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Abstract
Aims: To develop an automatic method of classification for parkinsonian variant of 
multiple system atrophy (MSA-P) and Idiopathic Parkinson's disease (IPD) in early to 
moderately advanced stages based on multimodal striatal alterations and identify the 
striatal neuromarkers for distinction.
Methods: 77 IPD and 75 MSA-P patients underwent 3.0 T multimodal MRI comprising 
susceptibility-weighted imaging, resting-state functional magnetic resonance imaging, 
T1-weighted imaging, and diffusion tensor imaging. Iron-radiomic features, volumes, 
functional and diffusion scalars of bilateral 10 striatal subregions were calculated and 
provided to the support vector machine for classification
Results: A combination of iron-radiomic features, function, diffusion, and volumet-
ric measures optimally distinguished IPD and MSA-P in the testing dataset (accuracy 
0.911 and area under the receiver operating characteristic curves [AUC] 0.927). The 
diagnostic performance further improved when incorporating clinical variables into 
the multimodal model (accuracy 0.934 and AUC 0.953). The most crucial factor for 
classification was the functional activity of the left dorsolateral putamen.
Conclusion: The machine learning algorithm applied to multimodal striatal dysfunc-
tion depicted dorsal striatum and supervening prefrontal lobe and cerebellar dys-
function through the frontostriatal and cerebello-striatal connections and facilitated 
accurate classification between IPD and MSA-P. The dorsolateral putamen was the 
most valuable neuromarker for the classification.
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1  |  INTRODUC TION

Idiopathic Parkinson's disease (IPD) and multiple system atrophy 
(MSA), especially the parkinsonian variant (MSA-P), are two neuro-
degenerative diseases that manifest as clinical symptoms but pose 
difficulty in the differential diagnosis. Unlike IPD, MSA-P patients 
have faster progression, poorer prognosis, lesser sensitivity to do-
pamine treatment, and unsuitability for deep brain stimulation.1 
Considering the prognosis and therapeutic differences between the 
two phenomena, an accurate separation in the early to moderately 
advanced stage is clinically essential.

Currently, the clinical diagnosis of IPD and MSA-P is based on 
the history and neurological examinations, allowing misdiagnosis 
due to individual differences and subjective factors.2 Magnetic res-
onance imaging (MRI) is the most applied non-invasive examination 
for diagnosis and a series of specific diagnostic signs, such as lack 
of “swallow-tail” sign for IPD diagnosis and “putaminal rim” sign for 
MSA diagnosis, have been proposed.3,4 However, the value of these 
signs in clinical diagnosis is inconsistent, partially due to their exis-
tence in normal aging people and non-detectability in a subgroup of 
IPD and MSA-P patients due to the short period of the disease.5,6 As 
a result, finding sensitive and early neuromarkers that may improve 
the accuracy of the clinical diagnostic criteria is imperative. From a 
neuropathological perspective, the central role of striatum under-
lying the pathophysiology of both IPD and MSA has been verified.7 
In addition, PD patients exhibited varied dopamine transporter loss 
and iron deposition patterns in the striatum of MSA patients on pos-
itron emission tomography (PET) and iron-sensitive MRI, which was 
ascribed as striatum's role in differential diagnosis.6,8,9

Therefore, striatal dysfunction in IPD and MSA has been stud-
ied.10–14 Aberrant functional activity and connectivity were ob-
served on resting-state functional MRI (rs-fMRI),10,13 brain atrophy 
was found on T1-weighted images (T1WIs),11–13 and microstruc-
ture changes were visible on diffusion-weighted images (DWI).12,14 
Nevertheless, these findings were group-level, causing restriction 
to clinical usage. The development of a machine learning method 
for the interpretation of imaging biomarkers provides a possibility 
for individualized prediction.15 Most studies have included a single 
modality of MRI to prediction. For example, Baggio et al. discrim-
inated MSA from IPD based on rs-fMRI and obtained an accuracy 
of 77.17%.16 Other researchers established discriminative models 
of PD and MSA using DWI sequence and obtained an accuracy of 
78%.17 One of our previous works reported discriminative model 
based on SWI, yielding AUC from 0.583 to 0.788.6 The moderate 
performance was partially due to the limited information obtained 
through a single modality. While, other studies reported preferable 
performance based on a single modality MRI. For example, research-
ers established decision tree using T1WI and DWI sequence to dif-
ferentiate PD and MSA.18–20 In addition, other researchers applied 
logistic model to advanced DWI and obtained excellent diagnostic 
performance.21 However, it may lead to biased model performance 
estimates with a small sample size in the above studies. Compared 
with single modality sequence, multimodal MRI increases the 

accuracy to collect the disease-relevant tissue measurements and 
determine the relative predictive strengths of disease-related func-
tional and structural alterations.22 Nemmi et al.22 utilized multimodal 
MRI data to establish a discrimination model of PD and MSA but 
failed to separate the MSA-P subtype. It is rather challenging to dif-
ferentiate MSA, especially MSA-P subtype, as opposed to cerebellar 
subtype (MSA-C), from IPD as both exhibit parkinsonian symptoms. 
Studies on differential diagnosis between MSA-P and IPD are sparse. 
Researchers applied discriminant analysis to a combination of T1WI, 
T2*WI, and DWI and achieved an accuracy of >95%.23,24 However, 
the reported results were based on validation dataset. According to 
the guideline on artificial intelligence, an independent testing data-
set is required for evaluating final results.25 Besides, Tsuda et al.26 
used neural network based on T1WI and MRS, providing an AUC of 
0.775. The moderate diagnostic accuracy may be attributed to the 
partial information provided by the limited MRI modality. Therefore, 
in order to transpose an unbiased and high accuracy classification 
model, a discriminative model using a combination of multimodal 
MRI information on the training dataset with large sample size and 
an evaluation model on an independent testing dataset is essential.

In the present study, we aimed to construct an automatic differ-
ential diagnosis model based on multimodal striatal alterations for 
the classification of IPD and MSA-P patients in early to moderately 
advanced stage that can be translated into a clinical setting. In addi-
tion, we aimed to find striatal neuromarkers by analyzing the feature 
weights involved in model prediction.

2  |  MATERIAL S AND METHODS

2.1  |  Subjects

A total of 77 patients with IPD and 75 patients with MSA-P were 
included and diagnosed by advanced movement specialists at 
the outpatient clinic of the Department of Neurology of the First 
Affiliated Hospital of China Medical University from February 2017 
until April 2020. Inclusion criteria were: (1) a clinical diagnosis of 
probable MSA or IPD according to consensus criteria.27,28 MSA-P 
subtypes were diagnosed depending on the predominant motor 
phenotype among “probable MSA” group28; (2) a clinical follow-up at 
least 24 months for the diagnosis confirmation after initial diagnosis; 
(3) early to moderately advanced stage (disease duration [the pe-
riod of patient-reported symptoms until the time of MRI acquisition] 
<6 years).18 Exclusion criteria were: (1) significant cognitive impair-
ment (MMSE < 24); (2) abnormal findings on conventional brain MRI; 
(3) vascular Parkinson's disease; (4) A history of cerebrovascular dis-
ease, neurological surgery; (5) Lack of complete clinical information; 
(6) Evidence of movement artifacts; (7) Neurological or psychiatric 
disorders other than PD and MSA (Appendix S1).

The Levodopa equivalent daily dose (LEDD) was calculated.29 
Motor disability was evaluated using motor scores of the Unified 
Parkinson's Disease Rating Scale (UPDRSIII). MMSE, Hamilton de-
pression rating scale-24 items (HDRS-24), and Hamilton anxiety 
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rating scale (HARS) were assessed. MRI scans were obtained on the 
same day as the clinical evaluation, with patients during their off-
state (≥12 h after the last reception of dopaminergic medication).

Patients were randomly allocated to the training (70%) and test-
ing (30%) cohort, with stratified sampling. The Institutional Review 
Board of China Medical University approved this study. Written in-
formed consent was obtained from all patients.

2.2  |  MRI acquisition and preprocessing

The multimodal imaging data were acquired on a 3.0 T MRI scan-
ner (Magnetom Verio, Siemens, Erlangen, Germany) equipped with 
a 32-channel head coil. All participants were scanned using a stand-
ardized protocol including a high-resolution T1WI, diffusion tensor 
imaging (DTI), rs-fMRI, and SWI sequence. Acquisition parameters 
are listed in Appendix S2. Quality control was performed by visual 
inspection. We used FreeSurfer 6.0 software (http://frees​urfer.net/; 
MGH, Boston, MA, USA) to calculate striatal volume. BOLD images 
were preprocessed using Data Processing and Analysis for Brain im-
aging (DPABI) software (http://rfmri.org/dpabi). We used advanced 
normalization tools (ANTs) package for spatial normalization. DTI 
scalars were obtained using FSL (http://www.fmrib.ox.ac.uk/fsl). 
The details of preprocessing steps are described in Appendix S3.

2.3  |  Striatum subdivision

Since the striatum is anatomically and functionally segregated, 
identifying a striatal neuromarker using a fine-grained striatal par-
cellation is crucial. Several striatal subdivision methods defined by 
anatomical or functional alterations are available; however, there 
is no optimal choice yet. Brainnetome is an anatomically and func-
tionally defined atlas that has been widely applied in neuroimaging 
studies.30,31 Therefore, we selected Brainnetome Atlas for stri-
atal subdivision and brain parcellation. According to the atlas, the 
striatum contains five subregions per hemisphere: ventral caudate, 
nucleus accumbens, ventromedial putamen, dorsal caudate, and 
dorsolateral putamen.

2.4  |  Feature extraction

Regarding rs-fMRI data, functional activity (regional homogene-
ity (ReHo) and amplitude of low-frequency fluctuation [ALFF]) 
and functional connectivity (intra- and extrastriatal FC) were cal-
culated. The details of functional measures extraction are given 
in Appendix S4. Finally, 10 mALFF, 10 mReHo, 45 intra- and 2630 
extrastriatal FC values were extracted. Volumes of bilateral striatal 
subregions were normalized by total intracranial volume. Average 
values of fractional anisotropy (FA) and mean diffusivity (MD) were 
calculated in bilateral striatal subregions. In line with the Imaging 
Biomarker Standardization Initiative (IBSI), 90 radiomic features of 

each striatal subregion were extracted from SWI32,33 (Appendix S5). 
Ultimately, 3625 striatal-related functional, structural, iron-radiomic 
measures were extracted as features.

2.5  |  Feature selection

Firstly, features were standardized using z score normalization. In 
order to avoid model overfitting, a feature selection procedure was 
performed to remove redundant features in the training dataset. The 
mutual information-based feature selection technique-minimum re-
dundancy maximum relevance (mRMR) method was applied to se-
lect a subset of features with a high correlation with the label and 
the least correlation among themselves, which, in turn, was applied 
to scale down the feature vector.34 Subsequently, the least absolute 
shrinkage and selection operator (LASSO) was applied to further 
eliminate the redundant features. The best hyperparameter lambda 
of LASSO model was established in accordance with the minimum 
mean squared error via five-fold cross-validation (CV).

2.6  |  Model construction and evaluation

The selected features were applied to the classification model to 
distinguish IPD from MSA-P. The support vector machine (SVM) 
equipped with radial basis function (RBF) is suitable for high-
dimensional data with small sample size and have ability of avoid 
overfitting by regularization hyperparameters.35 Therefore, we ap-
plied SVM with RBF kernel for model construction. A nested loop 
five-fold CV strategy was applied during the model construction, 
i.e., the outer loop for model evaluation and the inner loop for opti-
mizing hyperparameter (C and gamma) via the grid-search method. 
Based on the SWI, BOLD, DTI, and 3DT1 modalities, we established 
“Iron,” “Function,” “Diffusion,” and “Volumetry” models, respec-
tively. Additionally, a “multimodal” model based on a combination 
of four modalities was constructed. Furthermore, we aimed to build 
a “clinical-multimodal” model. Clinical variables, which showed sta-
tistical difference between groups were considered as valuable and 
were incorporated into the “clinical-multimodal” model.

The established models were evaluated on the independent test-
ing cohort. Subgroup validation was further conducted: early stage 
(disease duration ≤2 years) versus moderately advanced stage (dis-
ease duration >2 years). The AUC was applied as the main scalar for 
model evaluation. Balanced accuracy, sensitivity, specificity, positive 
predictive value (PPV), and negative predictive value (NPV) were 
also calculated on both training and testing datasets.

2.7  |  Model interpretation

SHapley Additive exPlanations (SHAP) analysis was conducted to 
explain the model output and identify the top-contributing stri-
atal neuromarker for classification.36 Regarding the difficulties of 

http://freesurfer.net/
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explaining the machine learning model, model-independent SHAP 
analysis provided insights into the model by calculating the contribu-
tion of each feature to the model prediction globally.

2.8  |  Statistical analysis

The demographic and clinical data were analyzed using SPSS 
software (IBM, Armonk, NY, USA) and MATLAB R2013b. The 
Kolmogorov–Smirnov test was performed to assess the normal dis-
tribution of continuous data. The group comparison between age, 
disease duration, and UPDRSIII score was carried out using a two-
sample t-test. The mean frame-wise displacement parameter was 
compared using Mann–Whitney U test between two groups. The 
differences in gender were compared using the chi-square test. A 
permutation test (1000 times) was applied to test the classification 
accuracy. The DeLong test was used for AUC comparison. Two-
sample t-tests with a false-discovery rate (FDR) correction were 
applied to compare selected features between two groups. A two-
sided p-value <0.05 indicated a statistically significant difference.

3  |  RESULTS

3.1  |  Demographic and clinical data

No significant differences were detected in age, gender, and dis-
ease duration (p = 0.32, p = 0.50, and p = 0.16 for training dataset; 
p = 0.37, p = 0.30, and p = 0.36 for testing dataset) between the two 
groups. Also, there were no significant differences in MMSE, HDRS-
24, and HARS score (p = 0.21, p = 0.98, and p = 0.62 for training 
dataset; p = 0.36, p = 0.73, and p = 0.84 for testing dataset) between 
the two groups. Compared to IPD group, patients in MSA-P groups 
showed significant higher UPDRSIII score (p = 0.01 for training data-
set, p = 0.02 for testing dataset). There was no difference in LEDD 
between IPD and MSA-P patients (p  =  0.70 for training dataset, 
p = 0.72 for testing dataset; Table 1). Figure 1 shows the workflow 
of the current study.

3.2  |  Feature selection

As for “multimodal” model, 3625 features were initially reduced to 
55 potential variables after mRMR procedure, which included 31 ex-
trastriatal FC, 3 intrastriatal FC, 4 mALFF, 2 mReHo, 2 FA, 2 MD, 
3 volume, and 8 iron-radiomic features. Subsequently, 16 features 
with nonzero coefficients in the LASSO model were selected in the 
training dataset: 9 extrastriatal FC, 1 intrastriatal FC, 1 mALFF, 1 
MD, 1 volume, and 3 iron-radiomic features (Figure 2).

Specifically, the mALFF value of the left dorsolateral putamen 
(0.71 ± 0.12 in IPD; 0.43 ± 0.18 in MSA-P, p < 0.001) in MSA-P patients 
was lower than that in IPD patients. The extrastriatal FC of the dor-
sal striatum and frontal lobe, as well as the cerebellum were found TA
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to be comparatively lower in MSA-P patients, compared with that in 
IPD patients. Similarly, the volume of the left dorsolateral putamen 
(0.20 ± 0.02 in IPD; 0.20 ± 0.03 in MSA-P, P  =  0.018) was lower in 
MSA-P patients than that in IPD patients. Conversely, the MD value 
of the left dorsolateral putamen (0.08 ± 0.01 in IPD; 0.09 ± 0.02 
in MSA-P, p < 0.001) and iron-related radiomic features (IPD: 
1.23 ± 0.20 for DifferenceEntropy, 1.96 ± 0.38 for Entropy, 0.38 ± 0.07 
for RunLengthNonUniformityNormalized; MSA-P: 1.43 ± 0.29 
for DifferenceEntropy, 2.30 ± 0.48 for Entropy, 0.43 ± 0.07 for 
RunLengthNonUniformityNormalized, p < 0.01) were higher in MSA-P 
patients than those in IPD patients (Table 2). The details of the selected 
features in each model are presented in Appendix S6. Besides, only 
UPDRSIII score showed statistical difference between IPD and MSA-P 
patients (p < 0.05) among clinical variables. Therefore, UPDRSIII was 
further included in the “clinical-multimodal” model.

3.3  |  Model performance

In the training and testing cohort, the “Multimodal” model yielded 
the best classification performance, with AUC of 0.968 (0.914–
0.992) and 0.927 (0.809–0.983), respectively. The performance of 
“Function,” “Iron,” “Diffusion,” and “Volumetry” models were moder-
ate to poor, in decreasing order, with AUC of 0.890 (0.815–0.942), 
0.800 (0.712–0.871), 0.713 (0.618–0.797), and 0.544 (0.445–0.641) 
in the training dataset and 0.806 (0.661–0.909), 0.741 (0.589–0.860), 
0.626 (0.470–0.766), and 0.514 (0.360–0.665) in the testing dataset, 
respectively. The “Clinical-Multimodal” model further increased the 
performance, yielding an AUC of 0.986 (0.944–0.999) and 0.953 
(0.885–0.994; Table 3 and Figure 3). Furthermore, the “multimodal” 
and “clinical-multimodal” model had slightly better performance in 
the moderately advanced subgroup relative to the early-stage sub-
group, despite not surviving the Delong test (Appendix S7).

Delong tests results showed that the “Clinical-Multimodal” model 
outperformed “Function” model (p = 0.003), “Iron” model (p < 0.001), 
“Diffusion” model (p < 0.001), and “Volumetry” model (p < 0.001) in the 
training dataset, as well as “Iron” model (p = 0.016), “Diffusion” model 
(p < 0.001), and “Volumetry” model (p < 0.001) in the testing dataset. 
Similarly, the “Multimodal” model outperformed “Function” model 
(p  =  0.036), “Iron” model (p < 0.001), “Diffusion” model (p < 0.001), 
and “Volumetry” model (p < 0.001) in the training dataset, as well as 
“Diffusion” model (p = 0.003), and “Volumetry” (p < 0.001) model in the 
testing dataset. As for models of single modality, the “Function” model 
outperformed the “Diffusion” model (p  =  0.002) and “Volumetry” 
(p < 0.001) model in the training dataset, as well as the “Volumetry” 
model (p = 0.015) in the testing dataset (Appendix S8). The optimized 
hyperparameters of the models are shown in Appendix S9.

3.4  |  Model interpretation with SHAP

In the “Multimodal” and “Clinical-Multimodal” model prediction, the 
mALFF value of the left dorsolateral putamen was a critical predic-
tor, with a decrease of mALFF in the left dorsolateral putamen cor-
responding to increased confidence in the MSA-P diagnosis. The FC 
between the left dorsolateral putamen and the right precentral gyrus 
is a major factor in the model prediction. (Figure 4 and Appendix S10). 
The mALFF, MD value, volume, and Difference Entropy of the left 
dorsolateral putamen is a vital predictor in “Function,” “Diffusion,” 
“Volumetry,” and “Iron” models, respectively (Appendices S11–S14).

4  |  DISCUSSION

In this study, the machine learning algorithm identified the striatal 
dysfunction pattern with an excellent performance characterized 

F I G U R E  1  Workflow of the current study. First, the multimodal MRI images (BOLD, DTI, T1 images, and SWI) were obtained and 
preprocessed. Multimodal striatal scalars were calculated and extracted based on Brainnetome Atlas. Second, features from BOLD, DTI, 
TI, SWI modalities were selected in the training dataset, which included the minimal redundancy, maximal relevance (mRMR), and least 
absolute shrinkage and selection operator (LASSO). Third, the support vector machine (SVM) model with a radial basis function (RBF) kernel 
was constructed to discriminate MSA-P from IPD. The diagnostic performance was evaluated based on the AUC in the training and testing 
datasets. Finally, Shapley additive explanations (SHAP) analysis was conducted for multimodal model interpretation.
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by multimodal MRI distinguishing patients with IPD and MSA-P in 
clinical settings. Notably, the model exhibited good performance 
and was well-interpretable, manifesting the dorsolateral putamen 
as the most valuable neuromarker for classification. The dorsal 
striatum dysfunction might further cause supervening frontal lobe 
and cerebellar dysfunction through frontostriatal and cerebello-
striatal circuits, leading to clinical motor and cognitive symptoms.

Identifying the diagnostic biomarker for classification between 
IPD and MSA is currently underway. For example, clonidine and ar-
ginine growth hormone stimulation test can differentiate MSA from 
IPD. The measures of the growth hormone response to clonidine and 
arginine in serum sample serves as in indirect indicator for the func-
tion of various neurotransmitter networks. Previous studies reported 
a high differential diagnosis performance, ranging from 73.08% to 
96%.37–39 Despite its high diagnostic performance, the test may be 
restricted to clinical practice due to its confounded effect by dopami-
nergic treatment and its invasive procedure. Therefore, non-invasive 
differential diagnostic biomarker is warranted. Neuroimaging 

method has been introduced as an effective non-invasive approach 
for classification. However, studies focusing on the differential di-
agnosis between IPD and MSA-P are sparse. Previous studies re-
vealed the putamen's role in the differential diagnosis.40,41 Since 
the findings were population-based, the ability to provide valuable 
evidence at the individual level is less well-established. Recent stud-
ies applied discriminant analysis and machine learning algorithms 
for differential diagnosis.21,23,24,26 Nonetheless, with small sample 
size and no separate independent testing dataset, the models might 
be overfitting with a lack of generalization. In addition, functional 
MRI modality was not included but might capture brain damage at 
an early stage. In order to transpose an unbiased and high accuracy 
classification model, we improved the above limitations. Firstly, the 
number of MSA-P patients is large in the current study but limited 
compared to previous studies. Secondly, the information of striatal 
dysfunction depicted by iron-sensitive, functional, and structural 
multimodal MRI renders it to a high accuracy model. Thirdly, with 
an independent testing dataset, the model has high accuracy in the 

F I G U R E  2  Selected features in the Multimodal SVM model. The amplitude of low-frequency fluctuation (ALFF), mean diffusivity (MD) 
value, the volume, and the iron-radiomic features of the left dorsolateral putamen were selected (upper). The extrastriatal and intrastriatal 
functional connectivity (FC) in the “Multimodal” model (below). The thickness of the links in the FC data represents the weight of significant 
connections according to SHAP analysis results in “Multimodal” model.
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TA B L E  2  Characteristics of the selected features in the “multimodal,” “Function,” “Diffusion,” “Volumetry,” “Iron” models

Model Features IPD MSA-P Adjusted-p

Multimodal mALFF: left dorsolateral putamen 0.71 ± 0.12 0.43 ± 0.18 <0.001***

outFC: left dorsolateral putamen-right A4 upper limber region of precentral 
gyrus

0.38 ± 0.17 0.21 ± 0.13 <0.001***

MD (×100): left dorsolateral putamen 0.08 ± 0.01 0.09 ± 0.02 <0.001***

outFC: left dorsolateral putamen-right cerebellum IV 0.26 ± 0.15 0.16 ± 0.12 <0.001***

inFC: left dorsal caudate-right nucleus accumbens 0.41 ± 0.17 0.29 ± 0.14 <0.001***

Iron GLCM-DifferenceEntropy: left dorsolateral putamen 1.23 ± 0.20 1.43 ± 0.29 <0.001***

Iron Entropy: left dorsolateral putamen 1.96 ± 0.38 2.30 ± 0.48 <0.001***

outFC: left dorsal caudate-right A9 lateral region of superior frontal gyrus 0.47 ± 0.19 0.36 ± 0.20 <0.001***

outFC: left dorsolateral putamen-right A6 medial area of superior frontal 
gyrus

0.28 ± 0.16 0.18 ± 0.15 0.002**

outFC: left dorsal caudate -right cerebellum IV 0.34 ± 0.17 0.24 ± 0.21 0.009**

Iron GLRLM-GLRLM-RunLengthNonUniformityNormalized: left 
dorsolateral putamen

0.38 ± 0.07 0.43 ± 0.07 0.002**

OutFC: left dorsolateral putamen-right cerebellum V 0.32 ± 0.17 0.21 ± 0.17 0.012*

OutFC: left dorsal caudate-right A9/46 dorsal area of middle frontal gyrus 0.34 ± 0.19 0.24 ± 0.16 0.005**

OutFC: right ventromedial putamen-left A10 lateral area of middle frontal 
gyrus

0.32 ± 0.12 0.26 ± 0.13 0.003**

OutFC: right dorsolateral putamen-left A6medial area of superior frontal 
gyrus

0.27 ± 0.17 0.19 ± 0.12 0.011*

Volumetry (×100): left dorsolateral putamen 0.20 ± 0.02 0.20 ± 0.03 0.018*

Function mALFF: left dorsolateral putamen 0.71 ± 0.12 0.43 ± 0.18 <0.001***

OutFC: left dorsolateral putamen-right A4 upper limber region of 
precentral gyrus

0.38 ± 0.17 0.21 ± 0.13 <0.001***

OutFC: left dorsolateral putamen-right cerebellum IV 0.26 ± 0.15 0.16 ± 0.12 0.001***

InFC: left dorsal caudate-right nucleus accumbens 0.41 ± 0.17 0.29 ± 0.14 <0.001***

outFC: left dorsal caudate-right A9 lateral region of superior frontal gyrus 0.47 ± 0.19 0.37 ± 0.20 0.010*

outFC: left dorsolateral putamen-right A6medial area of superior frontal 
gyrus

0.28 ± 0.16 0.18 ± 0.148 0.002**

outFC: left dorsal caudate -right cerebellum IV 0.34 ± 0.17 0.24 ± 0.21 0.010*

outFC: left dorsolateral putamen-right cerebellum V 0.32 ± 0.17 0.21 ± 0.17 0.005**

outFC: left dorsal caudate-right A9/46dorsal area of middle frontal gyrus 0.34 ± 0.19 0.24 ± 0.16 0.007**

outFC: right ventromedial putamen-left A10lateral area of middle frontal 
gyrus

0.32 ± 0.12 0.26 ± 0.13 0.010*

outFC: right dorsolateral putamen-left A6medial area of superior frontal 
gyrus

0.27 ± 0.17 0.19 ± 0.12 0.010*

outFC: left dorsolateral putamen-left lateral prefrontal thalamus 0.36 ± 0.18 0.27 ± 0.18 0.010*

Diffusion MD (×100): left dorsolateral putamen 0.08 ± 0.01 0.09 ± 0.02 <0.001***

FA: left dorsal caudate 0.25 ± 0.03 0.23 ± 0.03 0.012*

Volumetry Volume (×100): left dorsolateral putamen 0.20 ± 0.02 0.20 ± 0.03 0.007**

Volume (×100): right dorsolateral putamen 0.20 ± 0.02 0.20 ± 0.03 0.013*

Iron Entropy: left dorsolateral putamen 1.96 ± 0.38 2.30 ± 0.48 <0.001***

DifferenceEntropy: left dorsolateral putamen 1.23 ± 0.20 1.43 ± 0.29 <0.001***

GLRLRunLengthNonUniformityNormalized: left dorsolateral putamen 0.38 ± 0.07 0.43 ± 0.07 0.001**

GLSZM-SizeZoneNonUniformityNormalized: left dorsolateral putamen 0.24 ± 0.04 0.27 ± 0.05 0.009**

Note: Values expressed as mean ± SD.
Abbreviations: FA, fractional aniotrophy; GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size zone 
matrix; IPD, idiopathic Parkinson's disease; MD, mean diffusivity; MSA-P, parkinsonian variant of multiple system atrophy.
*Statistical significance, p < 0.05; **statistical significance, p < 0.01; ***statistical significance, p < 0.001.
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training dataset and is generalized satisfactorily to the testing data-
set. With high generalization and robustness, the model may have 
clinical potential. Finally, since the process of striatal segmentation 
and multimodal neuroimaging feature extraction was automatic, our 
study provides an automatic pipeline for the classification of IPD and 
MSA-P individuals.

Furthermore, the multiscale characterization of striatum dys-
function provided by multimodal iron-sensitive, functional, and 
structural MRI was superior to either of these modalities used in-
dependently for the differential diagnosis of IPD and MSA-P. Some 
studies also indicated that biomarkers from various modalities 
provide complementary information, thereby improving the per-
formance compared to the methods based on single modal data.42 
Besides, “clinical-multimodal” model, which incorporate motor sever-
ity into the multimodal model, could further increase the diagnostic 
performance. The result highlights the importance of a combination 
of neuroimaging examinations and clinical measurement in making 
clinical diagnosis. Patients with MSA had more severe motor impair-
ment than did those with IPD, underlying the role of UPDRSIII as a 
potential differential indicator.1 Furthermore, the “multimodal” and 
“clinical-multimodal” models showed slightly better performance in 
moderately advanced subgroup compared with very early subgroup, 
despite not statistically conclusive. The possible explanation may be 
that disease specific abnormalities could not be captured by multi-
modal MRI until the moderately advanced stage of the disease. As 
for the single modality models, the “Function model” performance 
was superior to “Iron model,” followed by “Diffusion model” and 
“Volumetry model.” Functional MRI can unravel disease mechanisms 
from an early stage based on the functional correlation of regener-
ative neuronal cell death,43 while brain macrostructural changes re-
flect irreversible neuronal cell loss and can be observed in moderate 
to severe patients, providing incomplete information of the disease.

Based on SHAP analysis results, the dorsolateral putamen served 
as a critical neuromarker in the classification of IPD and MSA-P. 
Accumulating evidence on iron-sensitive images with respect to a 
sign of putaminal hypointensity from lateral to medial in MSA-P pa-
tients suggested severe iron accumulation in the lateral putamen.6,44 
Radiomic features could reflect the pattern of local iron deposition 
by depicting local homogeneity. In our study, iron accumulation of 
the dorsolateral putamen was more complex in MSA-P patients com-
pared with IPD patients. Elevated focal iron further triggers cellular 
and tissue damage by stimulating a-synuclein aggregation,45 which 
can be detected by rs-fMRI at an early stage. Thus, compared to IPD, 
individuals with MSA-P manifested decreased functional activity 
in the dorsolateral putamen. The elevated putaminal MD values in 
MSA-P could be attributed to the focal tissue architecture destroyed 
by neuronal degeneration.46

Taken together, the functional connectivity between the dorsal 
striatum and frontal lobule, as well as dorsal striatum and cerebel-
lum, plays a key role in differential diagnosis. The symptoms of par-
kinsonian diseases are not associated with dysfunction of isolated 
striatum, but are related to a cascade of pathophysiological alter-
ations in multiple brain regions via neuronal circuits.47 The dorsal TA
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striatum consists of the putamen and caudate and controls the motor 
and cognitive function by cortico-striatal and cerebello-striatal cir-
cuits.48–50 Specifically, the dorsolateral putamen is associated with 
motor function giving rise to the motor and premotor cortices via 
the frontostriatal loop.51 Besides, our previous work revealed the 
relationship between anterior cerebellum and motor symptoms in 
MSA patients.52 In the current study, the reduced functional con-
nectivity between the dorsolateral putamen and prefrontal gyrus, as 
well as dorsolateral putamen and anterior cerebellum were found in 
the MSA-P group. The decreased functional connectivity in MSA-P 
might provide explanation for the nature of more severe clinical 
symptoms reported in MSA group according to previous studies.1 
Conversely, the dorsal caudate is involved in executive function 
and working memory via connectivity to the dorsolateral prefrontal 
cortex. In line with this phenomenon, the functional connectivity of 
dorsal caudate and superior and middle frontal gyrus was reduced 
in the MSA-P group compared to IPD patients. The decreased func-
tional connectivity between dorsal caudate and prefrontal gyrus 
might cause a more severe cognitive impairment in MSA-P than PD 
patients.53,54 In addition, the preserved functional connectivity of 
dorsal striatum and frontal lobe in IPD may be relevant to the func-
tional modulatory mechanism, representing a network response 
to the local neuronal injury in order to maintain the global perfor-
mance.55 Overall, the dysfunction in the dorsal striatum, especially 
dorsolateral putamen, caused supervening prefrontal lobe and 

cerebellum dysfunction via the frontostriatal and cerebello-striatal 
circuit, which resulted in motor and cognitive symptoms.

Intriguingly, the left side of striatal dysfunction was more domi-
nant than the right side. Dopamine transporter single-photon emis-
sion computed tomography (DAT-SPECT) detected a trend of left 
hemispheric predominance of nigrostriatal deficits in right-handed 
PD patients.56 Also, motor symptoms were observed in the right 
side of the body in right-handed PD.57 Therefore, we speculated that 
the left side of the striatum was deprived of dopamine supplement, 
followed by local functional activity dysfunction, which then trans-
lated to the contralateral cortical dysfunction through the striatal-
cortical loop, finally resulting in motor symptoms in the contralateral 
side. However, the asymmetry of nigrostriatal deficits needs further 
investigation.

Nevertheless, this study has several limitations. First, there is a 
lack of neuropathological confirmation of IPD and MSA diagnosis, 
which is also observed for the majority of neurodegenerative stud-
ies. Second, neural differences under the similar disease duration 
could be greater in MSA-P patients compared with IPD, which might 
have influence on the model performance. Third, the sample size 
in the current study is not that large, but still larger than previous 
studies, necessitating a large multicenter cohort study. In addition, 
the optimal strategy for striatal subdivisions is yet lacking. Thus, a 
comparison of models using different parcellation approaches is re-
quired. Finally, in view of clinical-multimodal model construction, we 

F I G U R E  3  Receiver operator 
characteristic curve (ROC) of the 
“Function,” “Diffusion,” “Volumetry,” 
"Iron," “Multimodal,” and “Clinical-
Multimodal” models in the training (left) 
and testing dataset (right).

F I G U R E  4  Shapley additive explanations summary plot of features of the “Clinical-Multimodal” model. Left: SHAP values of features for 
every sample. Each line represents a feature, each dot represents a sample. Red represents higher feature values, blue represents lower 
feature values. Right: mean absolute SHAP values of features sorted in descending rank order. Abbreviations: inFC, intrastriatal functional 
connectivity; mALFF, mean amplitude of low-frequency fluctuation; MD, mean diffusivity; outFC, extrastriatal functional connectivity; 
UPDRSIII, Motor scores of the unified Parkinson's Disease Rating Scale.
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used UPDRSIII to evaluate motor severity in MSA patients, which 
may be not a specific rating scale for MSA. Besides, further studies 
on determining whether established models correlate with the vari-
ous parts of UPDRS is warranted.

5  |  CONCLUSIONS

In summary, multimodal striatal dysfunction, which mainly involved 
the dorsal striatum and its supervening prefrontal lobe and cerebel-
lum dysfunction via the frontostriatal and cerebello-striatal circuit, 
contributed to the classification of IPD and MSA-P and further fa-
cilitated individualized treatment in clinical settings. A combination 
of multimodal striatal neuromarkers and UPDRIII score could further 
improve diagnostic performance. Among the dorsal striatum subre-
gions, the dorsolateral putamen can be deemed the most valuable 
neuromarker for differential diagnosis.
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