Skip to main content
. 2022 Sep 1;28(12):2172–2182. doi: 10.1111/cns.13959

TABLE 3.

The performance of “Function,” ”Diffusion,” ”Volumetry,” “Iron,” ”Multimodal,” and “clinical‐multimodal” model in the differential diagnosis

Model Training dataset Testing dataset
AUC (95% CI) B‐ACC Sen Spec PPV NPV AUC (95% CI) B‐ACC Sen Spec PPV NPV
Function 0.890 (0.815–0.942) 0.832* 0.833 0.830 0.830 0.833 0.806 (0.661–0.909) 0.845* 0.864 0.826 0.826 0.864
Diffusion 0.713 (0.618–0.797) 0.702* 0.736 0.667 0.684 0.720 0.626 (0.470–0.766) 0.644* 0.636 0.652 0.636 0.652
Volumetry 0.544 (0.445–0.641) 0. 570* 0.509 0.630 0.574 0.567 0.514 (0.360–0.665) 0.579* 0.636 0.522 0.560 0.600
Iron 0.800 (0.712–0.871) 0.740* 0.774 0.704 0.719 0.760 0.741 (0.589–0.860) 0.801* 0.818 0.783 0.783 0.818
Multimodal 0.968 (0.914–0.992) 0.917* 0.981 0.852 0.867 0.979 0.927 (0.809–0.983) 0.911* 0.909 0.913 0.909 0.913
Clinical‐Multimodal 0.986 (0.944–0.999) 0.963* 0.981 0.944 0.945 0.981 0.953 (0.885–0.994) 0.934* 0.955 0.913 0.913 0.955

Abbreviations: AUC, area under the receiver operator curve; B‐ACC, balanced accuracy; Sen, sensitivity; Spec, specificity; PPV, positive predict value; NPV, negative predict value.

*

p < 0.001 under permutation test (1000 times).