CMPs, GMPs, and MEPs).

This analysis demonstrated a significant increase in CRD 
in myeloid progenitors compared with HSCs in patients but 
not in healthy controls Fig. 6C and D. Furthermore, a com-
parison of diversity between patients and controls identified 
a significant increase in CRD of GMPs (P = 0.04, Mann–Whitney 
test; Fig.  6E). CD120b+ expression was also significantly 
higher in high CRD CMML GMPs compared with those with 
low CRD (high diversity-CD120b MFI: 8,072 vs. low diversity 
CD120b MFI: 2,444; P  =  0.03, Mann–Whitney test; Fig.  6F 
and G). Clonogenicity assays using bone marrow mononu-
clear cells (BMMNC) derived from high diversity and low 
diversity cases demonstrated that high CRD patient samples 
had a statistically significant increased response to a cocktail 
of recombinant human cytokines (37) and elevated in CMML 
(38–40) compared with low diversity cases (P = 0.02, Mann–
Whitney test), suggesting that CRD is functionally relevant in 
vitro (Fig. 6H). Higher CRD was also significantly associated 
with inferior survival (high diversity: 8 months vs. low diver-
sity: 33 months; P = 0.02. log rank; Fig. 6I), consistent with 
our scRNA-seq Clus2 analysis. A significantly inferior survival 
was also noted in triple- and double-positive HSCs with high 
CRD (triple-positive HSCs—high diversity: 10 months vs. 
low diversity: 33 months; P  =  0.05; double-positive HSCs: 
P = 0.02, log-rank; Fig. 6J and K).

Competitive Bone Marrow Transplantation and 
Inflammatory Stress-Induced Hematopoiesis Can 
Induce a GMP-like Expansion in CMML Models

Given the clinical and molecular evidence supporting mono-
cytic-biased CMML as an inflammatory GMP-like expansion 
of Clus2 cells (Figs. 3B and 6A), we hypothesized that stress/
inflammatory events could contribute to the expansion of 
inflammatory GMP-like HSPC and other early myeloid-biased 
progenitor cell populations, during disease progression. We 
modeled proliferative stress-induced hematopoiesis by per-
forming bone marrow transplant experiments with NRASQ61R/WT  
bone marrow cells and controls. An NRAS-competitive trans-
plant model was chosen because it recapitulates CMML-like 
features (41), and RAS pathway mutations were associated 
with increased Clus2 fraction in our human scRNA-seq data 
set (median NRAS, KRAS, and/or CBL mutants: 19.6%, median 
none: 7.1%, P = 0.009; Fig. 7A). The results from the long-term 
competitive transplant experiment demonstrated an expan-
sion of inflammatory GMPs (P = 0.02, multiple paired t test; 
Fig. 7B and C), as measured by CD120b expression, and mye-
loid-biased multipotent progenitor 2 (MPP2) cells (P = 0.03, 
multiple paired t test) compared with controls recapitulating 
the HSPC compartment in human monocytic-biased CMML, 
41 weeks after transplantation (Fig. 7D). We did not observe 
significant differences in other HSPC populations (GMPs, 
MEPs, CMPs, MPP1-4, LSKs, and HSCs) between NRAS and 
controls (Supplementary Fig.  S18A–S18H). To validate this 
observation in human CMML cells, we modeled inflammatory 
stress-induced hematopoiesis in patient-derived xenografts 
(PDX). We selected CMML samples with RAS pathway muta-
tions and generated PDX models as previously described 
(42). We confirmed engraftment by performing bone marrow 
aspirates and measuring hCD45 content by flow cytometry 
and treated mice with 10 μg i.p. LPS or vehicle. We also con-
firmed that this dose of LPS could induce human cytokine 
production in our CMML PDX 6 hours after injection (Sup-
plementary Fig. S19). After 24 hours, mice were sacrificed and 
evaluated for human hematopoietic reconstitution. As seen in 
murine models, expansion of inflammatory GMPs was noted 
in LPS compared with vehicle controls suggesting that human 
CMML cells can augment HSPC composition in response to 
inflammation (Fig. 7E and F).

DISCUSSION
Chronic myeloid neoplasms have been historically defined 

by their effect on terminal hematopoiesis. Myeloblasts, how-
ever, include the self-renewing leukemic population and 
therefore drive clonal evolution and disease progression. 

Figure 4.  The monocytic-bias CMML phenotype is not driven by a clonally distinct population. Cells from monocytic-biased (A), MEP-biased (B), and 
normal-like (C) CMML samples plotted in a pseudotime map show differentiation trajectories. Cells are colored by their mitoClone assigned clone and do 
not show any association between trajectory and clone. D–G, A MEP-bias and low CD120b+ patient from the flow cytometry cohort (4-I-001) and (H–K) 
a monocytic-bias and high CD120b+ patient from the flow cytometry cohort (5-M-001) were selected for clonal characterization using single-cell DNA 
sequencing coupled with protein expression for hematologic markers with the Mission Bio Tapestri Platform. Contour plots of the distribution of distinct 
genotypic clones were visualized with their corresponding protein expression data. D and H, CD34 vs. CD38 (E, I), CD45RA vs. CD90, and (F, J) CD45RA 
vs. CD163 highlight the normal vs. malignant GMP population, where CD163 serves as a marker of monocytic-biased cells. G and K, Multiassay heatmaps 
highlight the variants of interest used to define clones and their corresponding protein expression at single-cell resolution. In a complementary analysis 
in the scRNA-seq cohort, clonal populations derived from mitochondrial RNA mutations from the scRNA-seq were also performed on sequential samples 
using mitoClone. Across time points, samples show very similar clonal distributions regardless of treatment with (L–O) HMA, (P–Q) ruxolitinib, (R) chemo-
therapy, and (S) no treatment.
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Our study sought to map this critical cellular compartment 
by profiling CD34+ BMMNCs at single-cell resolution in a 
clinically and genetically annotated CMML cohort. Although 
CMML is characterized by peripheral monocytosis, our study 
identified three distinct HSPC differentiation trajectories 
associated with clinically relevant features and prognosis. 
Although the CMML patient samples and healthy controls 
were not age-matched, healthy controls were used solely as a 
reference map and therefore our observations were unlikely 
driven be age-dependent hematopoietic effects.

Our study transcriptionally and immunophenotypically 
demonstrated that HSC depletion is a feature of disease 
progression and myeloblast expansion. This observation has 
previously been made in murine models of leukemia (43, 44). 
However, our study recapitulates this in human leukemia 
and associates HSC depletion with disease progression, sug-
gesting that HSC content may be a prognostically relevant 
feature in CMML.

Although several reports have suggested that inflamma-
tion and stress-induced hematopoiesis are features that 

contribute to the development of myeloid neoplasms (45), 
our data indicate that this may be the major driver of one, 
but not all, differentiation trajectories in CMML. The inflam-
matory disease trajectory, termed monocytic-biased CMML 
in our study, was characterized by adverse outcomes, HSC 
depletion, and the expansion of a GMP-like inflammatory 
population (Fig. 7G), transcriptionally enriched for cytokine 
receptor signaling and consistent with self-renewing GMPs 
previously described in murine models (22, 44, 46–48). Analy-
sis of clinical outcomes in two distinct patient cohorts pro-
filed by scRNA-seq and flow cytometry, respectively, affirmed 
that inflammatory GMPs are associated with an aggressive 
disease phenotype, poor prognosis, and inferior survival, 
thereby emphasizing the relevance of inflammatory cytokine 
signaling in chronic myeloid neoplasms.

To demonstrate that this inflammatory phenotype extended 
beyond transcriptional programs, we developed a 30-parameter 
flow cytometry panel designed to annotate cytokine receptors 
in CMML HSPC. To the best of our knowledge, we observe for 
the first time, at single-cell resolution, that cytokine receptor 

Figure 5.  Hypomethylating agent treatment is associated with the depletion of Clus2 cells. Although mitoClone revealed stable clonality distribution 
after treatment, as demonstrated in Fig. 4L–S, the cluster dynamics changed dramatically after treatment with (A–D) HMA, (E–F) ruxolitinib, (G) chemo-
therapy, and (H) no treatment. Interestingly, two HMA-treated patients (C–D) were monocytic-biased in their pretreatment sample and showed a marked 
decrease in cluster 2 fraction (light blue) following HMA treatment. I, Sample movement in pseudo-bulk representation on UMAPs following treatment 
(complementary analysis in Supplementary Fig. S2; sample numbering matches the sample numbering in Fig. 4L–S and Fig. 5A–H). Three of the four 
pre-HMA treatment samples move (red arrows) from monocytic-biased or MEP-biased to normal-like phenotype after treatment with HMA. Additionally, 
three samples were collected from patients after HMA treatment (without a matched treatment-naïve sample) that were also grouped in this normal-
like phenotype. Ruxolitinib treatment shows some change in transcriptomics but is not sufficient to be classified with a new differentiation trajectory 
following treatment.

13

12

35

32

3743

45
4041

42 47
46

44

39

26 36

33 3

28

38

17 1

6
7

Treatment

34

25
27

15

Tx naïve

HMA

Rux

Chemo

Normal

CMML1 CMML32 CMML39 CMML13 CMML35

CMML25 CMML33 CMML27 CMML37

CMML28 CMML38 CMML15 CMML34

CMML12 CMML36 CMML26 CMML3

R
el

at
iv

e 
po

p 
si

ze 100

50

0

A
100

50

0

B

R
el

at
iv

e 
po

p 
si

ze 100

50

0

C D

100

50

0

R
el

at
iv

e 
po

p 
si

ze 100

50

0

E

R
el

at
iv

e 
po

p 
si

ze 100

50

0

G

100

50

0

F

H
100

50

0

U
M

A
P

-2
UMAP-1

0 1 2 3 4 5 6 7 8 9 11 1210

I

Mono bias

Normal

Normal-like

MEP bias

CLUSTER



Single-Cell Mapping of CMML Progenitor States RESEARCH ARTICLE

 NOVEMBER  2022 BLOOD CANCER DISCOVERY | 547 

upregulation is present in chronic myeloid neoplasms and 
that increases in CRD constitute a molecular feature of disease 
progression. Given the known inflammatory milieu in the 
CMML bone marrow microenvironment (38), CRD may rep-
resent a context-specific fitness advantage leading to adverse 
outcomes. Further, our observation that CMML GMPs have 
the highest CRD relative to other CMML populations may also 
suggest that differentiation from HSC to GMP during disease 

progression represents an evolutionary strategy to increase 
CRD (Fig. 7G). Clonogenicity assays also suggested that high 
CRD progenitors may have a more robust response to inflam-
matory cytokines compared with low CRD cells consistent 
with a potential fitness advantage in this context.

Last, we explored whether the observed cellular differentia-
tion trajectories were malleable after the diagnosis of CMML 
is fully manifested. Indeed, using sequential samples, we 

Figure 6.  Clus2 cells are enriched for inflammatory transcriptional and proteomic programs. A, Panther pathway analysis of genes differentially 
expressed in Clus2. Clus2 cells showed the most significant association with cytokine receptor signaling and inflammation. B, Analysis of publicly avail-
able bulk RNA-seq data sets showed differential regulation of receptors between healthy and CMML CD34+ cells. The shortlisted 51 receptors were 
evaluated for expression and frequency data using PE-conjugated flow cytometry screen (n = 4 patients, 15 healthy subjects). Based on the data from the 
screen, 22 cytokine receptors were shortlisted to be included in the 28-color flow cytometry panel. C and D, Comparison of CRD using the Shannon index 
showed an increase in CRD in myeloid progenitors of patients (CMML) compared with HSCs but not in controls (Ctrls). E, Comparison of CRD between 
patients and controls showed a higher Shannon index in patient GMPs (P = 0.04), n = 26 patient cases, and five control cases. F, High diversity (HD) patient 
GMPs showed significantly higher CD120b expression as compared with low diversity (LD) GMPs (P = 0.03), n = 26 patient cases. Data were analyzed 
using a nonparametric Mann–Whitney test. G, Balloon plot shows MFIs of cytokine receptors in 26 patient cases and five control cases, along with the 
Shannon index for each patient and control. As highlighted in the red box, the high diversity patient GMPs showed higher CD120b expression. H, Colony-
forming assays with BMMNCs derived from high diversity (n = 2) and low diversity cases (n = 2) showed a significantly higher ratio of the total number of 
colonies per well in the methylcellulose-based medium with recombinant human cytokines/total number of colonies per well in the methylcellulose-based 
medium without human cytokines in high diversity as compared with low diversity cases (P = 0.02). Data were analyzed using a nonparametric Mann–
Whitney test. I, KM survival analysis showed inferior survival in patients with high-diversity GMPs (log-rank P = 0.02), (J) high-diversity triple-positive 
HSCs (log-rank P = 0.05), and (K) high-diversity double-positive HSCs (log-rank P = 0.02) as compared with patients with the low-diversity counterparts, 
n = 26 patient cases. Data were analyzed using log-rank (Mantel–Cox) test. P value significance represented by *, < 0.05; **, < 0.01; ***, < 0.001.
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Figure 7.  Stress-induced hematopoiesis can induce a GMP-like expansion in CMML models. A, Samples from patients with RAS pathway mutations 
(KRAS, NRAS, and CBL) show elevated Clus2 fraction (median RAS mutated, n = 14: 0.196; median WT, n = 15: 0.071; P: 0.009 from nonparametric Mann–
Whitney test). B, Competitive BMT studies showed an expansion of CD120b GMPs in NRASQ61R/+ compared with Mx1-Cre controls. C, Representative 
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observed that HMA-treated patients had a profound deple-
tion of the GMP-like population that defined monocytic-
biased CMML. Consistent with previous studies suggesting 
that clonal architecture is preserved after HMA therapy (26), 
our clonal tracing analysis demonstrated that clonal com-
position remained unchanged despite profound depletion 
of Clus2 cells after HMA therapy, suggesting that these non-
clonal dynamics may be clinically informative in the context of 
treatment. Furthermore, our murine and human NRAS-based 
model of stress-induced hematopoiesis also showed expansion 
of inflammatory GMPs consistent with previous studies that 
have suggested that human leukemia may usurp emergency 
myelopoiesis programs for disease initiation (23, 45, 49).

We show that stress-induced hematopoiesis can alter HSPC 
composition akin to hematopoiesis seen in monocytic-biased 
CMML, suggesting that inflammatory events, even after the 
disease is fully manifested, could adversely affect disease 
progression. Although enriching for CD34+ cells enabled us 
to finely map the HSPC compartment, our study could not 
explore the impact of CD34− progenitors or terminally dif-
ferentiating cells on the self-renewing population.

Given the discordance between enrichment in RAS path-
way mutation in monocytic-biased CMML and lack of RAS 
mutation enrichment in Clus2 cells, it is plausible that more 
terminally differentiated RAS-mutated populations contrib-
ute to HSPC composition in a non–cell-autonomous manner. 
Further, the continued deconvolution of HSPC at the single-
cell resolution of other myeloid neoplasms and strategies to 
mitigate triggers of stress-induced hematopoiesis to prevent 
the monocytic-biased state should be explored (11, 50).

METHODS
Patient Samples and Characteristics

Bone marrow samples were obtained from a total of 55 patients. 
Our study was skewed toward Caucasian patients consistent with the 
known epidemiologic demographics of this disease (51, 52). Further, 
there were no gender-specific differences. Patient samples were collected 
after obtaining written informed consent. The use of human materials 
was approved by the Institutional Review Board of the Moffitt Can-
cer Center Scientific Review Committee and the University of South 
Florida Institutional Review Board in accordance with the Declaration 
of Helsinki. For the flow cytometry cohort, control CD34+ cells were 
sourced from Lonza, enriched from apheresis product, and BMMNCs 
from subjects without hematologic malignancies. Baseline patient char-
acteristics for patient samples used in scRNA-seq and flow cytometry 
studies are shown in Supplementary Tables S5 and S6, respectively.

CD34 Enrichment of Patient Samples
Sixty million cryopreserved BMMNCs per sample were obtained 

from the Moffitt Tissue Core. Samples were thawed, washed with 20% 
FBS in PBS, and treated with DNase I for 15 minutes to reduce cell 
clumping. First, dead cell removal was performed according to the 
manufacturer’s instructions (Miltenyi Biotech; catalog number: 130-
090-101) followed by CD34 enrichment, also according to the manufac-
turer’s protocol (Miltenyi Biotec; catalog number: 130-046-703). For the 
flow cytometry cohort, CD34 cells were enriched from BMMNCs based 
on the manufacturer’s instructions (Miltenyi Biotec: 130-046-703).

scRNA-seq and Analysis
Chromium Single Cell 3′ Library, Gel Bead and Multiplex Kit and 

Chip Kit (10X Genomics v3) was used to encapsulate and barcode for 

cDNA preparation of enriched CD34+ BMMNCs in 39 samples across 
29 unique patients. The targeted cell population sizes were 5,000 
cells for each sample (Supplementary Table  S7). The libraries were 
constructed according to the manufacturer’s protocol, sequenced on 
an Illumina NovaSeq, and mapped to the human genome (GRCh38) 
using CellRanger (10X Genomics). Healthy control CD34+ enriched 
BMMNCs from 8 unique patients were integrated from publicly 
available data (6–8). Raw gene-expression matrices were generated per 
sample using CellRanger (v.3.0.1) were combined in R(v.4.0.2) and 
converted to a Seurat object (19). Quality control metrics removed 
cells with over two standard deviations of the mean of unique molecu-
lar identifier (UMI) count, less than 200 genes per cell, and those with 
over 25% of the UMIs derived from the mitochondrial genome. From 
the remaining 137,578 cells, the gene-expression matrices were log-
normalized and scaled to remove variation due to total cellular read 
counts. To reduce the dimensionality of the data set, the first 200 
principal components were calculated based on the top 2,000 vari-
able genes, and Harmony (9) was applied to remove batch differences. 
All cells were clustered using the Louvain algorithm implemented 
by Seurat (v.3) with a resolution of 0.05; the algorithm identified 13 
communities. The data were then visualized by running the UMAP 
algorithm (10). CMML patient samples and normal references (Sup-
plementary Fig. S20) were individually projected onto an established 
hematopoietic reference [Setty (6) rep1, denoted Normal1 in this 
article] in t-SNE space and assigned different hematopoietic lineages 
from the references using the consensus assignment of the 30 nearest 
neighbors in the reference. Differential gene analysis was performed 
on clusters of interest (e.g., Clus2) using FindMarkers in Seurat and 
annotated using Enrichr (28, 53), pathway analysis (54), and COMET 
(24) was used to identify robust markers for flow cytometry expres-
sion. SingleR (20) was implemented for cell-type annotation for each 
sample compared against three hematopoietic references (55–58). 
mitoClone (25) was used to reconstruct clones using mitochon-
drial reads from scRNA-seq data, and evoFreq was used to visualize 
these clonal assignments as fish plots (59). Additional detail on the 
implementation of these methods is described in the Supplementary 
Methods. All computational pipelines for these analyses are publicly 
available on GitHub: https://github.com/mcfefa/CMML-diversity.

Single-Cell DNA and Protein Sequencing Preparation, 
Sequencing, and Analysis

CD34+ cells from a representative non–monocytic-biased and 
monocytic-biased patient were thawed, washed with PBS + 10% FCS, 
cell staining buffer (BioLegend; catalog number: 420201), and quan-
tified using a Countess cell counter (Invitrogen). 1.0 × 106 cells were 
then resuspended in cell staining buffer and incubated with TruStain 
FcX (BioLegend; catalog number: 422301), blocking buffer (Tapestri 
Protein Staining Kit; catalog number: MB51-0017) for 15 minutes on 
ice. Post blocking, the cells were incubated with a pool of 45 oligo-
conjugated antibodies (BioLegend; catalog number: 399906; Sup-
plementary Table S8) for 30 minutes on ice. Cells were then washed 
multiple times with cell staining buffer followed by resuspension 
of the cells in Tapestri cell buffer (Tapestri Single-Cell DNA Core 
Ambient Kit v2; catalog number: MB51-007) and requantification. 
10,000 single cells (4,000 cells/μL; >90% viability) were encapsulated, 
lysed, and barcoded using the Tapestri Single-Cell DNA  +  Protein 
Sequencing platform (MissionBio, Inc.). Using the MissionBio Tapestri 
Single-Cell DNA Myeloid Oligo Pool (catalog number: MB03-0036), 
barcoded samples were then subjected to targeted PCR amplification 
of 312 amplicons covering 45 genes known to be involved in myeloid 
malignancies (Supplementary Table  S9). DNA PCR products were 
then isolated from individual droplets and purified with AMPure XP 
beads (BeckmanCoulter Life Sciences; catalog number: A63881). The 
DNA PCR products were then used as a PCR template for library gen-
eration and repurified using MPpure XP beads. Protein PCR products 
(supernatant from AMPure XP bead incubation) were incubated 

https://github.com/mcfefa/CMML-diversity
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with Tapestri pullout oligo (5  μmol/L) at 96°C for 5 minutes fol-
lowed by incubation on ice for 5 minutes. Protein PCR products were 
then purified using the included streptavidin beads (Invitrogen) and 
were used as a PCR template for the incorporation of i5/i7 Illumina 
indices followed by purification using AMPure XP beads. All librar-
ies, both DNA and Protein, were quantified using the Qubit dsDNA 
BR Assay kit (Thermo Fisher Scientific; catalog number: Q32851) 
and the Agilent Bioanalyzer and were pooled for sequencing on an 
Illumina NovaSeq 6000 S4-300 lane by the MCC Molecular Genom-
ics Core. The FASTQ files for scDNA libraries were analyzed through 
the Tapestri pipeline (v2). For the protein analysis, custom scripts in 
python (v3.7.12) were used leveraging Mission Bio’s mosaic package 
(v2.0) to analyze both single-cell variant and antibody expression 
per cell. Variants were filtered through an empirically curated list of 
panel-specific mutations that were guided by cooccurrence with bulk 
sequencing. We then sought to define genotype clones, which we 
identified as cells that possessed identical genotype calls for the vari-
ants of interest. Dominant clones (highlighted in Fig. 4) were defined 
as the top three largest mutant clones in the sample, and the  ild-type 
clone was defined as the genotype clone that was wild-type for all 
variants of interest in the sample.

PE-Conjugated Flow Cytometry Screen
CD34+ HSPC from CMML patients and healthy subjects (n  =  4 

patients and 15 healthy subjects) were used for the flow cytometry 
screen. Cells were incubated in a 96-well plate with Zombie Green 
(BioLegend) for 20 minutes in the dark at room temperature. Cells 
were washed twice with flow buffer. Cells were resuspended in Bri-
Iliant stain buffer (BD Biosciences; catalog number: 566349), and 
Human FcR Blocking Reagent (Miltenyi Biotec; catalog number: 130-
059-901) was added to each sample and incubated for 10 minutes at 
room temperature. Without washing, titrated volumes of antibodies 
were added to each sample and incubated for 20 minutes at room 
temperature in the dark. Samples were washed and stained with 
streptavidin-PE (SA-PE) for 20 minutes at room temperature in dark. 
The cells were washed and resuspended in a flow buffer. Data were 
acquired using Symphony A-5 flow cytometer (BD). Single-stained 
cells, Anti-Mouse Comp Beads (BD Biosciences; catalog number: 
552843) were used for compensation controls (BD). Fluorescence 
minus one (FMO) controls were used to set population gates. Data 
were analyzed using FlowJo 10 and GraphPad Prism 7 software. The 
analysis was performed using the single-positive HSC immunophe-
notype. Reagent details are provided in Supplementary Table S10.

Development of a 30-Parameter Flow Cytometry Panel
The high-parameter CR flow panel was built based on receptor 

expression and receptor frequency derived from the PE-conjugated 
flow cytometry screen. Based on receptor expression (MFI) data, the 
receptors with high expression were paired with fluorophores with 
low stain index, and receptors with low expression were paired with 
fluorophores with high stain index (Supplementary Fig.  S17A and 
S17B). We factored in the data regarding receptor frequency because 
some receptors (for instance, TLR4) were found to have high expres-
sion but only in a small percentage of cells. In such cases, it was 
not prudent to conjugate such receptors with a fluorophore of low 
stain index. Based on these data, such receptors were conjugated to 
fluorophores with a medium stain index (Supplementary Fig. S17C). 
The next step in panel development was based on spillover spread-
ing error (SSE; ref. 35). We utilized the SSE data from erythrocyte-
lysed whole blood (LWB) stained with CD4 antibody conjugates on 
Symphony A5 (Supplementary Fig. S17D). These data enabled us to 
choose fluorophore pairs with low cross-talk.

We generated spillover spreading matrix (SSM) and FMO controls 
specific to our panel by staining compensation particles and cells 
with a titred volume of respective 28 antibodies/dyes (single-cell 

stain controls). A few fluorophore pairs had SSE >5 and FMO/com-
pensation controls data indicated cell spreading that could interfere 
with signal resolution (Supplementary Fig. S17E). We identified the 
sources of spillover and took measures of reducing the antibody 
volumes of concerned markers in consideration with the antibody 
titration data and also used appropriate stain blockers. Based on this 
approach we generated a revised SSM (Supplementary Fig.  S17F). 
Even though we found a few fluorophore pairs with SSE >5, the 
analysis of FMO data and compensation controls showed that the 
revised approach would not interfere in resolving distinct popula-
tions of receptors (Supplementary Fig. S17G).

Staining for CR in Human HSPC
CD34+ HSPC from patients and healthy donors were incubated 

in 5-mL flow tubes with Zombie Green for 20 minutes in the dark 
at room temperature. Cells were washed twice with flow buffer. 
Cells were resuspended in Brilliant Stain Buffer Plus (BD Horizon; 
catalog number: 566385) and Human FcR blocking reagent (Miltenyi 
Biotec; catalog number: 130-059-901). True-stain monocyte blocker 
(BioLegend; catalog number: 426102) was added to each sample and 
incubated for 10 minutes at room temperature. Without washing, 
titrated volumes of antibodies were added to each sample and incu-
bated for 20 minutes at room temperature in the dark. Samples were 
washed and stained with SA-PE-Cy5.5/CF-350/BV570 in a sequential 
manner for 20 minutes each at room temperature in dark. The cells 
were washed and resuspended in a flow buffer. Data were acquired 
using a Symphony A-5 flow cytometer (BD). Sphero rainbow calibra-
tion particles (8 peaks), 3.0–3.4 μm (BD Biosciences; catalog number: 
559123) were used to calibrate laser voltages for each fluorochrome. 
Single-stained cells, Anti-Mouse/Anti-Comp Beads (BD Biosciences; 
catalog number: 552843), Anti-Rat/Anti-Hamster Comp Beads (BD 
Biosciences; catalog number: 552845), UltraComp eBeads (Thermo 
Fisher; catalog number: 01-2222-42), and Anti-REA Comp Beads 
(Miltenyi Biotec; catalog number: 130-104-693) were used for com-
pensation controls. Data were analyzed as explained above. Reagent 
details are provided in Supplementary Table S11.

Colony-Forming Assays
Colony-forming assays were performed using BMMNCs from 2 

high diversity and 2 low diversity patients per the manufacturer’s 
instructions. 2  ×  104 BMMNCs from each patient were seeded in a 
methylcellulose-based medium with recombinant human cytokines 
(STEMCELL Technologies; catalog number: H4034) and in the 
methylcellulose-based medium without human cytokines (STEMCELL  
Technologies; catalog number: H4230) in triplicate using the Smart-
Dish (STEMCELL Technologies; catalog number: 27370) and incu-
bated under 5% CO2 at 37°C for 14 days. At the end of 14 days, the 
colonies were assessed using STEMvision (STEMCELL Technolo-
gies), and the data were represented as the ratio of the total num-
ber of colonies per well in the methylcellulose-based medium with 
recombinant human cytokines/total number of colonies per well in 
the methylcellulose-based medium without human cytokines.

Animal Models
All animals were housed in accordance with institutional standards 

set by Moffitt Cancer Center and the University of South Florida 
(USF), and all procedures were approved by the USF Institutional 
Animal Care and Use Committee (IACUC). B6 CD45.2 (C57BL/6J, 
stock #000664), B6 CD45.1 (B6.SJL-Ptprca Pepcb/BoyJ, stock 
#002014), Mx1-Cre (B6.Cg-Tg(Mx1-cre)1Cgn/J, stock #003556), and 
NSG-S (NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(CMV-IL3,CSF2,KITLG)1Eav/
MloySzJ, stock #013062) mice were purchased from The Jackson  
Laboratory. C57BL/6J NrasLSL Q61R mice were a gift from Jing Zhang. 
NrasLSL Q61R mice were crossed to Mx1-Cre mice to generate NrasQ61R/+ 
experimental mice, which were hemizygous for the Mx1-Cre 
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transgene. B6 CD45.2 mice were crossed to B6 CD45.1 to generate 
B6 CD45.1/CD45.2 mice. NSG-S mice were bred in a pathogen-free 
environment. All xenografts used 6- to 12-week-old NSG-S mice. 
Genotyping was performed by Transnetyx.

Competitive Bone Marrow Transplants
Femora and tibiae were dissected from freshly killed 5- to 10-week-

old experimental mice (Mx1-Cre and NrasQ61R/+; Mx1-Cre, all of which 
express CD45.2 alone), and bone marrow was flushed into sterile 
saline. Red blood cells were lysed with sterile ACK lysis buffer (8.29 
g/L ammonium chloride, 1 g/L potassium bicarbonate, 37 mg/L 
EDTA). Pelleted cells were resuspended in sterile saline and counted. 
Recipient 7- to 15-week-old mice were lethally irradiated with two 
doses of 500 cGy, 4 hours apart. 0.5 million bone marrow cells from 
Mx1-Cre, NrasQ61R/+;Mx1-Cre were mixed with an equal number of 
support marrow cells and injected via tail vein into recipient mice. 
B6 CD45.1 mice were used as transplant recipients and B6 CD45.1/
CD45.2 mice were used as the source of support marrow. Chimer-
ism was assessed in peripheral blood by staining for mCD45.1 and 
mCD45.2 and analysis by flow cytometry starting at four weeks 
after transplant and was repeated every four weeks. Five weeks after 
transplant, mice receiving cells from Mx1-Cre strains received two 
i.p. injections of 250 μg pI-pC (Millipore Sigma) 48 hours apart. The 
mice were euthanized 41 weeks after transplantation, myeloid tissues 
were collected, and flow cytometry was performed using an LSR II 
flow cytometer (BD) and analyzed with FlowJo v10.

Murine Stem and Progenitor Panel Staining
The murine stem and progenitor pool investigations were performed 

on Mx1-Cre and NrasQ61R/+;Mx1-Cre mice. Bone marrow cells were iso-
lated from mice femora and tibiae. Flow cytometry was performed 
using BD LSRII (BD), and data were analyzed as explained above. 
The following gating strategy was used to study CD120b expression 
in HSCs and myeloid progenitors. LSK: lineage−c-KIT+Sca-1+; HSC: 
lineage−c-KIT+Sca-1+CD48−CD150+CD135−CD34−; MPP1: lineage−c-
KIT+Sca-1+CD48−CD150+CD135−CD34+; MPP2: lineage−c-KIT+Sca-1+ 
CD48+CD150+CD135−CD34+; MPP3: lineage−c-KIT+Sca-1+CD48+

CD150−CD135−CD34+; MPP4: lineage−c-KIT+Sca-1+CD48+CD150− 
CD135+CD34+; CMP: lineage−c-KIT+Sca-1−CD34+CD16/32−; MEP: 
Lineage−c-KIT+Sca-1−CD34−CD16/32−; GMP: lineage−c-KIT+Sca-1− 
CD34+CD16/32+. Reagent details are provided in Supplementary 
Table S12. The comparisons were made between the support marrow 
(CD45.1/CD45.2) and NrasQ61R/+; Mx1-Cre (CD45.2).

PDX Generation
Two to five million, T-cell depleted, BMMNCs from 2 unique 

CMML patient samples were transplanted via tail vein into 6 suble-
thally irradiated, 6- to 10-week-old female NSG-S mice. The number of 
mice per patient was determined by the number of BMMNCs available.

Two weeks after transplant, bone marrow biopsies were done on 
the left tibia of each mouse to monitor engraftment. The proce-
dure was done under anesthesia and administration of analgesics 
both pre- and post-op. Once engraftment was detected, mice were 
randomized to receive 10  μg LPS (E.coli, O111:B4, Sigma-Aldrich) 
or saline vehicle via intraperitoneal injection. Mice were euthanized 
24 hours later. Myeloid tissues and peripheral blood were collected 
post-mortem for further analysis. FACS flow cytometry using the 
LSRII was used to determine leukemic engraftment. Reagent details 
are provided in Supplementary Table S13.

PDX Plasma Cytokine Profiling
Peripheral blood was collected by submandibular bleed into a lith-

ium heparin microtainer 6 hours after i.p. injection of LPS or vehicle 
(BD; catalog number: 365965). Plasma was isolated by spinning 
down the peripheral blood at 7,000 × g and removing the resulting 

supernatant. Cytokine levels were measured using the Human Proin-
flammatory 7-plex Tissue Culture Kit (Supplementary Fig. S19; Meso 
Scale Discovery; catalog number: K15008B-1). Before running the 
assay, plasma was diluted 1:2 using the provided diluent buffer. The 
Meso QuickPlex SQ 120 was used for imaging (Meso Scale Discovery; 
catalog number: AI0AA-0).

Statistical Analysis
Data were analyzed using nonparametric Mann–Whitney tests, 

Kruskal–Wallis test, multiple paired t test, Fisher exact test, and 
Chi-square analysis. Survival data were analyzed using log-rank 
(Mantel–Cox) test.

Data Availability
The bulk RNA-seq data used in flow cytometry panel development 

were from healthy and CMML CD34+ cells extracted from the fol-
lowing publicly available data sets: Healthy CD34+ cells: the Gene-
Expression Omnibus (GEO): GSE69239, GSE55689, GSE63569, 
accession ID: PRJEB6573; CMML CD34+: GEO: GSE76203.

The scRNA-seq data from healthy CD34+ cells were extracted from 
three publicly available data sets: one patient sample was from 10X 
Genomics at https://www.10xgenomics.com/resources/datasets/cd-
34-plus-cells-1-standard-1-1-0, three patient samples available from 
the Human Cell Atlas data portal at https://data.humancellatlas.org/
explore/projects/091cf39b-01bc-42e5-9437-f419a66c8a45, and four 
patient samples available from GEO under GSE133181. Normal sample 
characteristics are shown in Supplementary Table S14.

The scRNA-seq data for the CMML CD34+ cells analyzed here 
have been made publicly available in the GEO: accession number  
GSE211033.

Code Availability
The code and documentation describing how to run our com-

putational analysis pipeline and reproduce our results are open-
source and publicly available GitHub repository: https://github.
com/mcfefa/CMML-diversity. A virtual machine producing the environ-
ment is avail able on Code Ocean (doi: 10.24433/CO.1315403.v1):  
https://codeocean.com/capsule/9823313/tree/v1.
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